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Abstract

We show that any m-isometric tuple of commuting algebraic operators on a
Hilbert space can be decomposed as a sum of a spherical isometry and a com-
muting nilpotent tuple. Our approach applies as well to tuples of algebraic
operators that are hereditary roots of polynomials in several variables.
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1. Introduction

The notion of m-isometries was introduced and studied by Agler [3] back
in the eighties. A bounded linear operator 17" on a complex Hilbert space H
is called m-isometric if it satisfies the operator equation

3 (1 (”;) Tk — 0,

m
k=0

where T™ is the adjoint operator of T'. Equivalently, for all v €
St () ol <o
k=

0

In a series of papers [5, [0l [7], Agler and Stankus gave an extensive study
of m-isometric operators. It is clear that any l-isometric operator is an
isometry. Multiplication by z on the Dirichlet space over the unit disk
is not an isometry but it is a 2-isometry. Richter [30] showed that any
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cyclic 2-isometry arises from multiplication by z on certain Dirichlet-type
spaces. Very recently, researchers have been interested in algebraic proper-
ties, cyclicity and supercyclicity of m-isometries, among other things. See
[28, 24, [14], 16l 15, 18, 13} 12], 26}, 11, 22] and the references therein.

It was showed by Agler, Helton and Stankus [4, Section 1.4] that any
m-isometry T on a finite dimensional Hilbert space admits a decomposition
T =S+ N, where S is a unitary and N is a nilpotent operator satisfying
SN = NS. In [12], it was showed that if S is an isometry on any Hilbert
space and N is a nilpotent operator of order n commuting with S then the
sum S + N is a strict (2n — 1)-isometry. This result has been generalized to
m-isometries by several authors [20], 111, 22].

Let A be a positive operator on H. An operator T is called an (A, m)-
isometry if it is a solution to the operator equation

3 (-1 (7/?> T*AT* = 0.
k=0

Such operators were introduced and studied by Sid Ahmed and Saddi in [§],
then by other authors [I7, 25] 29 23] 19, 10]. In the case m = 1, we call such
operators A-isometries. Since A is positive, the map v — [[v||4 = (Av,v)
(where (-, ) denotes the inner product on H) gives rise to a seminorm. In
the case A is injective, || - |4 becomes a norm. It follows that an operator
T is (A, m)-isometric if and only if T is m-isometric with respect to || - || 4.
As a result, several algebraic properties of (A, m)-isometries follow from the
corresponding properties of m-isometries with more or less similar proofs (see
[8, [10]). However, there are great differences between (A, m)-isometries and
m-isometries, specially when A is not injective. For example, it is known [5]
that the spectrum of an m-isometry must either be a subset of the unit circle
or the entire closed unit disk. On the other hand, [I0, Theorem 2.3] shows
that for any compact set K on the plane that intersects the unit circle, there
exist a non-zero positive operator A and an (A, 1)-isometry whose spectrum
is exactly K. The following question was asked in [10].

Question 1. Let T be an (A, m)-isometry on a finite dimensional Hilbert
space. Is it possible to write T as a sum of an A-isometry and a commuting
nilpotent operator?

In this paper, we shall answer Question 1 in the affirmative. Indeed, we
are able to prove a much more general result, in the setting of multivariable
operator theory.



Gleason and Richter [20] considered the multivariable setting of m-isometries
and studied their properties. A commuting d-tuple of operators T = [T}, ..., Ty]
is said to be an m-isometry if it satisfies the operator equation

S (-1t (”IZ) 3 i—!'(Ta)*Ta = 0. (1.1)
Z .

0 la|=k
Here a« = (o, ..., aq) denotes a multiindex of non-negative integers. We
have also used the standard multiindex notation: |o| = a3 + -+ + ag,
al = ayl---aq and T* = 17" --- T4 Note that l-isometric tuples are

called spherical isometries. It was shown in [20] that the d-shift on the
Drury-Arveson space over the unit ball in C? is d-isometric. This generalizes
the single-variable fact that the unilateral shift on the Hardy space H? over
the unit disk is an isometry. Gleason and Richter also studied spectral prop-
erties of m-isometric tuples and they constructed a list of examples of such
operators, built from single-variable m-isometries. Many algebraic properties
of m-isometric tuples have been discovered by the author in an unpublished
work and independently by Gu [21]. As an application of our main result in
this note, we shall answer the following question in the affirmative.

