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Abstract. In this paper we generalize the classical theorems of Brown and

Halmos about algebraic properties of Toeplitz operators to Bergman spaces
over the unit ball in several complex variables. A key result, which is of

independent interest, is the characterization of summable functions u on the

unit ball whose Berezin transform can be written as a finite sum
∑

j fj ḡj with

all fj , gj being holomorphic. In particular, we show that such a function must
be pluriharmonic if it is sufficiently smooth and bounded. We also settle an

open question about M-harmonic functions. Our proofs employ techniques

and results from function and operator theory as well as partial differential
equations.

1. Introduction and main results

In their seminal work [BH64], Brown and Halmos classified all pairs of commuting
Toeplitz operators on the Hardy space over the unit disc, as well as characterized
all triples of Toeplitz operators (Tf , Tg, Th) such that TfTg = Th. They showed
that the product of two Toeplitz operators is zero if and only if one of them is
zero. These theorems are commonly referred to as the Brown–Halmos theorems.
Extending these results to the Bergman space setting and to Hilbert spaces of
holomorphic functions on more general domains in several complex variables has
been one of the central themes of research in the theory of Toeplitz operators in
the last few decades.

On the Bergman space over the unit disc, the first results in the spirit of the
Brown–Halmos theorems were obtained by Axler and Čučković [AČ91] and Ahern
and Čučković [AČ01]. It was shown in these papers that Brown–Halmos theorems
hold true on the Bergman space for Toeplitz operators with bounded harmonic
symbols. Subsequently, using his study of the range of the Berezin transform, Ahern
[Ahe04] improved the main result in [AČ01]. Guo, Sun and Zheng [GSZ07] later
studied finite rank semi-commutators and commutators of Toeplitz operators with
harmonic symbols. It was shown that semi-commutators and commutators have
finite rank if and only if they are actually zero. As a consequence, characterizations
of the symbols were given. Čučković [Čuč07] obtained criteria for TfTg − Thn to
have finite rank, where f, g and h are bounded harmonic. More general results
in this direction were investigated in [CKL08]. In a recent paper, Ding, Qin and
Zheng [DQZ17] provided a more complete answer to the possible rank of TfTg−Th
under the assumption that f, g are bounded harmonic and h is a C2-functions and
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(1−|z|2)2∆h is integrable. A complete characterization of these functions was then
obtained.

Researchers have also investigated Brown–Halmos theorems in the setting of sev-
eral complex variables. A classification of pairs of commuting Toeplitz operators
with pluriharmonic symbols on the unit ball was given by Zheng in [Zhe98]. Sub-
sequently, Choe and Koo [CK06] studied the zero product problem for Toeplitz
operators on the unit ball with harmonic symbols having continuous extensions to
part of the boundary. Finite sums of products of Toeplitz operators with pluri-
harmonic or n-harmonic symbols on the Bergman space over the polydisks were
investigated in the papers by Choe et al. [CLNZ07, CKL09]. The same problem
on the Hardy space over the unit sphere was considered in [CKL11]. On the other
hand, there has not been much progress in proving Brown–Halmos type results for
Toeplitz operators with pluriharmonic symbols on the ball. It is our main goal to
offer such results.

While it is not the focus of the current paper, we would like to mention that
there is a vast literature on the study of Toeplitz operators with non-harmonic,
non-pluriharmonic symbols. Researchers have investigated algebraic properties of
Toeplitz operators whose symbols are radial, quasihomogeneous, or finite sums of
quasihomogeneous functions in one and several variables on unweighted and stan-
dard weighted Bergman spaces. See, for example, [App21, ČL08, DZ16, GKV03,
GKV04, JZD19, LR08, Le08, LRZ15, LSZ06] and the references therein.

Throughout the paper, N denotes a positive integer. We write BN for the
open unit ball in CN . We use H(BN ) to the denote the algebra of all functions
holomorphic on BN . For γ > −1, the weighted measure dVγ is defined by

dVγ(z) =
Γ(N + γ + 1)

N ! Γ(γ + 1)
(1− |z|2)γdV (z),

where dV is the normalized Lebesgue measure on BN . Note that dVγ is a probability
measure on BN . For p > 0, the Bergman space Apγ consists of all functions in
H(BN ) that are p-integrable with respect to dVγ . The reader is referred to [Zhu05,
Chapter 2] for an excellent introduction to these Bergman spaces. We use Lpγ to
denote the usual Lp-space with respect to dVγ . Clearly, Apγ = H(BN ) ∩ Lpγ . Given

f ∈ L∞γ , one defines the Toeplitz operator Tf : A2
γ −→ A2

γ by Tf (h) = Pγ(fh) for

all h ∈ A2
γ . Here, Pγ is the orthogonal projection from L2

γ onto A2
γ . It is immediate

that the operator Tf is bounded and ‖Tf‖ ≤ ‖f‖∞. It is well known that Tf can
be expressed as an integral operator. In fact, we have

Tf (h)(z) =

∫
BN

f(w)h(w)

(1− 〈z, w〉)N+1+γ
dVγ(w), z ∈ BN .

For f ∈ L1
γ , the above integral is also well defined for all bounded holomorphic

functions h on the ball. As a consequence, one may define Toeplitz operators for
L1
γ-symbols. It is well known that if f ∈ L1

γ is bounded on a set {z : r < |z| < 1} for

some 0 < r < 1, then Tf extends to a bounded operator on A2
γ . See the discussion

on [AČ01, p. 204] for the one dimensional case. The general setting of several
variables is similar.

We recall here some basic properties of Toeplitz operators. For bounded func-
tions φ, ψ and complex numbers a and b, we have

Taφ+bψ = aTφ + bTψ, T ∗φ = Tφ̄.
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It is also well known that if ψ or φ̄ is holomorphic, then TφTψ = Tφψ. However,
this property fails for general symbols, which is one of the reasons why the study
of Toeplitz operators has attracted a great deal of attention.

From now on, unless specified otherwise, we shall assume that γ is a non-negative
integer. Our approach does not apply when γ is not an integer. See Remark 4.6 for
a more detailed discussion. The following theorem is the main result of the paper.
It is a vast generalization of the aforementioned results and in a sense represents
the best possible result one can hope for in the spirit of Brown–Halmos theorems
for Toeplitz operators with pluriharmonic symbols. Recall that for two functions
x, y ∈ A2

γ , we use x⊗ y to denote the operator

(x⊗ y)(h) = 〈h, y〉x, h ∈ A2
γ .

Theorem 1.1. Let φj , ψj be bounded pluriharmonic functions for 1 ≤ j ≤ n and
h be a bounded C2N+2+2γ function on BN . Let x`, y` ∈ A2

γ for 1 ≤ ` ≤ r. Write
φj = fj + ḡj , ψj = uj + v̄j where fj , gj , uj and vj are holomorphic. Then

n∑
j=1

TφjTψj = Th +

r∑
`=1

x` ⊗ y`

if and only if h−
∑n
j=1 ḡjuj is pluriharmonic and

n∑
j=1

φjψj = h+ (1− |z|2)N+1+γ
r∑
`=1

x`ȳ`.

As an immediate corollary, we have the following direct generalization of the
Brown–Halmos theorems, which in particular settles the zero product problem for
Toeplitz operators with pluriharmonic functions. The zero product problem for
general symbols is a long standing open problem in the area of Toeplitz operators,
which has resisted researchers’ attempts even for the unit disc. Our result here in
the single variable setting reduces to [GSZ07, Theorem 7].

Corollary 1.2. Let φ, ψ be bounded pluriharmonic functions on BN .
(a) If TφTψ = Th on A2

γ for some bounded C2N+2+2γ function h, then φ̄ or ψ is
holomorphic and φψ = h.

(b) If TφTψ has a finite rank on A2
γ , then φ or ψ must be zero.

Another direct consequence of our main result is a strengthening of the aforemen-
tioned Zheng’s theorem about commuting Toeplitz operators with pluriharmonic
symbols. In the case of a single variable, we recover [GSZ07, Theorem 6].

Corollary 1.3. Let φ, ψ be bounded pluriharmonic functions on BN . The commu-
tator [Tφ, Tψ] has a finite rank on A2

γ if and only if both φ, ψ are holomorphic, or
both are anti-holomorphic, or there are constants c1, c2, not both zero, such that
c1φ+ c2ψ is constant on BN .

The main tool for establishing our results is the Berezin transform. Recall that
the Bergman space A2

γ is a reproducing kernel Hilbert space with kernel

Kγ
z (w) = Kγ(w, z) =

1

(1− 〈w, z〉)N+1+γ
, z, w ∈ BN .
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Given a function u ∈ L1
γ , one defines the Berezin transform of u as follows

Bγ(u)(z) = (1− |z|2)N+1+γ

∫
BN

u(ξ)

|1− 〈z, ξ〉|2(N+1+γ)
dVλ(ξ).

It is well known that

Bγ(u)(z) =

∫
BN

u ◦ ϕz(ξ)dVγ(ξ),

where ϕz is the automorphism of BN that interchanges 0 and z. In the case u ∈ L2
γ ,

we have

Bγ(u)(z) = 〈ukγz , kγz 〉L2
γ

= 〈Tukγz , kγz 〉,
where kγz = Kγ

z /‖Kγ
z ‖ is the normalized reproducing kernel. More generally, given

a bounded operator S : A2
γ → A2

γ , one defines similarly its Berezin transform

Bγ(S)(z) = 〈S(kγz ), kγz 〉.

