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Abstract. Inner functions play a central role in function theory and operator

theory on the Hardy space over the unit disk. Motivated by recent works of

C. Bénéteau et al. and of D. Seco, we discuss inner functions on more general
weighted Hardy spaces and investigate a method to construct analogues of

finite Blaschke products.

1. Introduction

Let ω = {ωn}n≥0 be a sequence of positive real numbers. We denote by H2
ω the

Hilbert space of all formal power series f(z) =
∑∞
n=0 anz

n such that

‖f‖ =
( ∞∑
n=0

ωn |an|2
)1/2

<∞.

The corresponding inner product shall be denoted by 〈, 〉. For any f, g ∈ H2
ω,

〈f, g〉 =

∞∑
n=0

ωn anb̄n,

if f is as above and g(z) =
∑∞
n=0 bnz

n. Define en(z) = zn/
√
ωn for all integers

n ≥ 0. Then {en}n≥0 forms an orthonormal basis for H2
ω.

Without loss of generality we shall always assume ω0 = 1. In addition, we shall
restrict our attention to sequences ω satisfying

lim
n→∞

ωn+1

ωn
= 1.(1.1)

This condition guarantees that each function in H2
ω is holomorphic on the unit disk

and the operator of multiplication by z is a bounded operator on H2
ω. Furthermore,

any function holomorphic on a disk of radius strictly larger than 1 belongs to H2
ω.

It can be shown that H2
ω is a reproducing kernel Hilbert space of holomorphic

functions on D, that is, for each λ ∈ D, the evaluation map f 7→ f(λ) is a bounded
linear functional on H2

ω. Consequently, there exists a reproducing kernel Kλ ∈ H2
ω

for which

f(λ) = 〈f,Kλ〉 for all f ∈ H2
ω.

We define the function K(z, λ) = Kλ(z) = 〈Kλ,Kz〉 for z, λ ∈ D and call K the
reproducing kernel for H2

ω. See [11, Chapter 2] for more details on H2
ω.
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A holomorphic function ϕ on D is called a multiplier for H2
ω if for any f ∈ H2

ω,
the product function ϕf also belongs to H2

ω. In that case, the operator Mϕ of
multiplication by ϕ is bounded on H2

ω. We shall denote

‖ϕ‖Mult(H2
ω) = ‖Mϕ‖

and call it the multiplier norm of ϕ on H2
ω. Note that since ‖1‖ = 1 on H2

ω, we
always have

‖ϕ‖ ≤ ‖ϕ‖Mult(H2
ω).

It is well known and not difficult to verify that the operator Mz of multiplication
by z is a weighted forward shift of multiplicity one:

Mz(en) =

√
ωn+1

ωn
en+1 for all n ≥ 0.(1.2)

Condition (1.1) shows that Mz is bounded on H2
ω, which implies that any poly-

nomial is a multiplier of H2
ω. Furthermore, it is not difficulty to verify that

‖Mzf‖ ≥ ‖f‖ for all f ∈ H2
ω if and only if ω is non-decreasing. In such a case, we

say that H2
ω has the expansive shift property.

If ωn = 1 for all n ≥ 0, then H2
ω is the usual Hardy space H2 over the unit disk.

The norm on H2 is also given by

‖f‖2H2 = sup
0<r<1

( 1

2π

∫ 2π

0

|f(rei t)|2 dt
)
.

As usual, we denote by H∞ the Banach space of all bounded holomorphic functions
f on the unit disk with norm

‖f‖∞ = sup
z∈D
|f(z)|.

It is well known that H∞ is the space of all multipliers for H2. See, for example,
the books [13, 19, 27] for details on the Hardy space.

If ωn = 1
n+1 for all n ≥ 0, then H2

ω is the Bergman space A2 of holomorphic

functions on the unit disk. For f ∈ A2, we also have

‖f‖2A2 =

∫
D
|f(z)|2 dA(z),

where dA is the normalized Lebesgue measure on D. It is well known that the
multiplier space of A2 coincides with H∞. The theory of Bergman spaces have
been discussed in different aspects in several books. See, for example, [12, 17, 27].

In the case ωn = n + 1 for all n ≥ 0, the space H2
ω coincides with the Dirichlet

space D, which consists of holomorphic functions f on the unit disk for which

‖f‖2D = ‖f‖2H2 + ‖f ′‖2A2 <∞.
The books [2, 14] provide excellent references on the Dirichlet space.

The Dirichlet space D belongs to a larger class of Hilbert space of holomorphic
functions, called Dirichlet-type spaces. For any positive measure µ on D, one define
Dµ as the space of all holomorphic functions f on D for which

‖f‖2Dµ
= ‖f‖2H2 +

∫
D
|f ′(z)|2 dµ(z) <∞.

If µ is rotation invariant, then Dµ coincides with H2
ω for an appropriate weight

sequence ω.
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Recall that a bounded holomorphic function f on D is called an inner function
if |f(ζ)| = 1 for a.e. |ζ| = 1. Inner functions play an important role in function
theory and operator theory on Hardy spaces. The celebrated Beurling’s Theorem
asserts that any closed subspace of H2 that is invariant for the operator Mz of
multiplication by z is given by ϕH2 for some inner function ϕ. See [9] for a recent
survey of classical and new results linking inner functions and operator theory.
Inner functions are characterized as functions f ∈ H2 such that

‖f‖∞ = ‖f‖H2 = 1.

Interestingly, inner functions can also be characterized via the inner product in H2.
Indeed, a function f ∈ H2 is inner if and only if ‖f‖H2 = 1 and 〈zmf, f〉 = 0 for
all integers m ≥ 1.