Question 2. Let T be an m-isometric tuple acting on a finite dimensional
Hilbert space. Is it possible to write T as a sum of a 1-isometric S (that is,
a spherical isometry) and a nilpotent tuple N that commutes with S?

To state our main result, we first generalize the notion of (A, m)-isometric
operators to tuples. Let A be any bounded operator on H (we do not need
to assume that A is positive). A commuting tuple T = [T, ..., T,] is said to
be (A, m)-isometric if

;(—1)m—k (”;) Izl_:k Z—" (T*)*AT® = 0. (1.2)

It is clear that (I, m)-isometric tuples (here I stands for the identity operator)
are the same as m-isometric tuples. We shall call (A, 1)-isometric tuples
spherical A-isometric. They are tuples T that satisfies

TrAT, + - + T ATy = A

A main result in the paper is the following theorem.



Theorem 1.1. Suppose T is an (A, m)-isometric tuple on a finite dimen-
sional Hilbert space. Then there exist a spherical A-isometric tuple S and a
nilpotent tuple N commuting with S such that T =S + N.

In the case of a single operator, Theorem answers Question 1 in the
affirmative. In the case A = I, we also obtain an affirmative answer to
Question 2.

2. Hereditary calculus and applications

Our approach uses a generalization of the hereditary functional calculus
developed by Agler [1, 2]. We begin with some definitions and notation. We
use boldface lowercase letters, for example x, y, to denote d-tuples of complex
variables. Let C[x, y] denote the space of polynomials in commuting variables
x and y with complex coefficients. Let A be a bounded linear operator on a
Hilbert space H and X, Y be two d-tuples of commuting bounded operators
on H. These two tuples may not commute with each other. We denote by
X* the tuple [X7,..., X;]. Let f € C[x,y]. If

f(X7 Y) - Z Coz,ﬁxayﬁa
a?ﬁ

where the sum is finite, then we define

FAXY) =) cap(X*) AY”. (2.1)
a,B

It is clear that the map f +— f(A;X,Y) is linear from C[x, y] into (B(H))<.
If ¢ € C[x,y] depending only on x, then g(4;X,Y) = g(X*)A. On the
other hand, if h € C[x,y] depending only on y, then h(A4;X,Y) = Ah(Y).
Furthermore, if F' = g f h, then

F(A;X,Y) = g(X*)J(A: X, Y)h(Y). (2.2)

If X =Y, we shall write f(A;X) instead of f(A;X,X). In the case A = I,
the identity operator, we shall use f(X,Y) to denote f(I;X,Y). Therefore,
f(X) denotes f(I; X, X). We say that X is a hereditary root of f if f(X) = 0.

Example 2.1. Define p,,(x,y) = (Z?:1 zy; — 1)™ € Clx,y]. It is then
clear that T is m-isometric if and only if T is a hereditary root of p,,, that
is, pr(T) = 0. Similarly, T is (A, m)-isometric if and only if p,,(A4; T) = 0.
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Even though the map f +— f(A;X,Y) is not multiplicative in general, it
turns out that its kernel is an ideal of C[x,y]. This observation will play an
important role in our approach.

Proposition 2.2. Let A be a bounded linear operator and let X and Y be
two d-tuples of commuting operators. Define

IAXY) = {f eClx,y]: f(A4X,Y) =0}.
Then J(A; X,Y) is an ideal of C[x,y].

PrOOF. For simplicity of the notation, throughout the proof, let us write J
for J(A;X,Y). It is clear that J is a vector subspace of C[x,y]. Now let
f bein J and g be in C[x,y]. We need to show that ¢gf belongs to . By
linearity, it suffices to consider the case g is a monomial g(x,y) = x“y* for
some multi-indices v and 5. By [2.2]

(fO)(A: X, Y) = (X)* f(A;X,Y) Y =0,
since f(A;X,Y) = 0. This shows that fg belongs to J as desired.

If f is a polynomial of y in the form f(y) =Y, cay®, we define f(x) as

f(x) = Z CoX™.