It is well known that the Berezin transform is an injective map. That is, if
Bγ(S1)(z) = Bγ(S2)(z) for all z ∈ BN , then S1 = S2. The Berezin transform
plays an important role in the theory of Toeplitz operators. In fact, it has been
used as the main tool in the study of Brown–Halmos theorems for Toeplitz oper-
ators with pluriharmonic symbols in most of the references we have mentioned so
far.

It is clear that for u ∈ L1
γ , the Berezin transform Bγ(u) is real analytic on BN .

As a result, we may expand Bγ(u) as a series

Bγ(u)(z) =
∑
α,β

cα,βz
αz̄β .

We say that Bγ(u) has a finite rank if the infinite matrix of coefficients [cα,β ]α,β
has a finite rank. This happens if and only if there exist holomorphic functions
f1, . . . , fn and g1, . . . , gn such that

Bγ(u) =

n∑
j=1

fj ḡj .

Besides being interesting on its own right, the following natural question is im-
portant in regards to algebraic properties of Toeplitz operators with pluriharmonic
symbols.

Question. For which u ∈ L1
γ does Bγ(u) have a finite rank?

For the unit disc on the complex plane, N. V. Rao [Rao18] provided a full res-
olution of the above question in the unweighted case (γ = 0). Rao’s result asserts
that for an L1-function u on the unit disc, B0(u) has finite rank if and only if u
is harmonic except at a finite set of points. In particular, if u is also assumed to
be locally bounded, then it must be harmonic. In higher dimensions, the situation
turns out to be more complicated and high dimensional phenomena do occur. In
the theorem below, we describe Bγ(u) whenever it is of finite rank. The proof of
Theorem 1.1 relies heavily on this result. In addition, we answer an open question
about M-harmonic functions raised in [CKL11]. We recall here that M-harmonic
functions are those annihilated by the invariant Laplacian (see Section 2). It is well
known that such functions are fixed points of the Berezin transforms.
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Theorem 1.4. Suppose u ∈ L1
γ such that Bγ(u) has a finite rank. Then there

exists a finite set Λ ⊂ BN , a collection {Pw : w ∈ Λ} of polynomials in z and z̄
of total degree at most 2N + 1 + 2γ, and a pluriharmonic function h such that for
z ∈ BN ,

Bγ(u)(z) = h(z) +
∑
w∈Λ

Pw

( z

1− 〈z, w〉

)
.

Furthermore,

(a) If u also belongs to C2N+2+2γ(BN ), then Λ ⊂ ∂BN , the unit sphere.
(b) If u belongs to L2N+2+2γ

γ , then Λ ⊂ BN .

(c) If Bγ(u) = f1ḡ1 + · · ·+ fdḡd, where f` ∈ A2N+2+2γ
γ and g` ∈ H(BN ) for all `,

then Λ ⊂ BN .

As a consequence, if both (a) and (b), or both (a) and (c) hold, then u is plurihar-
monic.

Remark 1.5. As shown by Ahern and Rudin in [AR91] and can be verified directly,
for N ≥ 3, the function

u(z) =
z2z̄3

|1− z1|2
,

which belongs to L1
γ whenever γ ≥ 0, is M-harmonic. For such a function, we

have Bγ(u) = u, so Bγ(u) has a finite rank but u is not pluriharmonic. In the case
N = 2, it can also be verified that

u(z) =
z1z̄2

(1− z1)(1− z̄1)
− 1

2

z̄2
2z2

(1− z1)(1− z̄1)2

is an M-harmonic L1
γ-function which is not pluriharmonic. It should be noted

that Ahern and Rudin already showed that in the case of two complex variables, if
u = fḡ (and f, g are holomorphic) isM-harmonic, then u is actually pluriharmonic.
As a result, some type of regularity near the boundary is required to conclude that
u is pluriharmonic, as in Theorem 1.1. We would like to alert the reader that
the existence of a smooth integrable function u such that Bγ(u) has a finite rank
and u is not pluriharmonic is a high dimensional phenomenon. Indeed, it follows
from the aforementioned result of Rao that if u is locally bounded on the unit disc
(without any other assumption on regularity) so that B0(u) has a finite rank, then
u is harmonic.

Our proof of Theorem 1.4 is influenced by Rao’s idea to reformulate the finite
rank property of the Berezin transform of u in terms of a certain distribution
associated to u having a finite rank moment matrix, which allows the usage of a
result due to Alexandrov and Rozenblum [AR09]. In extending this approach to the
case of the unit ball in CN , significant complications do arise. We overcome these
difficulties by establishing various identities for differential operators related to the
invariant Laplacian and making use of a regularity result on integrable solutions of
partial differential equations (see Section 2).

Brown and Halmos proved that the zero operator is the only compact Toeplitz
operator on the Hardy space over the unit disc. On Bergman spaces, there are many
nontrivial compact Toeplitz operators. Indeed, whenever f is a bounded function
with a compact support contained in the unit ball, the operator Tf is compact. On
the other hand, the problem of determining nonzero finite rank Toeplitz operators
was open for quite some time. In [Lue08], Luecking settled this question in the
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negative by showing that whenever ν is a compactly supported finite measure on
C for which the matrix of moments [

∫
C z

`z̄kdν(z)]`,k has finite rank, then ν is a
linear combination of finitely many point masses. Luecking’s theorem has been
generalized to several complex variables [Cho09, RS10] as well as to distributional
symbols [AR09]. We end this section by recalling the following result, which is
crucial to our approach.

Theorem 1.6 (Alexandrov-Rosenblum [AR09, Theorem 4.1]). Let F be a com-
pactly supported distribution on CN . If the matrix

[
F(z̄kz`)

]
k,`

has finite rank,

then the support of F consists of finitely many points {w1, . . . , ws} and there are
differential operators L1, . . . , Ls such that F =

∑s
j=1 Lj(δwj ), where δw denotes the

Dirac distribution at w.

2. Some results on invariant Laplacian and radial derivative

In this section we establish some results associated with certain differential op-
erators on the unit ball. Besides playing a crucial role in our study of the Berezin
transform, these identities are also interesting on their own right.

Ahern and Čučković [AČ01] and subsequently Ahern [Ahe04], Rao [Rao18] made
of use the following property of the kernel function of the Berezin transform (referred
to as a “marvelous identity” by Ahern)

∆z

( (1− |z|2)2

|1− zξ̄|4
)

= ∆ξ

( (1− |ξ|2)2

|1− zξ̄|4
)
.

The setting of several variables gets more complicated. We offer here several al-
ternative identities which are important in our proofs. We shall make use of the
following notation:

Ez =

N∑
j=1

zj
∂

∂zj
, Ēz =

N∑
j=1

z̄j
∂

∂z̄j
, ∆z =

N∑
j=1

∂2

∂zj∂z̄j
.

For any real number s, we write |Ez + s|2 = (Ez + s)(Ēz + s). We use Eξ, Ēξ,
and ∆ξ to denote the corresponding operators acting on the variable ξ. When the
variable is not present, we write E, Ē and ∆ for these operators.

To simplify the notation, for each integer m ≥ 1, we define

D(m) = (|E +m|2 −∆) · · · (|E|2 −∆).

It is clear that D(m) is a differential operator of order 2m + 2 with polynomial

coefficients. The following two lemmas provide important properties of D(m).

Lemma 2.1. For any integer m ≥ 1 and z, ξ ∈ BN , we have

D(m)
ξ

{ 1

|1− 〈z, ξ〉|2
}

= |Ez|2
{ (m!)2(1− |z|2)m+1

|1− 〈z, ξ〉|2(m+1)

}
, (2.1)

and

D(m)
ξ

{ 1− |ξ|2

|1− 〈z, ξ〉|2
}

=
(
|Ez|2 −∆z

){ (m!)2(1− |z|2)m+1

|1− 〈z, ξ〉|2(m+1)

}
. (2.2)

Proof. A direct calculation shows that

(|Eξ|2 −∆ξ)
{ 1

|1− 〈z, ξ〉|2
}

=
|〈z, ξ〉|2 − |z|2

|1− 〈z, ξ〉|4
= |Ez|2

{ 1− |z|2

|1− 〈z, ξ〉|2
}
, (2.3)
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|Eξ|2 −∆ξ

){ 1− |ξ|2

|1− 〈z, ξ〉|2
}

=
(N − 1)|1− 〈z, ξ〉|2 + (1− |z|2)(1− |ξ|2)

|1− 〈z, ξ〉|4

=
(
|Ez|2 −∆z

){ 1− |z|2

|1− 〈z, ξ〉|2
}
, (2.4)

and for any real number s,(
|Eξ + s|2 −∆ξ

){ 1

|1− 〈z, ξ〉|2s
}

=
s2(1− |z|2)

|1− 〈z, ξ〉|2(s+1)
. (2.5)

Applying
(
|Eξ +m|2 −∆ξ

)
· · · (|Eξ + 1|2 −∆ξ) to (2.3) and using (2.5) repeatedly

for s = 1, . . . ,m give (2.1). Finally, applying the same operator to (2.4) and using
(2.5) give (2.2). �

We will use ∆̃, as usual, to denote the invariant Laplacian on C2(BN ) which
satisfies

∆̃ = (1− |z|2)(∆z − |Ez|2).

Recall that ∆̃ can also be defined using the ordinary Laplacian and automorphisms

of the unit ball. For more information on ∆̃ and its properties, see [Rud80, Chap-
ter 4] and [Zhu05, Section 1.4]. However, the reader should be aware that the
Laplacian defined there is actually four times our Laplacian.