In the case of the Dirichlet space D, Richter [21] showed that any invariant
subspace for Mz is also generated by a single function that satisfies the same or-
thogonality properties above.

Invariant subspaces on the Bergman space A2 turn out to be more complicated.
Aleman, Richter and Sundberg [1] proved an analogue of Beurling’s Theorem for A2:
any invariant subspace M of A2 is generated by the so-called wandering subspace
M	zM. Any unit norm function in this subspace satisfies ‖f‖A2 = 1 and zmf ⊥ f
for all m ≥ 1 and is called an A2-inner function. See [12, Chapters 5 and 9] and
[17, Chapter 3] for a detailed discussion of inner functions on Bergman spaces Ap.

Generalizing the notation of inner functions, several researchers have defined and
studied inner functions on weighted Hardy spaces.

Definition 1.1. A function f ∈ H2
ω is an H2

ω-inner function if ‖f‖H2
ω

= 1 and
for all integers m ≥ 1,

〈zmf, f〉 = 0.

Equivalently, 〈pf, f〉 = p(0) for all polynomials p.

Operator-valued inner functions on vector-valued weighted Hardy spaces have
also been defined and studied [3, 4, 20]. In particular, Ball and Bolotnikov [4]
obtained a realization of inner functions on vector-valued weighted Hardy spaces.
In [5], they investigated the expansive multiplier property of inner functions. They
obtained a sufficient condition on the weight sequences for which any inner function
has the expansive multiplier property. Recently, Bénéteau et al. [8, 7] studied inner
functions and examined the connections between them and optimal polynomial
approximants. They also described a method to construct inner functions that are
analogues of finite Blaschke products with simple zeroes. In [23], Seco discussed
inner functions on Dirichlet-type spaces and characterized such functions as those
whose norm and multiplier norm are both equal to one. Cheng, Mashreghi and
Ross [10] introduced and studied the notion of inner functions with respect to a
bounded linear operator. Using their language, our H2

ω-inner functions are their
inner functions with respect to the operator of multiplication by z. In a recent
paper Bénéteau at. al. [6] investigated inner functions on general simply connected
domains in the complex plane.

In this note we first obtain several characterizations of inner functions on weighted
Hardy spaces H2

ω, which extend Seco’s results. We then describe a construction of
H2
ω-analogues of finite Blaschke products. Our result provides a complete picture

of inner functions that are finite linear combinations of kernel functions. In the
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last section, we discuss a construction of inner functions via reproducing kernels of
certain weighted H2

ω-spaces.

2. Some characterizations of inner functions

Inner functions are closely related to solutions of a certain extremal problem that
has been considered by several authors [1, 7, 16]. Recall that a closed subspace M

of H2
ω is z-invariant if zM ⊂M. For a function f ∈ H2

ω, we will write [f ] (or [f ]H2
ω

if there may be a confusion) for the z-invariant subspace generated by f , which is
the closure of all polynomial multiples of f in the norm of H2

ω.
Let {0} 6= M ( H2

ω be z-invariant. Let d ≥ 0 be the smallest integer such that
zd /∈M⊥. Consider the extremal problem

sup
{

Re(g(d)(0)) : g ∈M, ‖g‖ ≤ 1}(2.1)

Since g(d)(0) is a positive constant multiple of 〈g, zd〉, the above extremal problem
is equivalent to

sup
{

Re(〈g, zd〉) : g ∈M, ‖g‖ ≤ 1
}
.(2.2)

It follows from general Hilbert space theory that the problem (2.2) has a unique
solution, which is exactly PM(zd)/‖PM(zd)‖, where PM(zd) denotes the orthogonal
projection of zd onto M. The following theorem shows that such projection produces
an H2

ω-inner function and that each H2
ω-inner function arises in such a fashion. This

result is known in many spaces and has appeared in the literature in different forms.
The case d = 0 was detailed in [7, Theorem 2.2]. The general case is in fact similar
and we provide a sketch of the proof.

Theorem 2.1. Let f be a function in H2
ω with ‖f‖ = 1. Then the following

statements are equivalent.

(a) f is an H2
ω-inner function.

(b) There exist a z-invariant subspace M 6= {0} and an integer d ≥ 0 such that
{zk : 0 ≤ k ≤ d− 1} ⊂M⊥, zd /∈M⊥ and f is a constant multiple of PM[zd].

Proof. Suppose first f is H2
ω-inner. Let d ≥ 0 be the largest integer for which zd

divides f . It can then be verified that 〈zd, f〉f = P[f ](z
d), which shows that (b)

holds with M = [f ].
Conversely, suppose that (b) holds. Put u = PM(zd). Then u ∈M and zd− u ∈

M⊥. For any integer m ≥ 1, since M is z-invariant, the function zmu belongs to
M. It follows that

0 = 〈zmu, zd − u〉 = 〈zmu, zd〉 − 〈zmu, u〉.(2.3)

On the other hand, by assumption, zd divides any function in M so we may write
u = zdv for some v holomorphic on the unit disk. Consequently,

〈zmu, zd〉 = 〈zm+dv, zd〉 = 0(2.4)

since m ≥ 1. It follows from (2.3) and (2.4) that 〈zmu, u〉 = 0, hence 〈zmf, f〉 = 0
for all integers m ≥ 1. By the fact that f is a unit vector, (a) follows. �

Inner functions on the Bergman space have been very well studied. See [12,
Chapter 5] and [17, Chapter 3] for an excellent treatment of inner functions even
in the general setting of Ap spaces. It is well known (see [12, Section 5.2] and
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[17, Section 3.4]) that each A2-inner function has an expansive multiplier property.
That is, if f is an A2-inner function, then

‖p‖A2 ≤ ‖pf‖A2

for all polynomials p. Ball and Bolotnikov[5] exhibited sufficient conditions on the
weight sequence ω for which any inner function in H2

ω has the expansive multiplier
property.