[0}

In the case A is positive and X = Y, we obtain an additional property of

the ideal J(A;Y,Y) as follows.

Proposition 2.3. Let A be a positive operator and Y be a d-tuple of com-
muting operators. Suppose f1,..., fm are polynomials of y such that the sum

FL)Fi(y) + -+ Fu(%) fru(y) belongs to J(A; Y, Y). Then fi(y), ..., fu(y)
also belong to J(A;Y,Y).

PrOOF. Note that f;(Y*) = (f;(Y))* for all j. By the hypotheses, we have
(LY A[Y) + -+ (fn(Y) Afm(Y) = 0,
which implies
(AR A A+ 4 [AYV L ()] [AY fu(Y)] = 0.

It follows that for all j, we have AY2f;(Y) = 0, which implies Af;(Y) = 0,
Therefore, f;(y) € 3(A;Y,Y) for all j.
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Recall that the radical ideal of an ideal J C C[x,y], denoted by Rad(d),
is the set of all polynomials p € C[x,y] such that p" € J for some positive
integer N. In the following proposition, we provide an interesting relation

between generalized eigenvectors and eigenvalues of X and Y whenever we
have f(A;X,Y) =0.

Proposition 2.4. Let X and Y be two d-tuples of commuting operators.
Suppose k is a positive integer, X = (A, ..., \),w = (w1,...,wq) € C? and
u,v € H such that

(Xj = X)u=(¥;—w)'v=0

for all1 < j <d. Then for any polynomial f € Rad(J(A4;X,Y)), we have

FA w)(Av,u) = 0. (2.3)
PROOF. We first assume that f € J(A;X,Y). Using Taylor’s expansion, we
find polynomials ¢y,..., g4 and hq, ..., hg such that

d d

FOww) = f(xy) =Y (= A)gi (6, y) + > hi(%,y) (5 — w))-

j=1 j=1

Take any integer M > 1+ 2d(k — 1). By the multinomial expansion, there
exist polynomials G1,...,Gg and Hy,..., H; such that

d

(f(jvw) — f(x, Y)))M = (1 = A)Gi(xy) + D Hi(xy)(y — wy)*.

j=1 j=1

The left-hand side, by the binomial expansion, can be written as

(fw))™ + f(x,y)H(x,y)

for some polynomial H. Since f(A;X,Y) = 0, using Equation (2.2) and
Proposition [2.2] we conclude that



Consequently,
(f(rw) M (Av, u)

M&“E‘

<Gj(A; X,Y)v, (X; — Aj)ku> + <Hj(A; X, Y)(Y; — wj)’fv,u>

1 j=1

I
o .

bl

which implies .

In the general case, there exists an integer N > 1 such that fV belongs to
J(A; X,Y). By the case we have just proved, (f(A, w))¥{Av,u) = 0, which
again implies ([2.3). This completes the proof of the proposition.

Remark 2.5. In the case of a single operator, Proposition [2.4] provides a
generalization of [4, Lemmas 18 and 19]. Our proof here is even simpler and
more transparent.

Question 1 and Question 2 in the introduction concern operators acting
on a finite dimensional Hilbert space. It turns out that this condition can be
replaced by a weaker one. Recall that a linear operator 1" is called algebraic
if there exist complex constants cg, ¢q, ..., ¢, such that

col +e T+ +c¢T=0.

Algebraic operator roots of polynomials were investigated in [4].

We first discuss some preparatory results on algebraic operators acting on
a general complex vector space V. It is well known that if T is an algebraic
linear operator on 'V, then the spectrum o (7') is finite and there exists a direct
sum decomposition V = ®ueq(1)Va, where each V, is an invariant subspace
for T' (the subspace V, is a closed subspace if V is a normed space and T is
bounded) and T' — a[ is nilpotent on V,. Indeed, if the minimal polynomial
of T' is factored in the form

p(2) = (2 —a)™ - (2 — ag)™,

where aq,...,a, are pairwise distinct and my,...,my; > 1, then o(T) =
{ai,...,a;} and V,; = ker(T' — a;)™ for 1 < j < . See, for example, [32,
Section 6.3], which discusses operators acting on finite dimensional vector
spaces. However, the arguments apply to algebraic operators on infinite
dimensional vector spaces as well.