Lemma 2.2. For any integer m ≥ 1 and z, ξ ∈ BN , we have

(1− |ξ|2)−m−1pm(∆̃ξ)

{
1− |ξ|2

|1− 〈z, ξ〉|2

}
= (|Ez|2 −∆z)

{
(1− |z|2)m+1

|1− 〈z, ξ〉|2(m+1)

}
,

(2.6)

where

pm(t) =
1

(m!)2

m∏
j=0

(
j(j −N)− t

)
.

As a consequence,

(m!)2(1− |ξ|2)−m−1pm(∆̃ξ) = D(m)
ξ . (2.7)

Proof. Put h(ξ) = 1 − |ξ|2. A direct but tedious calculation shows that for any
positive integer j ≥ 1,

j2 hj+1 =
(
j(j −N)− ∆̃

)
(hj),

which implies

hm+1 =
1

(m!)2

m∏
j=1

(
j(j −N)− ∆̃

)
(h).

Therefore,

−∆̃hm+1 =
1

(m!)2
(−∆̃)

m∏
j=1

(
j(j −N)− ∆̃

)
(h) = pm(∆̃)h.

Since both sides are radial functions that depend only on the modulus of the vari-
able, for any z, ξ ∈ BN , we have

−(∆̃hm+1) ◦ ϕξ(z) = (pm(∆̃)h) ◦ ϕz(ξ).

On the other hand, the invariance of ∆̃ under the automorphisms of BN gives

(∆̃hm+1) ◦ ϕξ(z) = ∆̃z(h
m+1 ◦ ϕξ(z)) = ∆̃z

(
(1− |ϕξ(z)|2)m+1

)
,
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and

(pm(∆̃)h) ◦ ϕz(ξ) = pm(∆̃ξ)(h ◦ ϕz(ξ)) = pm(∆̃ξ)
(
1− |ϕz(ξ)|2

)
.

Consequently,

pm(∆̃ξ)
(

1− |ϕz(ξ)|2
)

= −∆̃z

(
(1− |ϕξ(z)|2)m+1

)
. (2.8)

Since

1− |ϕz(ξ)|2 = 1− |ϕξ(z)|2 =
(1− |z|2)(1− |ξ|2)

|1− 〈z, ξ〉|2

and −∆̃z = (1− |z|2)(|Ez|2 −∆z), the identity (2.6) now follows from (2.8).
From Lemma 2.1 and equation (2.6), we conclude that the differential operators

on both sides of (2.7) agree on functions of the form 1−|ξ|2
|1−〈z,ξ〉|2 for all z ∈ BN . Taking

partial derivatives in z, z̄ and setting z = 0, we see that the two operators agree
on all polynomials of the form (1− |ξ|2)q(ξ, ξ̄), where q is a polynomial. Since any
smooth functions on BN can be approximated by such polynomials (in the topology
of uniform convergence on compact sets of all derivatives up to order 2m+ 2), we
obtain the required identity. �

Let us now recall some basic definitions and background on the theory of distri-
butions. There are many excellent resources but we shall use [Hör03, Chapters II
and III] as our main reference.

(1) Following [Hör03], we use C∞0 (Rn) to denote the space of C∞ functions on Rn
having a compact support. For any subset K ⊂ Rn, the space C∞0 (K) consists
of all functions in C∞0 (Rn) with support contained in K.

A distribution F in Rn of order at most m is a linear functional on C∞0 (Rn)
such that for each compact set K ⊂ Rn, there exists a constant CK for which

|F(φ)| ≤ CK
∑
|α|≤m

sup |∂αφ|

for all φ ∈ C∞0 (K). Here, α = (α1, . . . , αn) ∈ Zn+, |α| = α1 + · · · + αn, and
∂α = ∂α1

1 · · · ∂αnn . The smallest value of m for which the above condition holds
is called the order of F .

(2) To reduce the use of many parentheses in the following definitions, we shall
write 〈F , φ〉 to denote F(φ). For any multiindex α, the derivative ∂αF is a
new distribution defined as

〈∂αF , φ〉 = (−1)|α|〈F , ∂αφ〉, φ ∈ C∞0 (Rn).

For any smooth function g, the distribution gF is defined as

〈gF , φ〉 = 〈F , gφ〉, φ ∈ C∞0 (Rn).

More generally, if L is a differential operator of order s with smooth coefficients
written in the form

L =
∑
|α|≤s

aα(x)∂α,

then

〈L(F), φ〉 =
〈
F ,

∑
|α|≤s

(−1)|α|∂α(aαφ)
〉
.
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We define L∗(φ) =
∑
|α|≤s(−1)|α|∂α(aαφ) and call it the formal adjoint of L.

The above formula can then be conveniently written as

〈L(F), φ〉 = 〈F , L∗(φ)〉.

Since the usual product rule holds true for products of smooth functions and
distributions, we also have

〈L∗(F), φ〉 = 〈F , L(φ)〉.

(3) The support of a distribution F is the set of points having no open neighbor-
hood to which the restriction of F is zero. Section 2.3 in [Hör03] discusses
distributions with compact support. It is known that if F has a compact sup-
port, then its domain can be extended to the set of all functions that are smooth
on an open neighborhood of the support of F .

[Hör03, Theorem 2.3.4] asserts that if F is a distribution of order k with
support {a}, then there is a differential operator L of order k with constant
coefficients such that F = L(δa), where δa is the Dirac point mass distribution
at a. It follows that if F has support {a1, . . . , as}, then

F =

s∑
j=1

Lj(δaj ) (2.9)

for some differential operators L1, . . . , Ls with constant coefficients. The order
of F equals to the maximum order of these operators.

We end the section with a result about singularities of L1-solutions to PDEs.
While we think this result may be known in the literature, due to the lack of an
appropriate reference, we provide here a proof.

Proposition 2.3. Let L be a differential operator of order µ with smooth coeffi-
cients on Rn. Suppose u ∈ L1(Rn) having a compact support such that the distri-
bution L(u) is supported at finitely many points. Then the order of L(u) is at most
µ− 1.

Remark 2.4. In general, the distribution L(u) may have order µ. The point here
is that if the support of L(u) has only finitely many elements, then its order must
be strictly smaller than µ.

Proof. Let Dj = −i ∂j and D = (D1, . . . , Dn). Write the adjoint operator L∗ in
the form

L∗ =
∑
|α|≤µ

cα(x)Dα, (2.10)

where each cα is smooth. Since u has a compact support, the Fourier transform of
L(u) can be computed by

L̂(u)(ζ) =

∫
Rn
u(x)L∗x(e−i〈ζ,x〉)dx

=
∑
|α|≤µ

ζα
∫
Rn
u(x)cα(x)e−i〈ζ,x〉dx

=
∑
|α|≤µ

ζαûcα(ζ).
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Because cα is locally bounded, the function ucα belongs to L1(Rn). As a conse-
quence, by the Riemann-Lebesgue Lemma, ûcα(ζ)→ 0 as |ζ| → ∞. It follows that
for any ζ ∈ Rn\{0},

lim
t→∞

L̂(u)(tζ)

tµ
= 0. (2.11)

Now let {a1, . . . , as} be the support of L(u). Then by (2.9), there are differential
operators L1, . . . , Ls with constant coefficients such that

L(u) =

s∑
j=1

Lj(δaj ),

where δa denotes the Dirac distribution at a. Since L(u) has order at most µ, each
Lj has order at most µ as well. As a result, there are homogeneous polynomials pj
of degree µ such that Lj = pj(D) + lower order derivatives. We then have

L̂(u)(ζ) =

s∑
j=1

L̂j(δaj )(ζ)

=

s∑
j=1

e−i〈ζ,aj〉 ·
(
pj(ζ) + lower order terms in ζ

)
.

It now follows from (2.11) that

lim
t→∞

s∑
j=1

e−it〈ζ,aj〉pj(ζ) = 0 (2.12)

for all ζ ∈ Rn\{0}.
Claim: for all ζ ∈ Rn such that 〈ζ, aj〉 6= 〈ζ, ak〉 for all j 6= k, (2.12) forces

pj(ζ) = 0.
Since the set of all ζ in the claim is dense in Rn, we conclude that pj = 0 and

hence Lj is of order at most µ− 1 for all j. Consequently, L(u) has order at most
µ− 1.

Proof of the claim. We believe that the claim should be well known but we sketch
here a proof. To simplify the notation, put λj = −〈ζ, aj〉 and bj = pj(ζ). Note that
the values λ1, . . . , λs are pairwise distinct so there exists a real number c such that
eiλ1c, . . . , eiλsc are pairwise distinct. Define f(t) =

∑s
j=1 bje

iλjt for t ∈ R. Then

(2.12) gives limt→∞ f(t) = 0 and hence, limt→∞ f(t + `c) = 0 for all 0 ≤ ` ≤ s.
Note that

f(t+ `c) =

s∑
j=1

(eiλjc)`bje
iλjt

so each bje
iλjt can be expressed as a linear combination of f(t), f(t+ c), . . . , f(t+

(s−1)c) via the Vandermonde determinant. It then follows that for each 1 ≤ j ≤ s,
we have limt→∞ bje

iλjt = 0, which implies bj = 0. �

3. Finite rank Berezin transform

The goal of this section is to study finite rank Berezin transform Bγ(u), which
can be written in the form Bγ(u) =

∑n
j=1 fj ḡj for holomorphic functions fj and
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gj . For a function u ∈ L1
γ , we use uχBN to denote the corresponding distribution

on CN defined as

φ 7→
∫
BN

u(ξ)φ(ξ) dVγ(ξ), φ ∈ C∞(CN ).