In [22], among other things, Richter and Sundberg found a close connection
between inner functions on the Dirichlet space and its multipliers: if f is D-inner,
then

‖f‖Mult(D) = 1.

In particular, each D-inner function is a contractive multiplier. This is quite differ-
ent from A2-inner functions.

Seco [23] recently obtained the following interesting characterization of inner
functions on Dirichlet-type spaces generated by rotation-invariant measures µ.

Theorem 2.2 ([23]). Let f ∈ Dµ = H2
ω. Then f is Dµ-inner whenever

(a) ‖f‖Dµ
= 1 and for all integers k ≥ 1 and all λ ∈ C,

‖fgk,λ‖2Dµ
≤ ωk + |λ|2,

where gk,λ(z) = zk + λ, and this holds true whenever
(b) ‖f‖Dµ = ‖f‖Mult(Dµ) = 1.

Note that condition (a) in Theorem 2.2 is considerably weaker than the condition
‖f‖Mult(Dµ) = 1 in (b). As Seco pointed out, his proof of (b)⇒(a)⇒ Dµ-inner
works for any weighted Hardy space with the expansive shift property. On the
other hand, for the Dirichlet space, using Richter-Sundberg’s result, we see that (a)
actually implies (b).

On any H2
ω, the function ek = zk/

√
ωk is always H2

ω-inner. The multiplication
operator Mek is a weighted shift:

Mek(en) =

√
ωn+k

ωn ωk
en+k for all n ≥ 0.

Consequently, ek is a contractive multiplier if and only if

ωn+k ≤ ωn ωk for all integers n ≥ 0.(2.5)

On the other hand, ek is an expansive multiplier if and only if

ωn+k ≥ ωn ωk for all integers n ≥ 0.(2.6)

Example 2.3. Consider the weight sequence ω defined by ω1 =
√

2 and ωn = n+1
for all n 6= 1. This weight sequence has the expansive shift property and it is almost
identical to the weight sequence generating the Dirichlet space D except the value
of ω1. Since ω2 > ω2

1 , the H2
ω-inner function e1(z) = z/

√
ω1 has multiplier norm

bigger than 1. Indeed,

‖z · e1‖2H2
ω

=
∥∥∥ z2

√
ω1

∥∥∥2

H2
ω

=
‖z2‖2H2

ω

ω1
=
ω2

ω1
> ω1 = ‖z‖2H2

ω
.
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Example 2.4. Now consider the weight sequence ω1 = 1/
√

2 and ωn = 1/(n+1) for
all n 6= 1, which consists of the reciprocals of the sequence in the previous example.
This weight sequence is almost identical to the weight sequence generating the
Bergman space A2 except the value of ω1. Since ω2 < ω2

1 , the H2
ω-inner function

e1(z) = z/
√
ω1 does not have the expansive multiplier property.

The above examples show that the expansive and contractive properties are
quite sensitive under very small changes in the norms. Interestingly, we show in
the following result that on any H2

ω-space, a function is inner if and only if it satisfies
a certain modified expansive and contractive multiplier property. We indeed obtain
several equivalent characterizations of H2

ω-inner functions.
For any integer k ≥ 1 and any complex number ζ ∈ C, denote gk,λ(z) = zk + λ

for z ∈ C.

Theorem 2.5. Let f be an element of H2
ω. Then the following statements are

equivalent.

(i) f is H2
ω-inner.

(ii) ‖f‖ = 1 and for any integer k ≥ 1, one of the following conditions holds:
(C1) There exists a constant Ck such that

‖fgk,λ‖2 ≤ Ck + |λ|2 for all λ ∈ C.

(C2) There exists a constant Dk such that

‖fgk,λ‖2 ≥ Dk + |λ|2 for all λ ∈ C.

(iii) ‖f‖ = 1 and for any polynomial p ∈ C[z], we have

|p(0)| ≤ ‖pf‖.

Remark 2.6. Since a general H2
ω-inner function may fail to be an expansive mul-

tiplier, we may perhaps consider (iii) as an analogue of the expansive multiplier
property. While the proof is not difficult, it is quite curious to us that the implica-
tion (iii)⇒(i), even for the Hardy space, does not seem to appear in the references
that we have known.

Proof. If ‖f‖ = 1, for k ≥ 1, we compute

ϕk(λ) = ‖fgk,λ‖2 − |λ|2

= ‖zkf‖2 + |λ|2‖f‖2 + 2<(λ̄〈zkf, f〉)− |λ|2

= ‖zkf‖2 + 2<(λ̄〈zkf, f〉).

For any real number t, setting λ = t〈zkf, f〉 gives

ϕk
(
t〈zkf, f〉

)
= ‖zkf‖2 + 2t |〈zkf, f〉|2.

It follows that ϕk is bounded above or bounded bellow if and only if 〈zkf, f〉 = 0.
This shows that (i) and (ii) are equivalent.

We now prove the implication (i) ⇒ (iii). Assume that f is H2
ω-inner. Let

p(z) = a0 + a1z + · · ·+ anz
n be any polynomial. We then have

〈pf, f〉 =

n∑
j=0

aj〈zjf, f〉 = a0 = p(0).
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Cauchy-Schwarz’s inequality implies

|p(0)| = |〈pf, f〉| ≤ ‖pf‖ · ‖f‖ = ‖pf‖.