Suppose now T = [17, ..., Ty| is a tuple of commuting algebraic operators
on V. We first decompose V as above with respect to the spectrum o (77).
Since each subspace in the decomposition is invariant for all T}, we again
decompose such subspace with respect to the spectrum o(73). Continuing
this process, we obtain a finite set A C C? and a direct sum decomposition
V = @xeaVy such that for each A = (Aq,...,\y) € Aand 1 < j < d, the
subspace V) is invariant for T and 7} — A;[ is nilpotent on V). Let E) denote
the canonical projection (possibly non-orthogonal) from V onto V. Then we
have Y\, Ex =1, E} = E,, and E\E, = 0 if XA # . Define

S:Z/\'EA:[Z)\lEA,...,Z)\dEA] (2.4)

AEA AEA A€A

Then S is a tuple of commuting operators which commutes with T, and T—S
is nilpotent. For any multiindex «, we have

8% = Spt--- 501 =) A\Ej.
A€A

In the case V is a normed space and T is bounded, each operator in the tuple
S is bounded as well.

We now prove a very general result, which will provide affirmative answers
to Questions 1 and 2 in the introduction.

Theorem 2.6. Let X and Y be two d-tuples of commuting algebraic opera-
tors on a Hilbert space H. Let U (respectively, V) be the commuting tuple
associated with X (respectively, Y ) as in (2.4). Then

Rad(3(4; X, Y)) € J(A; U, V). (2.5)

ProOOF. Write X = [Xj, ..., X,] and decompose H = G epH, such that for
each A = (A1,...,Ag) € A, the subspace ) is invariant for X and X; — \;/
is nilpotent on H,. Let U, denote the canonical projection from JH onto H,.
Then U =}, ., A- Uy and for any multiindex «, we have

Uazz/\‘*-UA.

A€A

Similarly, write Y = [Y,...,Y,] and decompose H = @ eaXK,,. Let V, be
the canonical projection from H onto X,. Then V = > _,w -V, and for

any multiindex (3,
V=Y "WV

weN
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Take any polynomial p € Rad(d(A;X,Y)). For A € A, w € Q and vectors
u € Hy and v € K, there exists an integer k > 1 sufficiently large such that

(X; = NDru = (Y —w;l)fv=0

for all 1 < j < d. Proposition shows that p(\,w){Av,u) = 0, which
implies B

p(A,w)US AV, = 0.
Write p(x,y) = Zaﬁ CapXy?. We compute

P(A; U V) =) o gU AV

o.f

= anﬂ(Z X“U;{)A(Zwﬁ : Vw>
a8 AeA wen

= Z <an755\awﬁ> Uy AV,
AEAWER o,

= Z p(\, w)Us AV, = 0.

AEA,weN

We conclude that p € J(A; U, V). Since p € Rad(J(A4;X,Y)) was arbitrary,
the proof of the theorem is complete.

Theorem enjoys numerous interesting applications that we now de-
scribe.

PrROOF OF THEOREM [L.1l. We shall prove the theorem under a more general
assumption that T is a tuple of commuting algebraic operators. Since T
is (A, m)-isometric, the polynomial (Z;l:l xjy; — 1)™ belongs to the ideal
J(A; T, T). It follows that the polynomial p(z,y) = ijl x;y; — 1 belongs
to the radical ideal of J(A; T, T). By Theorem [2.6] we may decompose T =
S + N, where N is a nilpotent tuple commuting with S and p(A;S,S) = 0,
which means that S is a spherical A-isometry.

Example 2.7. Recall that an operator 7' is called (m,n)-isosymmetric (see
[33]) if T is a hereditary root of f(x,y) = (zy — 1)™ (z — y)". Theorem
shows that any such algebraic T" can be decomposed as T' = S + N, where
N is nilpotent, S is isosymmetric (i.e. (1,1)-isosymmetric) and SN = NS.



Example 2.8. Several researchers [27, 9] have investigated the so-called
toral m-isometric tuples. It is straightforward to generalize this notion to
toral (A, m)-isometric tuples, which are commuting d-tuples T that satisfy

3o (- (ml’ N ’md> (T%)* AT® = 0.