To apply the theory of distributions, we shall identity CN with R2N .
The proof of Theorem 1.4 is divided into several steps. We now prove the first

part and statement (a) in the theorem.

Proposition 3.1. Let u ∈ L1
γ such that Bγ(u) has finite rank. Then there exists

a finite set Λ ⊂ BN , a collection {Pw : w ∈ Λ} of polynomials in z and z̄ of total
degree at most 2N + 1 + 2γ, and a pluriharmonic function h such that for z ∈ BN ,

Bγ(u)(z) = h(z) +
∑
w∈Λ

Pw

( z

1− 〈z, w〉

)
.

If, furthermore, u also belongs to C2N+2+2γ(BN ), then Λ ⊂ ∂BN , the unit sphere.

Proof. Define

D =
1

[(N + γ)!]2
D(N+γ) =

1

[(N + γ)!]2

(∣∣E + (N + γ)
∣∣2 −∆

)
· · ·
(
|E|2 −∆

)
.

Recall the formula for the Berezin transform

Bγ(u)(z) =

∫
BN

u(ξ)
(1− |z|2)N+1+γ

|1− 〈z, ξ〉|2(N+1+γ)
dVγ(ξ).

Applying |Ez|2 to both sides and using Lemma 2.1, we conclude that

|Ez|2
(
Bγ(u)(z)

)
=

∫
BN

u(ξ)Dξ
{ 1

|1− 〈z, ξ〉|2
}
dVγ(ξ) (3.1)

=

∫
BN

u(ξ)
∑
k,`

(
|k|
k

)(
|`|
`

)
zkz̄`Dξ(ξ̄kξ`) dVγ(ξ)

=
∑
k,`

{(|k|
k

)(
|`|
`

)∫
BN

u(ξ)Dξ(ξ̄kξ`) dVγ(ξ)
}
zkz̄`. (3.2)

Since Bγ(u) is real analytic, we may write

Bγ(u)(z) =
∑
k,`

ak,`z
kz̄`,

which implies

|Ez|2(Bγ(u)(z)) =
∑
k,`

|k||`|ak,`zkz̄`.

It follows that Bγ(u) has a finite rank if and only if |Ez|2(Bγ(u)) has a finite rank.
Using (3.2), we conclude that

Bγ(u) has finite rank ⇐⇒
[(|k|

k

)(
|`|
`

)∫
BN

u(ξ)Dξ(ξ̄kξ`) dVγ(ξ)
]
k,`

has finite rank

⇐⇒
[ ∫

BN
u(ξ)Dξ(ξ̄kξ`) dVγ(ξ)

]
k,`

has finite rank.
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Consider the distribution F = D∗(uχBN ), which is given by the formula

F(φ) =

∫
BN

u(ξ)D(φ)dVγ(ξ),

for any φ that is smooth on an open neighborhood of BN . Note that the support of
F is contained in BN . Since Bγ(u) is assumed to have finite rank by the hypothesis,
the matrix [

F(ξ̄kξ`)
]
k,`

=
[ ∫

BN
u(ξ)Dξ(ξ̄kξ`) dVγ(ξ)

]
k,`

has finite rank. Applying Theorem 1.6, we conclude that F has a finite support.
Let {w1, . . . , ws} ⊂ BN be the support of F . By Proposition 2.3, F = D∗(uχBN )

has order at most 2N+1+2γ since D∗ is a differential operator of order 2N+2+2γ.
From formula (3.1), we see that there are complex constants aj,α,β for 1 ≤ j ≤ s
and |α|+ |β| ≤ 2N + 1 + γ such that

|Ez|2
(
Bγ(u)(z)

)
= D∗(uχBN )

{ 1

|1− 〈z, ·〉|2
}

=
∑

1≤j≤s
|α|+|β|≤2N+1+γ

aj,α,β
zαz̄β

(1− 〈z, wj〉)1+|α|(1− 〈wj , z〉)1+|β| . (3.3)

A direct calculation shows that for any w ∈ BN and |α|, |β| ≥ 1,

1

1− 〈z, w〉
− 1 =

〈z, w〉
1− 〈z, w〉

= Ez

{
log

1

1− 〈z, w〉

}
,

zα

(1− 〈z, w〉)1+|α| = Ez

{ 1

|α|
zα

(1− 〈z, w〉)|α|
}
.

Thus, for such α, β, the functions

zαz̄β

(1− 〈z, w〉)1+|α| (1− 〈w, z〉)1+|β| ,

( 1

1− 〈z, w〉
− 1
) z̄β

(1− 〈w, z〉)1+|β| ,
zα

(1− 〈z, w〉)1+|α|

( 1

1− 〈w, z〉
− 1
)

belong to the range of |Ez|2. Hence, the identity (3.3) implies that the plurihar-
monic function∑

1≤j≤s
|α|≥1

aj,α,0
zα

(1− 〈z, wj〉)1+|α| +
∑

1≤j≤s
|β|≥1

aj,0,β
z̄β

(1− 〈wj , z〉)1+|β|

+
∑

0≤j≤s

aj,0,0

( 1

1− 〈z, wj〉
+

1

1− 〈wj , z〉
− 1
)

is the image, under |Ez|2, of a real analytic function. Using power series, we see
that zero is the only pluriharmonic function belonging to the range of |Ez|2. It then
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follows that for all j, we have aj,α,β = 0 whenever |α| = 0 or |β| = 0. Consequently,

|Ez|2
(
Bγ(u)

)
=

∑
1≤j≤s

|α|≥1,|β|≥1

aj,α,β
zαz̄β

(1− 〈z, wj〉)1+|α|(1− 〈wj , z〉)1+|β|

= |Ez|2
{ ∑

1≤j≤s
|α|≥1,|β|≥1

aj,α,β
|α| |β|

zαz̄β

(1− 〈z, wj〉)|α|(1− 〈wj , z〉)|β|
}
,

which gives

Bγ(u)(z) = h(z) +
∑

1≤j≤s
|α|≥1,|β|≥1

aj,α,β
|α| |β|

zαz̄β

(1− 〈z, wj〉)|α|(1− 〈wj , z〉)|β|
,

for some pluriharmonic function h on BN . Defining

Pwj (z) =
∑

|α|≥1,|β|≥1
|α|+|β|≤2N+1+γ

aj,α,β
|α| |β|

zαz̄β ,

we obtain the required representation for Bγ(u).
If u belongs to C2N+2+2γ(BN ), then the support of D∗(uχBN ), being a finite

set of points, must be contained in the unit sphere. As a result, |wj | = 1 for all
1 ≤ j ≤ s. �

From the proof of Proposition 3.1 we have the following result which might be
of independent interest.

Corollary 3.2. Let u ∈ L1(BN , dV ) be of the form u =
∑n
j=1 fj ḡj with holomor-

phic fj , gj. If u is an eigenfunction of the invariant Laplacian with eigenvalue λ,
then λ = j(j −N) for some j ∈ {0, 1, . . . , N}.

Proof. It is well known [Rud80, Theorem 4.2.4] that eigenfunctions of ∆̃ are also
eigenfunctions of B0 (the unweighted Berezin transform). Therefore, B0(u) has a
finite rank. From the proof of Proposition 3.1 as above (in the case γ = 0), we have
that D∗(u) = 0 on BN , where

D =
1

(N !)2

(∣∣E +N
∣∣2 −∆

)
· · ·
(
|E|2 −∆

)
=

1

(N !)2
(1− |ξ|2)−(N+1)

N∏
j=0

(
j(j −N)− ∆̃

)
.

The second equality comes from Lemma 2.7. Since

(E + j)∗ = −E + (j −N), (Ē + j)∗ = −Ē + (s−N) and (∆)∗ = ∆

for all 0 ≤ j ≤ N , we conclude that D∗ = D. The desired result then follows. �

Applying Proposition 3.1 to the case where u belongs to L2N+2+2γ
γ , we now prove

statement (b) in Theorem 1.4.

Proposition 3.3. Suppose u ∈ L2N+2+2γ
γ and Bγ(u) has finite rank. Then there

exist finitely many points w1, . . . , ws ∈ BN , polynomials Q1, . . . , Qs in C[z, z̄] with
total degrees at most 2N + 1 + 2γ, and a pluriharmonic function h such that

Bγ(u)(z) = h(z) +

s∑
j=1

Qj ◦ ϕwj (z).
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Proof. We know that there exist holomorphic functions h1, h2 on BN and finitely
many points w1, . . . , ws ∈ BN such that

Bγ(u)(z) = h1(z) + h̄2(z) +
∑

1≤j≤s
1≤|β|≤2N+2γ

Qj,β

( z

(1− 〈z, wj〉)

)
· z̄β

(1− 〈wj , z〉)|β|
,

(3.4)

where each Qj,β is a holomorphic polynomial of degree at most 2N + 1 + 2γ − |β|
with Qj,β(0) = 0. We prove first that Qj,β = 0 whenever |wj | = 1.