Therefore, (i) implies (iii). On the other hand, if (iii) holds, then for each integer
k ≥ 1, condition (C2) is satisfied with Dk = 0. Consequently, (i) holds. �

Corollary 2.7. Let f be an element of H2
ω. Then f is H2

ω-inner if and only if for
any k ≥ 1, there exist constants Ck and Dk such that

Dk + |λ|2 ≤ ‖fgk,λ‖2 ≤ Ck + |λ|2 for all λ ∈ C.(2.7)

Proof. By Theorem 2.5, we only need to show that if (2.7) holds, then ‖f‖ = 1.
Note that

lim
|λ|→∞

‖fgk,λ‖2

|λ|2
= lim
|λ|→∞

‖zkf‖2 + 2<(λ̄〈zkf, f〉)
|λ|2

+ ‖f‖2 = ‖f‖2.

It follows that if (2.7) holds for some integer k ≥ 1, then ‖f‖ = 1. �

In the case f is a multiplier of H2
ω, the following result provides a necessary

and sufficient condition for f to be an inner function via the action of the operator
M∗fMf on constant functions.

Theorem 2.8. Let f be a multiplier of H2
ω. Then the following statements are

equivalent.

(a) f is H2
ω-inner.

(b) M∗fMf1 = 1.

(c) There exists a positive operator A on zH2
ω such that

M∗fMf = IC1 ⊕A,

where IC1 denotes the identity operator on the one-dimensional space of
constant functions.

Proof. Recall that {em(z) = zm/
√
ωm : m = 0, 1, . . .} is an orthonormal basis for

H2
ω. Let us compute

M∗fMf1 =

∞∑
m=0

〈M∗fMf1, em〉em =

∞∑
m=0

〈Mf1,Mfz
m〉 z

m

ωm

=

∞∑
m=0

〈f, zmf〉 z
m

ωm
.

It follows that M∗fMf1 = 1 if and only if ‖f‖ = 1 and 〈f, zmf〉 = 0 for all m ≥ 1.

Therefore, (a) and (b) are equivalent. On the other hand, since H2
ω = C1 ⊕ zH2

ω,
we see that (b) and (c) are equivalent. �

Remark 2.9. When H2
ω is the Hardy space or one of the weighted Bergman spaces

over the disk, the operator M∗fMf can be identified as the Toeplitz operator T|f |2 .
Theorem 2.8 asserts that in such spaces, a function f is inner if and only if constant
functions belong to ker(I − T|f |2). On the Hardy space, this is equivalent to the
fact that |f | = 1 a.e. on the unit circle. This, of course, does not hold true for
inner functions on the Bergman nor any general H2

ω space.
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Remark 2.10. Statement (b) in Theorem 2.8 essentially says that M∗fMf is the
identity operator on the subspace of constant functions. We mention in passing
that an analogous characterization of operator-valued inner functions can also be
obtained with a similar proof.

3. Construction of finite H2
ω-Blaschke products

In this section, we shall develop a method to construct analogues of finite
Blaschke products. These functions turn out to be multipliers of H2

ω. We pro-
vide here a short discussion which shows that under the assumption (1.1) on the
weight sequences, many nice functions serve as multipliers of H2

ω. We have seen
in the introduction that any polynomial is a multiplier of H2

ω. More is true as we
shall see below.

Recall from (1.2) that

Mz(en) =

√
ωn+1

ωn
en+1 for all n ≥ 0.

It follows that for all m ≥ 1,

Mzm(en) =

√
ωn+m

ωn
en+m for all n ≥ 0

and hence,

‖Mzm‖ = sup
{√ωn+m

ωn
: n ≥ 0

}
.

Condition (1.1) then implies

lim
m→∞

‖Mzm‖1/m = lim
m→∞

(
sup

{√ωn+m

ωn
: n ≥ 0

})1/m

= 1.(3.1)

Lemma 3.1. Let ϕ be a function that is holomorphic on a disk centered at the
origin with radius strictly larger than one. Then ϕ is a multiplier of H2

ω.

Proof. Write

ϕ(z) =

∞∑
m=0

bmz
m.

The hypothesis implies that ρ = lim sup
m→∞

|bm|1/m < 1. Using this together with

(3.1), we conclude

lim sup
m→∞

(|bm| ‖Mzm‖)1/m = ρ < 1.

Consequently,
∞∑
m=0

|bm| ‖Mzm‖ <∞,

which implies that the series
∑∞
m=0 bmMzm converges to a bounded operator on

H2
ω. This shows that Mϕ is bounded as desired. �

Using Shapiro-Shields’s determinants [24], Beneteau et al. [7] described a method
of constructing H2

ω-inner functions with a prescribed finite set of simple zeros in the
disk. They call such inner functions analogues of finite Blaschke products. In this
section, we investigate this problem with a different approach. We consider inner
functions with a prescribed finite set of zeros (with finite multiplicities) and we
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shall explain why these functions should be considered natural analogues of finite
Blaschke products. Our approach makes use of reproducing kernel functions.

Recall that for each λ ∈ D, we use Kλ to denote the reproducing kernel function
of H2

ω at λ. For H2
ω = H2, we have

KH2

λ (z) =
1

1− λz
for z ∈ D

and for H2
ω = A2, we have

KA2

λ (z) =
1

(1− λz)2
for z ∈ D.

Any finite Blaschke product with simple non-zero roots is a unimodular constant
multiple of

b(z) = zd · z − z1

1− z̄1z
· · · z − zs

1− z̄sz
,

where d ≥ 0 and z1, . . . , zs are distinct points in D\{0}. Such b is H2-inner. How
would one construct an analogue of b in more general H2

ω? Our approach is to use
the partial fractions decomposition of b:

b(z) = p(z) +
c1

1− z̄1z
+ · · ·+ cs

1− z̄sz
= p(z) + c1K

H2

z1 (z) + · · ·+ csK
H2

zs (z).(3.2)

where p is a polynomial of degree d and c1, . . . , cs are non-zero complex values.
Motivated by such a decomposition, we seek H2

ω-inner functions that can be written
as a finite combination of kernel functions. It turns out that such inner functions
can be computed using Shapiro-Shield’s determinants, which recovers Beneteau et
al.’s results. To illustrate our ideas, let us consider several examples.