0<a1<mi

0<ag<mg
for all m; +---4+my = m. Equivalently, T is a common hereditary root of all
polynomials of the form (1 —zyy7)™ -+ (1 — xqyq)™ for my + - - - +mg = m.
This means that all these polynomials belong to the ideal J(A; T, T). We
see that toral (A, 1)-isometries are just commuting tuples T such that each
T is an A-isometry, that is, 77 AT; = A. Note that for any toral (A, m)-
isometry T, the radical ideal Rad(J(A; T, T)) contains all the polynomials
{1 —zy; 1) =1,2,... ,d}. Theorem asserts that T = S + N, where S
is a toral (A, 1)-isometry and N is a nilpotent tuple commuting with S.

3. On 2-isometric tuples

It is well known that any 2-isometry on a finite dimensional Hilbert space
must actually be an isometry. On the other hand, there are many examples
of finite dimensional 2-isometric tuples that are not spherical isometries. The
following class of examples is given in Richter’s talk [31].

Example 3.1. If o = (a3,...,a4) € 0B; and V; : C™ — C" such that
S0 @,V =0, then W = (Wy,..., W) with

(ol Y
Wj_<0 ijfm)

defines a 2-isometric d-tuple.

The following result was stated in [31] without a proof and as far as the
author is aware of, it has not appeared in a published paper.

Theorem 3.2 (Richter-Sundberg). If T is a 2-isometric tuple on a finite
dimensional space, then
T=U®W,

where U is a spherical unitary and W is a direct sum of operator tuples
unitarily equivalent to those in Example[3.]].
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In this section, we shall assume that A is self-adjoint and investigate
(A, 2)-isometric d-tuples. We obtain a characterization for such tuples that
generalizes the above theorem. We first provide a generalization of Example
B.1] We call N = (Ny,..., Ny) an (A, n)-nilpotent tuple if AN® = 0 for any

indices a with |a| = n.

Proposition 3.3. Assume that A is a self-adjoint operator. Let S be an
(A, 1)-isometry and N an (A, 2)-nilpotent tuple such that S commutes with
N. Suppose STANy + - -+ SJAN; = 0, then S+ N is an (A, 2)-isometry.

PROOF. By the assumption, we have AN; N, = NYN;A =0for1 <j k <d,
S S*AS; = A, and S STAN; = Z N]*AS = 0. It follows that

j=1%j JIJ

d d
ZS+N (S;+N;) =A+> N;AN;.
=1 j=1

We then compute

> (Sk+ No)*(S; + N;)TA(S; + N;)(Sk + M)

1<k,j<d

d
(Sp+ No(A+ ) N;AN;)(Sk + Ni)

=1

Il
wM&

|l
=

(Sp+ NOASk+ N+ > (Sk+ Np)NFAN;(Si + Ny)

1<k,j<d

i
I

A+ Z NiAN;+ Y S;N;AN;S;

1<k,j<d

— A+ Z N; AN, + Z N;(Z SiASK) N,
k=1 J=1 k=1
d d
= A+ NjAN,+ Y N;AN,
k=1 Jj=1

d
=A+2) N;AN,

=1
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d
=2 (S;+ N;))"A(S; + N;) — A,

j=1
Consequently, the sum S + N is an (A, 2)-isometric tuple.

Remark 3.4. We have provided a direct proof of Proposition [2.3] Using the
hereditary functional calculus and the approach in [26], one may generalize
the result to the case S being an (A, m)-isometry and N an (A, n)-nilpotent
commuting with S. Under such an assumption, if STAN; +---+S;AN; =0,
then S+ N is an (A, m + 2n — 3)-isometry. We leave the details for the
interested reader.

We now show that any algebraic (A, 2)-isometric tuple has the form given
in Proposition and as a result, provide a proof of Richter-Sundberg’s
theorem.

Theorem 3.5. Assume that A is a positive operator. Let T be an algebraic
(A, 2)-isometric tuple on H. Then there exists an (A, 1)-isometric tuple S
and a tuple N commuting with S such that T = S+N, ZZ=1 S;ANy =0, and
AN;N; =0 for all 1 < j, ¢ < d (we call such N an (A, 2)-nilpotent tuple).