Complexifying (3.4) gives

Bγ(u)(z, ζ)− h̄2(ζ) = h1(z) +
∑

1≤j≤s
1≤|β|≤2N+2γ

Qj,β

( z

(1− 〈z, wj〉)

)
· ζ̄β

(1− 〈wj , ζ〉)|β|

for all z, ζ ∈ BN , where we define

Bγ(u)(z, ζ) = (1− 〈z, ζ〉)N+1+γ

∫
BN

u(ξ)

(1− 〈z, ξ〉)N+1+γ(1− 〈ξ, ζ〉)N+1+γ
dVγ(ξ)

Since the set

{1} ∪
{ ζ̄β

(1− 〈wj , ζ〉)|β|
: 1 ≤ |β| ≤ 2N + 2γ, 1 ≤ j ≤ s

}
is linearly independent, it follows that h1(z) and each Qj,β( z

1−〈z,wj〉 ) can be written

as a linear combination of finitely many functions in the set{
Bγ(u)(·, ζ)− h̄2(ζ) : ζ ∈ BN

}
.

Note that for each ζ ∈ BN , the functionBγ(u)(z, ζ) is the product of (1−〈z, ζ〉)N+1+γ

with the weighted Bergman projection Pγ of u(ξ)(1 − 〈ξ, ζ〉)−N−1−γ , which be-
longs to L2N+2+2γ

γ by the assumption about u. It is well known that Pγ maps
Lpγ into Apγ for 1 < p < ∞ (see [Zhu05, Theorem 2.11]). Therefore, the function

Bγ(u)(·, ζ) − h̄2(ζ) belongs to L2N+2+2γ
γ . This implies that each Qj,β( z

1−〈z,wj〉 )

belongs to L2N+2+2γ
γ . By Lemma 3.5 below, for any j with wj on the unit sphere,

Qj,β must be constant, hence, identically zero since Qj,β vanishes at the origin. As
a result, we may assume that |wj | < 1 for all 1 ≤ j ≤ s.

To complete the proof, we show that for ω ∈ BN and 1 ≤ j ≤ N , the rational
function

zj
1−〈z,ω〉 is a linear combination of 1 and the components of ϕw(z). The

required representation then follows from (3.4).
For z, ζ ∈ BN , [Rud80, Theorem 2.2.2] provides the identity

1− 〈ϕω(z), ϕω(ζ)〉 =
(1− |ω|2)(1− 〈z, ζ〉)

(1− 〈z, ω〉)(1− 〈ω, ζ〉)
,

which is equivalent to

1− 〈z, ζ〉
1− 〈z, ω〉

=
1− 〈ω, ζ〉
1− |ω|2

(
1− 〈ϕω(z), ϕω(ζ)〉

)
.

Setting ζ = 0 then ζ = ej and subtracting the two quantities, we have

zj
1− 〈z, ω〉

=
ωj

1− |ω|2
+

1

1− |ω|2
〈ϕω(z),−ω + (1− ωj)ϕω(ej)〉.
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Note that the right hand-side is an affine function in ϕω(z). As a consequence, for
any multi-indexes α and β, the rational function

zαz̄β

(1− 〈z, ω〉)|α|(1− 〈ω, z〉)|β|

is a polynomial in ϕω(z) and ϕω(z) of total degree |α|+ |β|. �

We now obtain a proof of statement (c) in Theorem 1.4.

Proposition 3.4. Suppose u ∈ L1
γ and Bγ(u) = f1ḡ1 + · · · + fdḡd, where f`, g` ∈

H(BN ) and f` ∈ L2N+2+2γ
γ for each `. Then there exist finitely many points

w1, . . . , ws ∈ BN , polynomials Q1, . . . , Qs in C[z, z̄] with total degrees at most
2N + 1 + 2γ, and a pluriharmonic function h such that

Bγ(u)(z) = h(z) +

s∑
j=1

Qj ◦ ϕwj (z).

Proof. We know that there exist holomorphic functions h1, h2 on BN and finitely
many points w1, . . . , ws ∈ BN and holomorphic polynomials Qj,β of degree at most
2N + 1 + 2γ − |β| with Qj,β(0) = 0 such that

h1(z) + h̄2(z) +
∑

1≤j≤s

1≤|β|≤2N+2γ

Qj,β

( z

(1− 〈z, wj〉)

)
· z̄β

(1− 〈wj , z〉)|β|

= Bγ(u)(z)

= f1(z) g1(z) + · · ·+ fd(z) gd(z).

Complexifying as in the proof of Theorem 3.3 shows that each Qj,β
(

z
1−〈z,wj〉

)
be-

longs to the linear span of

{1} ∪
{
g1(ζ) f1 + · · ·+ gs(ζ) fs : ζ ∈ BN

}
,

which is contained in L2N+2+2γ
γ by the hypothesis. The same argument as in the

proof of Theorem 3.3 may be used to finish the proof. �

Lemma 3.5. Let Q be a polynomial in C[z1, . . . , zN ]. If Q
(

z
1−〈z,ω〉

)
belongs to

L2N+2+2γ
γ for some ω on the unit sphere, then Q is a constant.

Proof. Since the case of a single complex variable may be regarded as a special
case of two or more variables, we consider N ≥ 2 throughout the proof. Without
loss of generality, we may assume that ω = (0, . . . , 0, 1). We write z[N−1] to denote

(z1, . . . , zN−1) ∈ CN−1. Then Q can be written as

Q(z) =
∑
|α|≥0

Qα(zN ) zα[N−1],

where the sum is finite over α ∈ ZN−1
+ and each Qα is a holomorphic polynomial

in zN . We have

F (z) = Q
( z

1− 〈z, ω〉

)
=
∑
|α|≥0

Qα

( zN
1− zN

) zα[N−1]

(1− zN )|α|
.
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Since F belongs to L2N+2+2γ
γ , for each α, the function

Fα(z) = Qα

( zN
1− zN

) zα[N−1]

(1− zN )|α|

=

∫
[0,2π]N−1

F (eiθ1z1, . . . , e
iθN−1zN−1, zN )e−i(α1θ1+···+αN−1θN−1) dθ1

2π
· · · dθN−1

2π

must belong to L2N+2+2γ
γ . However, for |α| ≥ 1, if Qα is not identically zero, then

for z near (0, . . . , 0, 1), we see that |Fα(z)| dominates a nonzero constant multiple of

|gα(z)|, where gα(z) =
zα[N−1]

(1−zN )|α|
. Consider z(ε) = (ε, . . . , ε, 1−Nε2)→ (0, . . . , 0, 1)

as ε→ 0. A simple calculation reveals that (1−|z(ε)|2)1/2|g(z(ε))| does not converge
to 0 as ε→ 0. By the remark after the proof of [Zhu05, Theorem 2.1], we conclude
that gα does not belong to L2N+2+2γ

γ .
In addition, if Q0 is not a constant, then for z near (0, . . . , 0, 1), |F0(z)| = |Q0(z)|

dominates a nonzero constant multiple of | 1
1−zN |, which again does not belong

to L2N+2+2γ
γ . As a consequence, Qα = 0 for all |α| ≥ 1 and Q0 is a constant.

Therefore, Q is a constant as desired. �

Besides its important applications in the theory of Toeplitz operators as we shall
see in the next section, Theorem 1.4 also helps answer open questions about M-
harmonic functions. In the early nineties, Ahern and Rudin [AR91] completely
characterized holomorphic functions f, g on the ball for which fḡ is M-harmonic.
Nearly a decade later, Zheng [Zhe98] showed that for f, g, h and k belonging to
the Hardy space H2N , the function fḡ − hk̄ is M-harmonic if and only if it is
pluriharmonic. About ten years ago, making use of Ahern–Rudin’s characterization,
Choe et al. [CKL11, Lemma 4.5] proved a single-product version of Zheng’s result
under a slightly weaker hypothesis. They only assumed that one of the factor
belongs to H2N . The problem of generalizing this and Zheng’s result to finite sums
of more than two products has been open since then, see [CKL11, Question 6.1].
Using Theorem 1.4, we obtain a far-reaching answer, in view of the fact that for all
−1 < δ < γ we have the continuous inclusions ([BB89, Theorem 5.13])

H2N ⊂ A2N+2+2δ
δ ⊂ A2N+2+2γ

γ .

Theorem 3.6. Suppose for each 1 ≤ j ≤ s, the functions fj , gj are holomorphic
on BN and fj belongs to A2N+2+2γ

γ . If u =
∑s
j=1 fj ḡj is an L1

γ-eigenfunction of

∆̃, then u must be pluriharmonic.

Proof. Using [Rud80, Theorem 4.2.4], it can be seen that u is an eigenfunction of
the Berezin transform Bγ , that is, there exists λ ∈ C such that

Bγ(u) = λu =

s∑
j=1

λfj ḡj .

Since u is clearly a C2N+2+2γ-function and fj ∈ A2N+2+2γ
γ for all j, Theorem 1.4

parts (a) and (c) hold, which implies that u is pluriharmonic. �

4. Brown–Halmos type results

We first recall the following standard lemma characterizing when a function of
the form

∑
j ḡjuj (with holomorphic gj , uj) is pluriharmonic. The one-dimensional
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version was already proved in [CKL08, Theorem 3.3] but our proof here is much
simpler.

Lemma 4.1. Let u1, . . . , us and g1, . . . , gs be holomorphic functions on BN . Then∑s
j=1 ḡjuj is pluriharmonic if and only if

s∑
j=1

(
gj − gj(0)

)(
uj − uj(0)

)
= 0,

which is equivalent to
s∑
j=1

ḡjuj =

s∑
j=1

(
ḡjuj(0) + gj(0)uj − gj(0)uj(0)

)
.

Proof. Without loss of generality, we may assume that uj(0) = gj(0) = 0 for all j.
Using power expansions, we have

s∑
j=1

uj(z)ḡj(z) =
∑

|α|≥1,|β|≥1

cα,βz
αz̄β ,

which is pluriharmonic if and only if it is identically zero. �

We are now ready to prove Theorem 1.1, which is restated below for the reader’s
convenience.