Example 3.2. It follows directly from the definition that for each integer d ≥ 1, the
function zd/

√
ωd is H2

ω-inner. Such a function is an H2
ω-analogue of the H2-inner

function zd.

Example 3.3. Let a ∈ D\{0}. We seek H2
ω-analogue of the Blaschke factor

b1(z) =
z − a
1− āz

.

To do that, we need to determine two non-zero constants α, β ∈ C such that
B1 = α + βKa is an H2

ω-inner function. The conditions for B1 to be inner are
‖B1‖ = 1 and

〈αzj + βzjKa, α+ βKa〉 = 0 for all j ≥ 1.

Since 〈zj , 1〉 = 0 and Ka is the reproducing kernel at a, we then obtain

αβaj + ββajKa(a) = 0,

which implies α = −βKa(a). Consequently, B1 is a constant multiple of the func-
tion Ka(a)−Ka. That is, any H2

ω-analogue of b1 is of the form

B1 = µ
Ka(a)−Ka

‖Ka(a)−Ka‖
= µ

Ka(a)−Ka√
Ka(a)(Ka(a)− 1)

,

where |µ| = 1. Of course, this is very well known. See, for example [12, p. 125].
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Note that B1(a) = 0. Does B1 admit any extraneous zeros in the closed unit
disk? By the formula for the reproducing kernel, we have

Ka(a)−Ka(z) =

∞∑
n=1

ān(an − zn)

ωn
= ā(a− z)

( 1

ω1
+
∑
n≥2

ān−1(an − zn)

(a− z)ωn

)
Consequently,∣∣∣Ka(a)−Ka(z)

∣∣∣ ≥ |a| · |a− z| · ( 1

ω1
− |a|

∞∑
j=0

(j + 2)|a|j

ωj+2

)
.

It follows that there exists δ > 0 such that for all |a| < δ and |z| ≤ 1,∣∣∣Ka(a)−Ka(z)
∣∣∣ ≥ |a|

2ω1
|a− z|.

This implies that a is the unique zero of B1 in the closed unit disk provided that
|a| < δ.

When H2
ω is the Hardy space or the Bergman space, it follows from the explicit

formula of the reproducing kernel functions that B1 does not have any other zero
except a and this is true for any a ∈ D. Surprisingly, for certain weighted Bergman
spaces, B1 does possesses extraneous zeros different from a. In general, Heden-
malm and Zhu [18] and Weir [25, 26] showed that many properties of (un-weighted)
Bergman space inner functions may not hold in the setting of weighted Bergman
spaces.

Example 3.4. Let a ∈ D\{0}. We now seek H2
ω-analogue of the Blaschke factor

b2(z) = z · z − a
1− āz

.

We need to find three constants α, β, γ ∈ C, where α and γ are non-zero such that
g = αz + β + γKa is H2

ω-inner. The conditions for g to be inner are given as

1 = ‖g‖ = ‖αz + β + γKa‖,
0 = 〈zg, g〉 = ᾱ〈zg, z〉+ γ̄〈zg,Ka〉 = ᾱ(β + γ)ω1 + γ̄ag(a)

0 = 〈zjg, g〉 = 〈zjg, γKa〉 = γ̄ajg(a) for all j ≥ 2.

The last condition forces g(a) = 0, which together with the second condition gives
ᾱ(β + γ) = 0. Since α 6= 0, we conclude that β + γ = 0, which is equivalent to
g(0) = 0. It then follows that g is a unimodular multiple of the function

B2(z) =

(
1−Ka(a)

)
z − a(1−Ka)

‖
(
1−Ka(a)

)
z − a(1−Ka)‖H2

ω

=

(
1−Ka(a)

)
z − a(1−Ka)√

(Ka(a)− 1)((Ka(a)− 1)ω1 − |a|2)
.

Example 3.5. Let a ∈ D\{0}. We look for H2
ω-analogue of

(
z−a
1−āz

)2
. Write( z − a

1− āz

)2

=
1

ā2
+
(
a2 − 1

ā2

)
· 1

1− āz
+

(1− |a|2)2

ā
· z

(1− āz)2

=
1

ā2
+
(
a2 − 1

ā2

)
KH2

a +
(1− |a|2)2

ā

∂KH2

a

∂ā
.

Consequently, an H2
ω-analogue should admit the form

B(z) = α+ βKa + γ
∂Ka

∂ā
.
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While it is possible to use the calculations similar to the previous examples to
determine α, β and γ, we shall discuss this example later after we have proved our
result.

3.1. Gram determinant. One of our tools to construct analogues of higher order
Blaschke products is the notion of the Gram determinant of a finite set of vectors,
which we now recall. For a collection of vectors v1, . . . , vs in an inner-product space,
let G(v1, . . . , vs) denote the Gram matrix

G(v1, . . . , vs) =

〈v1, v1〉 · · · 〈v1, vs〉
... · · ·

...
〈vs, v1〉 · · · 〈vs, vs〉

 .
The Gram determinant is then det(G(v1, . . . , vs)). Since the matrix is positive semi-
definite, det(G(v1, . . . , vs)) ≥ 0. Furthermore, the vectors {v1, . . . , vs} are linearly
independent if and only if det(G(v1, . . . , vs)) > 0.

