
Numerical Methods & Linear Algebra
Math 2890-003
Spring 2016 Homework
Chapter 7 — Due May 5
- (3 points)
Explain your answer for each part of this question.
- Write down a $4 \times 4$ matrix (with no zero entries) that you know has real eigenvalues, and that can be diagonalized with an orthogonal similarity transformation.
- Now change some of the entries in your matrix to zeros to get a matrix with real eigenvalues that cannot be diagonalized with an orthogonal similarity transformation.
- Determine whether your matrix from part (b) can be diagonalized by some similarity transformation.
- (1 point) Let \[A=\left(\begin{array}{rrr} -5 & -1 & 5 \\ 6 & 3 & -6 \\ -5 & 8 & 3 \end{array}\right).\] Find an orthogonal matrix $P$ and a diagonal matrix $D$ such that $AP=PD$, or explain why no such matrices exist.
- (1 point) Let \[A=\left(\begin{array}{rrr} 1 & 2 & 4 \\ 2 & 4 & -2 \\ 4 & -2 & 1 \end{array}\right).\] Find an orthogonal matrix $P$ and a diagonal matrix $D$ such that $AP=PD$, or explain why no such matrices exist. Hint: The eigenvalues of $A$ are $5,5,-4$.
- (1 point) Let \[A=\left(\begin{array}{rrrr} 3 & 0 & 1 & 2 \\ 0 & 3 & -2 & -1 \\ 1 & -2 & 3 & 0 \\ 2 & -1 & 0 & 3 \end{array}\right).\] Find an orthogonal matrix $P$ and a diagonal matrix $D$ such that $AP=PD$, or explain why no such matrices exist. Hint: The eigenvalues of $A$ are $6,4,2,0$.
- (1 point) Let \[Q(x)=3 x_{1}^{2} + 4x_{1}x_{2}-6x_{1}x_{3} + 9 x_{2}^{2} + 12x_{2}x_{3} + 5 x_{3}^{2}.\] Find the (symmetric) matrix of the quadratic form $Q(x)$.
- (1 point) Let \[A=\left(\begin{array}{rrr} -8 & 8 & -2 \\ 8 & -8 & -3 \\ -2 & -3 & 4 \end{array}\right).\] Find the quadratic form $Q(x)=x^T A x$.
- (1 point) Let \[A=\left(\begin{array}{rr} 4 & 4 \\ 4 & 8 \end{array}\right).\] Find the maximum value of the quadratic form $Q(x)=x^T A x$ subject to the constraint $x^T x=1$.
- (1 point) Let \[A=\left(\begin{array}{rr} 5 & -2 \\ -2 & 2 \end{array}\right).\] Find the vector $x$ that maximizes the quadratic form $Q(x)=x^T A x$ subject to the constraint $x^T x=1$.
- (1 point) Let \[U=\left(\begin{array}{rrr} 2/9 & -4/9 & -5/9 \\ -5/9 & -2/3 & -2/9 \\ 4/9 & 2/9 & -2/3 \\ 2/3 & -5/9 & 4/9 \end{array}\right),\ \Sigma =\left(\begin{array}{rrr} 6 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 1 \end{array}\right),\ V=\left(\begin{array}{rrr} -2/7 & 3/7 & 6/7 \\ 3/7 & 6/7 & -2/7 \\ -6/7 & 2/7 & -3/7 \end{array}\right),\ b=\left(\begin{array}{r} 8 \\ 4 \\ 0 \\ 2 \end{array}\right).\] Use the reduced singular value decomposition $A=U \Sigma V^T$ to find a least-squares solution of $Ax=b$ having minimal 2-norm.
- (1 point)
Let \[A=\left(\begin{array}{rrr} 11 & 2 & 10 \\ 6 & 24 & -6 \\ 26 & 20 & 16 \end{array}\right).\]
Find the reduced singular value decomposition of $A$.
Hint: \[A^T A = \left(\begin{array}{rrr} 833 & 686 & 490 \\ 686 & 980 & 196 \\ 490 & 196 & 392 \end{array}\right)\] and this has nonzero eigenvalues $1764,441$.
Back to assignments or home page.