Theorem 4.2. Let φj , ψj for 1 ≤ j ≤ n be bounded pluriharmonic functions and
h be a C2N+2+2γ bounded function on BN . Let x`, y` ∈ A2

γ for 1 ≤ ` ≤ r. Write
φj = fj + ḡj , ψj = uj + v̄j where fj , gj , uj , vj are holomorphic. Then

n∑
j=1

TφjTψj = Th +

r∑
`=1

x` ⊗ y` (4.1)

if and only if h−
∑n
j=1 ḡjuj is pluriharmonic and

n∑
j=1

φjψj = h+ (1− |z|2)N+1+γ
r∑
`=1

x`ȳ`. (4.2)

Proof. For any functions x, y ∈ A2
γ , we compute the Berezin transform

Bγ(x⊗ y)(z) = (1− |z|2)N+1+γx(z) y(z), z ∈ BN .
Also, if φ = f + ḡ and ψ = u + v̄ are bounded pluriharmonic, where f, g, u, v are
holomorphic functions (which might not be bounded but they all belong to Lpγ for
all p), then it is well known that

Bγ(TφTψ) = φψ − ḡu+Bγ(ḡu).

Therefore,

Bγ

( n∑
j=1

TφjTψj − Th
)

=

n∑
j=1

(φjψj − ḡjuj) +Bγ
( n∑
j=1

ḡjuj − h
)
.

Using the linearity and injectivity of the Berezin transform, we conclude that (4.1)
holds if and only if

Bγ

( n∑
j=1

TφjTψj − Th
)

=

r∑
`=1

Bγ
(
x` ⊗ y`

)
,
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which is equivalent to

Bγ

( n∑
j=1

ḡjuj − h
)

=

n∑
j=1

(−φjψj + ḡjuj) + (1− |z|2)N+1+γ
r∑
`=1

x`ȳ`. (4.3)

We now show that this equation is equivalent to the two conditions stated in the
theorem. Put u =

∑n
j=1 ḡjuj − h. Suppose first that (4.3) holds. Then the

Berezin transform Bγ(u) has finite rank because γ is a integer. Since u belongs
to C∞(BN ) ∩ L2N+2+2γ

γ , Theorem 1.4 implies that it is pluriharmonic on BN and

Bγ(u) = u. As a consequence, h−
∑n
j=1 ḡjuj is pluriharmonic and

n∑
j=1

ḡjuj − h =

n∑
j=1

(−φjψj + ḡjuj) + (1− |z|2)N+1+γ
r∑
`=1

x`ȳ`,

which gives (4.2).
Conversely, if u =

∑n
j=1 ḡjuj − h is pluriharmonic and (4.2) holds, then using

the fact that the Berezin transform fixes pluriharmonic functions, we conclude that
(4.3) holds, which implies (4.1) as desired. �

Remark 4.3. In this remark, we discuss a construction of functions that satisfy the
two conditions in Theorem 4.2. As before, write φj = fj + ḡj , ψj = uj + v̄j , where
fj , gj , uj , vj are holomorphic and fj(0) = vj(0) = 0. Assume that (4.2) holds, then

h−
n∑
j=1

ḡjuj =

n∑
j=1

(fj v̄j + fjuj + ḡj v̄j)− (1− |z|2)N+1+γ
r∑
`=1

x`ȳ`,

which, by Lemma 4.1, is pluriharmonic if and only if
n∑
j=1

fj v̄j − (1− |z|2)N+1+γ
r∑
`=1

x`ȳ` =

r∑
`=1

−x`(0)ȳ` − x` y`(0) + x`(0)y`(0).

The above identity is equivalent to
n∑
j=1

fj(z)v̄j(z) =

r∑
`=1

{(
x`(z)− x`(0)

)(
ȳ`(z)− y`(0)

)
(4.4)

+
∑

1≤|α|≤N+1+γ

(−1)|α|
(
|α|
α

)(
zαx`(z)

)(
zαy`(z)

)}
.

Let x`, y` (1 ≤ ` ≤ r) be any finite collection of bounded holomorphic functions.
We can easily choose bounded holomorphic functions fj , vj (1 ≤ j ≤ n) for some n
such that fj(0) = vj(0) = 0 and (4.4) holds. For each j, choose arbitrary bounded
holomorphic functions gj and uj and set φj = f + ḡj and ψj = uj + v̄j . Put

h =

n∑
j=1

φjψj − (1− |z|2)N+1+γ
r∑
`=1

x`ȳ`.

We then have
n∑
j=1

TφjTψj = Th +

r∑
`=1

x` ⊗ y`.

The problem becomes more delicate if one imposes a restriction on n. The paper
[DQZ17] investigated the case n = 1 in the setting of a single variable. It was shown
that for bounded harmonic functions φ, ψ, and smooth h, if TφTψ−Th has rank one,
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then it must be zero. On the other hand, for any r ≥ 2, examples were constructed
so that TφTψ − Th has rank exactly r. It would be interesting to generalize the
results in [DQZ17] to the setting of several variables.

Proof of Corollary 1.2. Write φ = f + ḡ, ψ = u+ v̄ with holomorphic f, g, u, v and
f(0) = v(0) = 0.

(a) By Theorem 1.1, if TφTψ = Th, then h = φψ and h − ḡu is pluriharmonic.
It follows that fv̄ = (h− ḡu)− fu− ḡv̄ is also pluriharmonic. Lemma 4.1 implies
that fv̄ = 0 which forces either f = 0 or v = 0. Therefore, either φ̄ or ψ must be
holomorphic.

(b) Now suppose that TφTψ has a finite rank. Then there exist functions x`, y` ∈
A2
γ , 1 ≤ ` ≤ r so that TφTψ =

∑
` x`⊗y`. Using Theorem 1.1 with h = 0, we obtain

that φψ = (1−|z|2)N+1+γ
∑
` x`ȳ`, and ḡu is pluriharmonic, which implies either g

or u is constant. Therefore, either φ or ψ̄ is holomorphic. Taking operator adjoints
if necessary, we may assume that φ is holomorphic. Assume further that φ is not
identically zero. Then Tφ is injective. Since TφTψ has finite rank, it follows that Tψ
must have finite rank, hence ψ = 0 by the multivariable Luecking’s Theorem. �

We now apply Theorem 1.1 to characterize when a sum of products of Hankel
operators with pluriharmonic symbols has a finite rank. Recall that for a bounded
symbol φ, the Hankel operator Hφ : A2

γ → L2
γ 	 A2

γ is defined as Hφ = (I −
Pγ)Mφ|A2

γ
, where Mφ is the multiplication by φ and Pγ is the weighted Bergman

projection from L2
γ onto A2

γ . The crucial identity relating properties of Toeplitz
and Hankel operators is given by

H∗φ̄Hψ = Tφψ − TφTψ.

Proposition 4.4. Let φj , ψj (1 ≤ j ≤ n) be bounded pluriharmonic functions on
BN . Then the following statements are equivalent:

(1)
∑n
j=1H

∗
φ̄j
Hψj = 0.

(2)
∑n
j=1H

∗
φ̄j
Hψj = TF for some F ∈ C2N+2+2γ(BN ) ∩ L∞.

(3)
∑n
j=1H

∗
φ̄j
Hψj has a finite rank.

(4)
∑n
j=1 P (φj) · (ψj − P (ψj)) is pluriharmonic.

Proof. It is clear that (1) implies (2). Now assume that (2) holds. Then

n∑
j=1

TφjTψj =

n∑
j=1

(Tφjψj −H∗φ̄jHψj ) = Th − TF = Th−F ,

where h =
∑n
j=1 φjψj . By Theorem 1.1, we have

n∑
j=1

φjψj = h− F,

which implies F = 0. Therefore, (3) (as well as (1)) follows.
Now assume that (3) holds, that is, the operator T =

∑n
j=1H

∗
φ̄j
Hψj has finite

rank. The same argument as above gives
∑n
j=1 TφjTψj = Th − T . By Theorem 1.1

again, the function

h−
n∑
j=1

(φj − P (φj))P (ψj)
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is pluriharmonic, which then implies (4).
Finally, assume that (4) holds. Setting h =

∑n
j=1 φjψj and x` = y` = 0, we see

that both conditions in Theorem 1.1 are satisfied and so
∑n
j=1 TφjTψj = T∑n

j=1 φjψj
,

which gives (1). This completes the proof of the proposition. �

Proof of Corollary 1.3. The sufficient direction is well known and not difficult to
prove. To show the necessary direction, replacing φ by φ−φ(0) and ψ by ψ−ψ(0)
if necessary, we may assume that φ(0) = ψ(0) = 0. As before, write φ = f + ḡ and
ψ = u+ v̄ with holomorphic f, g, u, v satisfying f(0) = g(0) = u(0) = v(0) = 0. We
have

H∗φ̄Hψ −H∗ψ̄Hφ = (Tφψ − TφTψ)− (Tψφ − TψTφ) = −[Tφ, Tψ].

As a consequence, if [Tφ, Tψ] has a finite rank, then so does H∗
φ̄
Hψ − H∗ψ̄Hφ. Set

n = 2 and define

φ1 = φ, φ2 = −ψ, ψ1 = ψ and ψ2 = φ.