For any vector v, we denote by D(v, v1, . . . , vs) the vector

D(v; v1, . . . , vs) = det


v 〈v, v1〉 · · · 〈v, vs〉
v1 〈v1, v1〉 · · · 〈v1, vs〉
...

... · · ·
...

vs 〈vs, v1〉 · · · 〈vs, vs〉

 .(3.3)

Here the determinant is computed in the usual way even though the first column
consists of vectors. Note that D(v; v1, . . . , vs) ⊥ vj for all 1 ≤ j ≤ s and

‖D(v; v1, . . . , vs)‖2 = det(G(v1, . . . , vs))
〈
D(v; v1, . . . , vs), v

〉
.

If the vectors {v1, . . . , vs} are linearly independent so that det(G(v1, . . . , vs)) > 0,
then it is well known that

u =
1

det(G(v1, . . . , vs))
D(v; v1, . . . , vs)

is the orthogonal projection of v onto the subspace {v1, . . . , vs}⊥. To see this, note
that u ⊥ vj for all 1 ≤ j ≤ s and v − u is a linear combination of {v1, . . . , vs}.

3.2. H2
ω-Blaschke products. Recall that the reproducing kernel Kλ(z), as a func-

tion of two variables, is holomorphic in z and conjugate holomorphic in λ. For any
integer ` ≥ 0, define

K
(`)
λ (z) =

∂`

∂λ̄`
(K(z, λ)).

Then K
(`)
λ is the reproducing kernel for the `th derivative of functions in H2

ω at λ.
That is, for all h ∈ H2

ω and λ ∈ D,

h(`)(λ) = 〈h,K(`)
λ 〉.

We denote by Xλ the linear subspace spanned by the set of linearly independent

functions {Kλ,K
(1)
λ ,K

(2)
λ , . . .}. For any f ∈ Xλ\{0}, there exist a unique integer

m ≥ 0 and constants c0, . . . , cm with cm 6= 0 such that f =
∑m
j=0 cjK

(j)
λ . We shall

call m the degree of f . It is clear that X0 is the space of all polynomials and in
that case we recover the usual notion of the degree of a polynomial.
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Proposition 3.6. Let z1, . . . , zs be distinct points in D. Then the subspaces {Xzj :
1 ≤ j ≤ s} are mutually linearly independent in the sense that if hj ∈ Xzj and
h1 + · · ·+ hs = 0, then hj = 0 for all j.

Proof. For each j, there exists a polynomial pj for which

〈f, hj〉 =
(
pj(D)f

)
(zj) for all f ∈ H2

ω,

where D = d
dz . If ht 6= 0 for some 1 ≤ t ≤ s, then pt is not identically zero. There

then exists a holomorphic polynomial f such that (pj(D)f)(zj) = 0 for all j 6= t
and (pt(D)f)(zt) 6= 0. Indeed, one may take

f(z) = (z − zt)dt
∏
j 6=t

(z − zj)dj+1,

where dj = 0 if pj is the zero polynomial and dj = deg(pj) if pj 6= 0. We then have

〈f, h1 + · · ·+ hs〉 =
(
p1(D)f

)
(z1) + · · ·+

(
ps(D)f

)
(zs) = (pt(D)f)(zt) 6= 0,

which implies h1 + · · ·+hs 6= 0. The conclusion of the proposition then follows. �

Let f be a multiplier of H2
ω. For λ ∈ D, it is well known that M∗fKλ = f(λ)Kλ.

More generally, let us find a formula for M∗f (K
(`)
λ ) for any integer ` ≥ 0. For

h ∈ H2
ω, we have

〈h,M∗f (K
(`)
λ )〉 = 〈h f,K(`)

λ 〉 = (h f)(`)(λ)

=
∑̀
j=0

(
`

j

)
h(`−j)(λ) f (j)(λ)

=
∑̀
j=0

(
`

j

)
f (j)(λ)〈h,K(`−j)

λ 〉

=
〈
h,
∑̀
j=0

(
`

j

)
f (j)(λ)K

(`−j)
λ

〉
.

Consequently,

M∗f (K
(`)
λ ) =

∑̀
j=0

(
`

j

)
f (j)(λ)K

(`−j)
λ .(3.4)

It follows that the subspace Xλ is invariant under M∗f and with respect to the

ordered basis {Kλ, . . . ,K
(m)
λ , . . .}, the operator M∗f has an upper triangular matrix

representation:
f(λ) f ′(λ) f ′′(λ) · · · f (m)(λ) · · ·

0 f(λ) 2 f ′(λ) · · · mf (m−1)(λ) · · ·
0 0 f(λ) · · ·

(
m
2

)
f (m−2)(λ) · · ·

...
...

... · · ·
... · · ·

0 0 0 · · · f(λ) · · ·

 .
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From this we see that if there exist complex numbers c0, . . . , cm with cm 6= 0 such
that

M∗f

( m∑
j=0

cj K
(j)
λ

)
= 0,

then f(λ) = · · · = f (m)(λ) = 0. By a similar argument, we see that if

M∗f

( m∑
j=0

cj K
(j)
λ

)
= Kλ,

then either m = 0, or m ≥ 1 and f(λ) = · · · = f (m−1)(λ) = 0.
Let Z = {z0 = 0, z1, . . . , zs} be a collection of distinct points on the unit disk.

We would like to construct inner functions in H2
ω that belong to the sum

XZ = Xz0 + Xz1 + · · ·+ Xzs .

The sum above is direct by Proposition 3.6 but non-orthogonal. If d0, . . . , ds are
non-negative integers, then it is clear from the determinant expansion that the
non-zero vector

ν = D
(
zd0 ; 1, z, . . . , zd0−1,Kz1 , . . . ,K

(d1)
z1 , . . . ,Kzs , . . . ,K

(ds)
zs

)
belongs to XZ . On the other hand, by Theorem 2.1, ν/‖ν‖H2

ω
is an inner function.