In the case H is finite dimensional and A = I, the identity operator, we
recover Theorem [3.2.

PROOF. Recall that there exists a finite set A C C? and a direct sum de-
composition H = P caH, such that for each A\ € A, the subspace H, is
invariant for T and 7; — A;1 is nilpotent on H,. Let S be defined as in ([2.4)
and put N = T —S. From the construction, N is nilpotent and Theorem
shows that S is (A, 1)-isometric. We shall show that N satisfies the required
properties.

Restricting on each invariant subspace H, we only need to consider the
case H = ¥, and so S = AI. Proposition[2.4]asserts that (|\|*—1)(Av,u) =0
for all v,u € H. If |A] # 1, then A = 0 and the conclusion follows. Now
we assume that |A| = 1. Since N is nilpotent, there exists a positive integer
r such that AN® = 0 whenever |a] = r. We claim that r may be taken to
be 2. To prove the claim, we assume r > 3 and show that AN® = 0 for all
la] =r—1.

12



Since T = Al + N is (A, 2)-isometric, the tuple N is an A-root of the
polynomial

p(x,y) = (i(% + j\j)(yj + ) — 1)2 = (ixjyj + Ay + )\jyj>2.

j=1 j=1

On the other hand, N is an A-root of x* and y® for all |a| = r. This shows
that p(x,y), x* and y* belong to J(A; N, IN) for all |«| = r. To simplify the
notation, we shall denote J(A; N,N) by g in the rest of the proof. Take any
multiindex § with || = r — 2. We write

d d
xp(x,y)y” = X6<Z ijj> (Z Xm) YO+ ) aT Hy(xy) + Ga(x,y)y
j /=1

J=1 ly|=r

for some polynomials H., and G,. Since the left-hand side and the second
term on the right-hand side belong to J, which is an ideal, we conclude that

x? < i )\jxj> (i ngg>y6 € d.
j=1 =1

Proposition shows that both (Z?Zl S\gyz> y? and x? ( ijl )\jxj> are in
J. Now for any multiindex v with |y| = r — 3, we compute

d d
Xp )y =X (D wy) 'y + > % ( > Aj»’l?j)%(x, y)
=1 Bimr—2 =1
d

3 (hm)yesey)

|Bl=r—=2 j=1

Since the left-hand side and the last two sums on the right-hand side belong
to g, it follows that X'Y(Z;l:l z;4;)%y" belongs to J. Another application of
Propositionthen shows that y,y,y” belongs to J for all 1 < j,¢ < d. That
is, y* belongs to J whenever |a| = r—1 (as long as r > 3). As a consequence,
we see that y®, and hence x, belong to J for all |q| = 2. This together with
the fact that p(x,y) € J forces (Z?Zl )xjxj)(ZZzl Aeye) to belong to J, which
implies that Z?:l Aeye is in J. We have then shown AN;N;, = 0 for all
1<j,¢<dand Y0, S;AN, = 30 MeAN; = 0, as desired.
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Now let us consider T a 2-isometric tuple on a finite dimensional space
H. Recall that we have the decomposition H = @, cpH ), such that for each
A € A, the subspace H, is invariant for T and 7; — A;I is nilpotent on
H. By Proposition 2.4 we have ({(w, A) — 1)*(v,u) = 0 for all v € H,, and
u € Hy. It follows that |A| = 1 for all A € A and H, L FH, whenever
A # w. As a result, each subspace H, is reducing for T. To complete the
proof, it suffices to consider H = J,. We shall show that either T is a
spherical unitary or it is unitarily equivalent to a tuple given in Example
. Indeed, we have T = Al + N, where 3¢ AN, = 0 and N;N; = 0 for
all 1 < 5,0 < d. If N = 0, then T is a spherical unitary. Otherwise, let
M = ker(Ny) N--- Nker(Ny). Then Ny(H) C M forall 1 < ¢ < d. Asa
consequence, with respect to the orthogonal decomposition H = M @ M+,

each IV, has the form
_ (0 Vi
= (o o)

for some V, : M+ — M. Since 23:1 ANy = 0, we have Z?Zl MV =0. It
follows that T is unitarily equivalent to an operator tuple in Example
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