Then condition (3) in Proposition 4.4 is satisfied. Therefore, (4) must hold, which
means that

P (φ)(ψ − P (ψ))− P (ψ)(φ− P (φ)) = fv̄ − uḡ
is pluriharmonic. We may apply [Zhe98, Theorem 5.6 and Lemma 6.8] to complete
the proof. Here, we provide a direct argument. Indeed, Lemma 4.1 implies fv̄ = uḡ
which, by complexifying, gives

f(z)v̄(w) = u(z)ḡ(w) for all z, w ∈ BN .

If u = v = 0, then ψ = cφ with c = 0. If u = 0 and v is not identically zero,
then f = 0 so both φ and ψ are anti-holomorphic. Similarly, if v = 0 and u is
not identically zero, then g = 0 so both φ and ψ are holomorphic. On the other
hand, if neither of u nor v is identically zero, then there exists z0 ∈ BN such that
u(z0)v(z0) 6= 0 and it follows that f = cu and ḡ = cv̄, where

c =
ḡ(z0)

v̄(z0)
=
f(z0)

u(z0)
.

Hence, φ− cψ = 0. This completes the proof of the corollary. �

We end this section with another important application of Theorem 1.1.

Corollary 4.5. Let φj , ψj ∈ L∞ be pluriharmonic and let h be C2N+2+2γ-smooth
and bounded. Write φj = fj + ḡj , ψj = uj + v̄j where fj , gj , uj , vj are holomorphic.
Then

∑n
j=1 TφjTψj = Th on A2

γ if and only if h =
∑n
j=1 φjψj and

n∑
j=1

(
fj − fj(0)

)(
v̄j − vj(0)

)
= 0.

Remark 4.6. It would be interesting to extend our results to general weighted
Bergman spaces A2

γ with non-integer values γ > −1. However, there are two
obstructions that we have not been able to resolve. First, let us recall that one of
the main ingredients in our proof of Theorem 1.4 is the identity

|Ez|2
( (1− |z|2)N+1+γ

|1− 〈z, ξ〉|2(N+1+γ)

)
= Dξ

( 1

|1− 〈z, ξ〉|2
)
,
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where

D =
1

[(N + γ)!]2

(
|E + (N + γ)|2 −∆

)
· · ·
(
|E|2 −∆

)
.

We do not know what D should be if γ is not an integer.
Second, in the proof of Theorem 4.2, we require that γ be an integer so that the

right hand-side of equation (4.3) can be written as a finite sum of the form
∑
j fj ḡj

with holomorphic fj and gj . When γ is not an integer, we have an infinite series
so Bγ(u) does not have a finite rank.

It would also be of interest to consider our results in the setting of plurihar-
monic Bergman spaces. However, the situation is much less promising. Indeed, on
the pluriharmonic Bergman space associated with the weighted measure dVγ , the
reproducing kernel is given by

Hγ(w, z) = Kγ(w, z) +Kγ(z, w)− 1 = 2Re
{ 1

(1− 〈w, z〉)N+1+γ

}
− 1

As a consequence, the Berezin transform admits a more complex integral formula.
Our strategy does not seem suitable even when γ = 0.

5. Polynomials in the range of Berezin transform and applications

In this section, we investigate the range of the unweighted Berezin transform
(denoted by B instead of B0 in this section). Due to the complicated computations,
we are unable to consider the weighted case at this time. We first describe all
polynomials in the range of B. We then construct examples which show that the
conclusion of Theorem 1.1 may fail for N ≥ 2 if the smoothness assumption on
h is dropped. Lastly, we show that the product of two Toeplitz operators with
polynomial symbols, under a certain additional condition on the degrees, is always
equal to another Toeplitz operator with an integrable symbol. We shall use Ap and
Lp to denote the unweighted spaces.

In the setting of a single variable, Ahern [Ahe04] showed that if p and q are
holomorphic polynomials such that the degree of pq is at most 3, then pq̄ is the
Berezin transform of an L1-function. The following theorem generalizes this result
to several variables. Since calculations cannot be performed explicitly as in the
single variable case, the proof here is considerably more complicated.

Theorem 5.1. Let f be a polynomials in z and z̄. Then f = B(u) for some u ∈ L1

if and only if for any 1 ≤ j, ` ≤ N , the derivative ∂zj ∂̄z`f has total degree at most
2N − 1.

As a consequence, if w1, . . . , ws belongs to BN and Q1, . . . , Qs are polynomials
in C[z, z̄] with total degrees at most 2N + 1, then there exists a function u ∈ L1

such that B(u) =
∑s
j=1Qj ◦ ϕwj .

Proof. Throughout the proof, we write ran(B) to denote the image of L1 under
the Berezin transform. Suppose that f = B(u) for some u ∈ L1. By Theorem 3.4,
there exist a pluriharmonic function h and a polynomial Q ∈ C[z, z̄] of degree at
most 2N + 1 such that f = B(u) = h+Q. It follows that for any 1 ≤ j, ` ≤ N ,

∂zj ∂̄z`f = ∂zj ∂̄z`h+ ∂zj ∂̄z`Q = ∂zj ∂̄z`Q,

which has total degree at most 2N − 1.
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Conversely, suppose that for any 1 ≤ j, ` ≤ N , the derivative ∂zj ∂̄z`f has total
degree at most 2N − 1. Since f is a polynomial, there exists a pluriharmonic
polynomial h and complex coefficients cα,β for |α| ≥ 1, |β| ≥ 1 such that

f(z) = h(z) +
∑

|α|≥1,|β|≥1

cα,βz
αz̄β .

The assumption implies that cα,β = 0 whenever |α|+ |β| > 2N + 2. Consequently,
we may write f = h+Q, where h is pluriharmonic and Q has total degree at most
2N + 1. Thus, it remains to show that Q belongs to ran(B).

Let α, β be two multi-indexes and ` be a non-negative integer such that |α| +
|β| + 2` ≤ 2N + 1. We shall show that the polynomial z̄αzβ(1 − |z|2)` belongs to
ran(B). Taking complex conjugates if necessary, we may assume that |β| ≤ |α|.

Using [Rud80, Proposition 1.4.9] and the rotation invariant of the surface mea-
sure on ∂BN , we see that for any integer s ≥ 1 and for any z ∈ BN ,∫

∂BN
|〈z, ζ〉|2sdσ(ζ) =

Γ(N) Γ(s+ 1)

Γ(N + s)
|z|2s.

Replacing s by s+ |α| and applying
∂αz

(s+|α|)···(s+1) to both sides of the above identity

gives ∫
∂BN

ζ̄α〈z, ζ〉s〈ζ, z〉s+|α|dσ(ζ) =
Γ(N) Γ(s+ |α|+ 1)

Γ(N + s+ |α|)
z̄α|z|2s.

Applying Γ(s+|α|−|β|+1)
Γ(s+|α|+1) ∂̄βz , we have∫

∂BN
ζ̄αζβ〈z, ζ〉s〈ζ, z〉s+|α|−|β|dσ(ζ) =

Γ(N) Γ(s+ |α| − |β|+ 1)

Γ(N + s+ |α|)
∂̄βz

(
z̄α|z|2s

)
.

Now let u ∈ L1 be of the form u(z) = z̄αzβϕ(|z|2), where ϕ is a function on [0, 1)
to be defined later. Integration in polar coordinates (using ξ = rζ) together with
the above identity gives∫

BN
ξ̄αξβϕ(|ξ|2)〈z, ξ〉s〈ξ, z〉s+|α|−|β|dV (ξ)

= 2N

∫ 1

0

r2N+2s+2|α|−1ϕ(r2)dr

∫
∂BN

ζ̄αζβ〈z, ζ〉s〈ζ, z〉s+|α|−|β|dσ(ζ)

=
Γ(N + 1) Γ(s+ |α| − |β|+ 1)

Γ(N + s+ |α|)

(∫ 1

0

rN+s+|α|−1ϕ(r)dr
)
∂̄βz
(
z̄α|z|2s

)
=

Γ(N + 1) Γ(s+ |α| − |β|+ 1)

Γ(N + s+ |α|)
ϕ̂(N + s+ |α|) ∂̄βz

(
z̄α|z|2s

)
,

where ϕ̂ denotes the Mellin transform of ϕ given by

ϕ̂(ζ) =

∫ 1

0

rζ−1ϕ(r)dr.

It follows that

1

Γ(N + 1) Γ(s+ |α| − |β|+ 1)

∫
BN

u(ξ)〈z, ξ〉s〈ξ, z〉s+|α|−|β|dV (ξ)

=
1

Γ(N + s+ |α|)
ϕ̂(N + s+ |α|) ∂̄βz

(
z̄α|z|2s

)
. (5.1)
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We now compute, for z ∈ BN ,∫
BN

u(ξ)

|1− 〈z, ξ〉|2(N+1)
dV (ξ)

=

∞∑
s,t=0

Γ(N + 1 + s)

Γ(N + 1) Γ(s+ 1)
· Γ(N + 1 + t)

Γ(N + 1) Γ(t+ 1)

∫
BN

u(ξ)〈z, ξ〉s〈ξ, z〉tdV (ξ).

Since the integral vanishes unless t = s + |α| − |β|, we may rewrite the above
summation as∫

BN

u(ξ)

|1− 〈z, ξ〉|2(N+1)
dV (ξ)

=

∞∑
s=0

Γ(N + 1 + s)

Γ(N + 1) Γ(s+ 1)
· Γ(N + 1 + s+ |α| − |β|)

Γ(N + 1) Γ(s+ |α| − |β|+ 1)
×

×
∫
BN

u(ξ)〈z, ξ〉s〈ξ, ξ〉s+|α|−|β|dV (ξ) (5.2)

= ∂̄βz

{
z̄α ·

∞∑
s=0

Γ(N + 1 + s) Γ(N + 1 + s+ |α| − |β|)
Γ(N + 1) Γ(s+ 1) Γ(N + s+ |α|)

ϕ̂(N + s+ |α|)|z|2s
}
.