It turns out that any inner function in XZ is a unimodular constant multiple of
such a ratio.

Theorem 3.7. Let Z = {z0 = 0, z1, . . . , zs} be a collection of distinct points on the
unit disk. Suppose fj ∈ Xzj\{0} and dj = deg(fj) for 0 ≤ j ≤ s. If B = f0+· · ·+fs
is H2

ω-inner, then B is a constant multiple of the vector

D
(
zd0 ; 1, z, . . . , zd0−1,Kz1 , . . . ,K

(d1)
z1 , . . . ,Kzs , . . . ,K

(ds)
zs

)
as defined in (3.3). Furthermore, B/b is holomorphic on a neighborhood of the
closed unit disk, where

b(z) = zd0
s∏
j=1

( z − zj
1− z̄jz

)dj
.

We shall call B an H2
ω-analogue of the Blaschke product b.

Proof. By Lemma 3.1, B is a multiplier of H2
ω. Since B is inner, Theorem 2.8

asserts that M∗BMB(1) = 1, which gives

M∗B(f0) + · · ·+M∗B(fs) = 1 = Kz0 .

By Proposition 3.6, M∗B(fj) = 0 for all 1 ≤ j ≤ s, and M∗B(f0) = Kz0 . Since
dj = deg(fj), the discussion preceding the theorem implies that

B(zj) = · · · = B(dj)(zj) = 0

for all 1 ≤ j ≤ s, and for j = 0, either d0 = 0, or d0 ≥ 1 and B(0) = · · · =
B(d0−1)(0) = 0. Consequently, B/b is holomorphic on a neighborhood of the closed
unit disk and B belongs to the orthogonal complement of the subspace

M = span
(
{1, z, . . . , zd0−1} ∪ {Kz1 , . . . ,K

(d1)
z1 } ∪ · · · ∪ {Kzs , . . . ,K

(ds)
zs }

)
.
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In the case d0 = 0, the first set in the above union is understood to be empty.
Since B is a linear combination of zd0 and functions in M, there is a constant γ
and h ∈M such that B = γ zd0 + h. We then have

B = PM⊥(f) = PM⊥(γ zd0 + h) = γ PM⊥(zd0).

By the discussion in subsection 3.1, the conclusion of the theorem now follows. �

Example 3.8. We now revisit Example 3.5. Let a ∈ D\{0}. We would like to
construct an H2

ω-inner function of the form

B(z) = α+ βKa + γ
∂Ka

∂ā

where α, β, γ are complex constants with γ 6= 0. Theorem 4.1 asserts that B is a
constant multiple of the vector

D
(
1;Ka,K

(1)
a

)
= det

 1 〈1,Ka〉 〈1,K(1)
a 〉

Ka 〈Ka,Ka〉 〈Ka,K
(1)
a 〉

K
(1)
a 〈K(1)

a ,Ka〉 〈K(1)
a ,K

(1)
a 〉


= det

 1 1 0

Ka Ka(a) K
(1)
a (a)

K
(1)
a K

(1)
a (a) ‖K(1)

a ‖2

 .

If H2
ω = H2, then the above formula becomes

det

 1 1 0
1

1−āz
1

1−|a|2
ā

(1−|a|2)2

z
(1−āz)2

a
(1−|a|2)2

1+|a|2
(1−|a|2)3

 =
1

(1− |a|2)4

{
1− 1− |a|4

1− āz
+

(1− |a|2)2āz

(1− āz)2

}

=
ā2

(1− |a|2)4

( a− z
1− āz

)2

,

as expected.

4. Inner functions via reproducing kernels

In this section we discuss a construction of H2
ω-inner functions via a different

approach. The ideas here were motivated by the study of contractive zero-divisors
on Bergman spaces in [12, Section 5.4] and [17, Section 3.6]. Our approach involves
the reproducing kernels of certain weighted spaces. The use of such reproducing
kernels to construct contractive divisors in Bergman spaces has also been used by
Hansbo [15]. Our construction here works for general H2

ω-spaces.
Let b belong to H2

ω and define H2
ω(|b|2) to be the closure of all holomorphic

polynomials f with respect to the norm

‖f‖H2
ω(|b|2) = ‖fb‖H2

ω
.

The inner product in H2
ω(|b|2) is defined on polynomials as

〈f, g〉H2
ω(|b|2) = 〈fb, gb〉H2

ω
.

Throughout this section, to reduce confusion, we shall use 〈·, ·〉H2
ω

to denote the

inner product on H2
ω. It can be shown that for any λ ∈ D, the evaluation functional
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f 7→ f(λ) is bounded on H2
ω(|b|2) so H2

ω(|b|2) is a reproducing kernel Hilbert space
of holomorphic functions on D. In addition, for any f ∈ H2

ω(|b|2), we compute

‖zf‖H2
ω(|b|2) = ‖zfb‖H2

ω
≤ ‖Mz‖H2

ω→H2
ω
· ‖fb‖H2

ω
= ‖Mz‖H2

ω→H2
ω
· ‖f‖H2

ω(|b|2).

Consequently, the multiplication operator Mz is bounded on H2
ω(|b|2).

For a moment, suppose now b is a finite Blaschke product with simple zeros
{z1, . . . , zs} ⊂ D\{0} and a zero of multiplicity d at the origin. Let B be the H2

ω-
analogue of b constructed in Theorem 3.7. We have seen that B/b is holomorphic
on a neighborhood of the closed unit disk and that B can be written in the form

B = p+

s∑
j=1

cjKzj ,

where p is a polynomial of degree d. We claim that B/b is a constant multiple of
the reproducing kernel of H2

ω(|b|2) at the origin. Indeed, we take any polynomial f
and compute

〈f,B/b〉H2
ω(|b|2) = 〈fb,B〉H2

ω
= 〈fb, p+

s∑
j=1

cjKzj 〉
H2
ω

= 〈fb, p〉H2
ω

+

s∑
j=1

c̄jf(zj)b(zj) = f(0)〈b, p〉H2
ω
.

The last equality follows from the fact that b(zj) = 0 for all 1 ≤ j ≤ s and that the
origin is a zero of b of multiplicity d and p is a polynomial of degree d. In addition,
〈b, p〉H2

ω
6= 0. Consequently,

f(0) =
〈
f,

1

〈p, b〉H2
ω

· B
b

〉
H2
ω(|b|2)

,

which shows that 1
〈p,b〉H2

ω

· Bb is the reproducing kernel function at the origin for

H2
ω(|b|2).
In the case H2

ω = A2, the above result is well known. It is also known that B
does not process any extraneous zeros, that is, B/b does not vanish in the closed
unit disk. See [12, Section 5.4] for a detailed discussion for general Ap spaces.

When b has repeated zeros, the above assertion remains valid. One needs to
consider derivatives of reproducing kernel functions as well. We summarize the
result in the following theorem.

Theorem 4.1. Let b be a finite Blaschke product and B be its H2
ω-analogue con-

structed in Theorem 3.7. Then B/b is a constant multiple of the reproducing kernel
function of H2

ω(|b|2) at the origin.

Now consider the case b is an arbitrary H2-inner function. Even in the case b is
an infinite Blaschke product, it is not clear what should be considered as an H2

ω-
analogue of b. One may consider infinite sums of kernel functions but convergence
may pose a serious issue. Inspired by Theorem 4.1, we provide here an answer,
even for more general b.

Theorem 4.2. Suppose b belongs to H2
ω. Then the following statements hold.
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(a) Let R0 denote the reproducing kernel at the origin for H2
ω(|b|2). Then the

function

u =
bR0

‖bR0‖H2
ω

(4.1)

is H2
ω-inner.

(b) Suppose ϕ is an H2
ω-inner function and F is holomorphic such that b = ϕF

and [b]H2
ω

= [ϕ]H2
ω

. Then F does not vanish on D and u =
(
|F (0)|/F (0)

)
ϕ.

Proof. (a) For any integer m ≥ 1, we have

〈bR0z
m, bR0〉H2

ω
= 〈R0z

m, R0〉H2
ω(|b|2) = R0(0) · (0)m = 0.

We have used the fact that R0z
m is an element of H2

ω(|b|2). Consequently, u is
H2
ω-inner.
(b) Suppose now that b = ϕF with [b]H2

ω
= [ϕ]H2

ω
. There then exist sequences

of polynomials {qn} and {pn} such that bqn → ϕ and ϕpn → b in H2
ω. That

is, ϕFqn → ϕ and ϕpn → ϕF in H2
ω. It follows that ϕFqn → ϕ and ϕpn →

ϕF uniformly on compact subsets. The standard argument using the Maximum
Modulus Principle and the fact that the zeros of ϕ are isolated implies that Fqn → 1
and pn → F uniformly on compact subsets as well. In particular, F does not vanish
on D and qn → 1/F on compact sets.

On the other hand, we have

‖qn − qm‖H2
ω(|b|2) = ‖bqn − bqm‖H2

ω
→ 0

as m,n → ∞ because {bqn} converges in H2
ω. This implies that {qn} is a Cauchy

sequence, hence converges, in H2
ω(|b|2). Since {qn} converges pointwise to 1/F , we

conclude that 1/F must be the limit. Consequently, 1/F belongs to H2
ω(|b|2).

We now show that R0 = 1/(F (0)F ). For any polynomial q, we compute

〈q, 1/F 〉H2
ω(|b|2) = 〈qb, b/F 〉H2

ω
= 〈qb, ϕ〉H2

ω

= lim
n→∞

〈qϕpn, ϕ〉H2
ω

= lim
n→∞

q(0)pn(0) = q(0)F (0).

Since polynomials are dense in H2
ω(|b|2), it follows that 1/(F (0)F ) is the reproduc-

ing kernel at the origin for H2
ω(|b|2). That is, R0 = 1/(F (0)F ). Formula (4.1) then

gives

u =
bR0

‖bR0‖A2

=
|F (0)|
F (0)

ϕ

as desired. �

Let us now consider examples in the Hardy and Bergman spaces. We shall see
that for these spaces, formula (4.1) recovers the inner part of b.

Example 4.3. Consider H2
ω = H2 and b is any function in H2. Let b = ϕ · F

be the inner-outer factorization of b. Since the hypothesis of Theorem 4.2(b) is
satisfied, we see that formula (4.1) gives us a unimodular constant multiple of the
inner function ϕ.

Example 4.4. Now consider the Bergman space H2
ω = A2 and b ∈ A2. By [12,

Section 9.2, Theorem 4] or [17, Section 3.6], we may write b = ϕ · F , where ϕ is
A2-inner, F is A2-outer (in the sense that [F ] = A2) and [b]A2 = [ϕ]A2 . Theorem
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4.2(b) again shows that formula (4.1) recovers ϕ, up to a unimodular constant
factor.

Remark 4.5. It has been known that inner-outer factorization is not unique in the
Bergman space, see [17, Chapter 8]. On the other hand, Theorem 4.2(b) asserts
that a decomposition b = ϕ · F with ϕ an H2

ω-inner function must be unique (up
to a unimodular constant) if we also require [b]H2

ω
= [ϕ]H2

ω
.
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