The last identity follows from formula (5.1). To simplify the notation we now set
M = N + 1 − |β| − `. Since |α| + |β| + 2` ≤ 2N + 1 and |β| ≤ |α|, we have
1 ≤M ≤ N + 1− |β|. Let us choose ϕ such that

ϕ̂(ζ) =
Γ(N + 1)

Γ(N + 1− |`|)
· Γ(ζ) Γ(ζ + 1− |α| − |β| − `)

Γ(ζ + 1− |α|) Γ(ζ + 1− |β|)
(5.3)

=
Γ(N + 1)

Γ(M + |β|)
· Γ(ζ) Γ(ζ +M −N − |α|)

Γ(ζ − |α|+ 1) Γ(ζ − |β|+ 1)
.

The existence of such a function ϕ will be established below. Since for all integers
s ≥ 0,

ϕ̂(N + s+ |α|) =
Γ(N + 1)

Γ(M + |β|)
· Γ(N + s+ |α|) Γ(M + s)

Γ(N + s+ 1) Γ(N + s+ |α| − |β|+ 1)
,

formula (5.2) simplifies to∫
BN

u(ξ)

|1− 〈z, ξ〉|2(N+1)
dV (ξ) =

Γ(M)

Γ(M + |β|)
∂̄βz

{
z̄α ·

∞∑
s=0

Γ(M + s)

Γ(M) Γ(s+ 1)
|z|2s

}

=
Γ(M)

Γ(M + |β|)
∂̄βz
{
z̄α (1− |z|2)−M

}
.

It follows that

B(u)(z) =
Γ(M)

Γ(M + |β|)
(1− |z|2)N+1 · ∂̄βz

{
z̄α (1− |z|2)−M

}
. (5.4)

We now explain the existence of ϕ and show that the corresponding function u
belongs to L1. First, note that if |α| = 0, then |β| = 0 as well since we assumed
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that |β| ≤ |α| and so in this case, formula (5.3) becomes

ϕ̂(ζ) =
Γ(N + 1)

Γ(N + 1− `)
· Γ(ζ) Γ(ζ + 1− `)

Γ(ζ + 1) Γ(ζ + 1)

=


1
ζ if ` = 0,

Γ(N+1)
Γ(N+1−`) ·

1
ζ ·

1
(ζ+1−`)···ζ if ` ≥ 1.

In the first case, ϕ = 1. In the second case, ϕ is a linear combination of log(r) and
r−1, . . . , r1−`.

Now assume |α| ≥ 1. Then second factor on the right hand-side of (5.3) reduces
to a proper rational function of the form

1
(ζ−|β|−`)···(ζ−|β|) if |α| = 1,

(ζ+1−|α|)···(ζ−1)
(ζ+1−|α|−|β|−`)···(ζ−|β|) if |α| ≥ 2,

whose numerator has degree |α|−1 and whose denominator has degree |α|+` > |α|−
1. Therefore, ϕ(r) exists and it is a linear combination of r1−|α|−|β|−`, . . . , r−|β|.
In all cases, we have

ϕ(r) = O(r1−|α|−|β|−`) as r → 0+,

which implies that for any ζ ∈ ∂BN ,

u(rζ) = r|α|+|β|ϕ(r2)ζ̄αζβ = O(r2−|α|−|β|−2`).

Since (2N − 1) + 2− |α| − |β| − 2` = 2N + 1− |α| − |β| − 2` ≥ 0, using integration
by polar coordinates, we conclude that u ∈ L1.

Choosing |β| = 0 in (5.4) shows that z̄α(1 − |z|2)` belongs to ran(B) whenever
|α| + 2` ≤ 2N + 1. It then follows that z̄α|z|2s (and hence zα|z|2s, after taking
complex conjugates) belongs to ran(B) whenever |α|+ 2s ≤ 2N + 1.

Generally, whenever |α|+ |β|+ 2` ≤ 2N + 1, we may use (5.4) to conclude that
ran(B) contains the function

Γ(M)

Γ(M + |β|)
(1− |z|2)N+1 · ∂̄βz

{
z̄α (1− |z|2)−M

}
= z̄αzβ(1− |z|2)` +

∑
µ+ν=β
|µ|≥1

cµ,ν z̄
α−µ zν (1− |z|2)N+1−M−|ν|

= z̄αzβ(1− |z|2)` +
∑

µ+ν=β
|µ|≥1

cµ,ν z̄
α−µ zν (1− |z|2)|β|+`−|ν|,

where cµ,ν ’s are constants. Note that each term in the summation has total degree
at most |α|+ |β|+2` ≤ 2N+1 and the degree in z is |ν| < |β|. As a consequence, an
induction in |β| shows that z̄αzβ(1−|z|2)` belongs to ran(B) whenever |α|+|β|+2` ≤
2N+1. Letting ` = 0, we conclude that z̄αzβ ∈ ran(B) whenever |α|+|β| ≤ 2N+1.

For each 1 ≤ j ≤ s, we showed above the existence of a function uj ∈ L1

such that B(uj) = Qj . Using the commutativity of the Berezin transform and
automorphisms of the unit ball (see [AFR93, Proposition 2.3], for example), we
have

B(uj ◦ ϕwj ) = B(uj) ◦ ϕwj = Qj ◦ ϕwj .
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It then follows that B(
∑s
j=1 uj ◦ ϕwj ) =

∑s
j=1Qj ◦ ϕwj as required. �

Remark 5.2. Using (5.4) in the case ` = 1, |β| = 0 and |α| ≥ 1 (hence M = N)
shows that for u(z) = z̄αϕ(|z|2) with ϕ̂ given by (5.3), we obtain

B
(
z̄α|z|−2|α| − z̄α

)
=
|α|
N
z̄α(1− |z|2),

which implies

B
( |α|+N

N
z̄α − z̄α|z|−2|α|

)
=
|α|
N
z̄α|z|2.

This identity is valid for all 1 ≤ |α| < 2N . For N = 1 and α = 1, this is the formula
given in [Ahe04, Lemma 1].

As it is well known in the literature, properties of the Berezin transform have
consequences in the theory of Toeplitz operators. We discuss here a few examples.

Remark 5.3. Setting α = β = (1, 0, . . . , 0) and ` = 0 (hence, M = N) in (5.4)
gives

B(u)(z) =
1

N
(1− |z|2)N+1 · ∂̄z1{z̄1(1− |z2|)−N}

=
1

N
(1− |z|2)N+1 ·

{
(1− |z|2)−N +N |z1|2(1− |z|2)−N−1

}
=

1

N
(1− |z|2) + |z1|2. (5.5)

Here, u(z) = |z1|2ϕ(|z|2) with

ϕ̂(ζ) =
Γ(ζ) Γ(ζ − 1)

Γ(ζ) Γ(ζ)
=

1

ζ − 1
= r̂−1(ζ).

It follows that u(z) = |z1|2
|z|2 for z ∈ BN\{0}, which is bounded and is not plurihar-

monic if N ≥ 2.
Let us rewrite the identity in (5.5) in the form

(N − 1)|z1|2 −
N∑
j=2

|zj |2 = B(h)

with h(z) = −1 + N |z1|2
|z|2 . It follows that

(N − 1)Tz1Tz̄1 −
N∑
j=2

TzjTz̄j = Th,

where h is a bounded function and h(z) 6= (N−1)|z1|2−
∑N
j=2 |zj |2. It is important

to note that this phenomenon cannot occur for N = 1 due to Corollary 4.5.

We end the paper by showing that the product of two Toeplitz operators with
polynomial symbols, under a certain condition on the degrees, is again a Toeplitz
operator. However, we note that the symbol of the resulting Toeplitz operator is
not always a polynomial.

Proposition 5.4. Let α and β be two multi-indexes such that |α| ≥ 1 and |β| ≥ 1.
Then TzβTz̄α = Tu for some u ∈ L1 if and only if |α|+ |β| ≤ 2N + 1.
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As a consequence, if f and g are polynomials in z and z̄ such that the sum of
the degree of f in z and the degree of g in z̄ is at most 2N + 1, then there exists
h ∈ L1 such that TfTg = Th.

Proof. Suppose TzβTz̄α = Tu for some u ∈ L1. Taking Berezin transforms gives

B(u) = B(Tu) = B(TzβTz̄α) = z̄αzβ .

Write α = (α1, . . . , αN ) and β = (β1, . . . , βN ). Since |α| ≥ 1 and |β| ≥ 1, there exist
j, ` such that βj 6= 0 and α` 6= 0. It follows that the total degree of ∂zj ∂̄z`(z̄

αzβ)
is exactly |α|+ |β| − 2. Proposition 5.1 implies that |α|+ |β| − 2 ≤ 2N − 1, which
gives |α|+ |β| ≤ 2N + 1.

Conversely, if |α| + |β| ≤ 2N + 1, then by Theorem 5.1, there exists a function
u ∈ L1 such that z̄αzβ = B(u). This implies that B(TzβTz̄α) = B(u), which gives
TzβTz̄α = Tu. For any holomorphic polynomials p and q, using the well-known
properties of Toeplitz operators, we have

Tp̄(z)zβTq(z)z̄α = Tp̄
(
TzβTz̄α

)
Tq = Tp̄TuTq = Tp̄uq.

The last statement of the proposition now follows. �
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