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Abstract

We show that any m-isometric tuple of commuting algebraic operators on a
Hilbert space can be decomposed as a sum of a spherical isometry and a com-
muting nilpotent tuple. Our approach applies as well to tuples of algebraic
operators that are hereditary roots of polynomials in several variables.
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1. Introduction

The notion of m-isometries was introduced and studied by Agler [3] back
in the eighties. A bounded linear operator T on a complex Hilbert space H

is called m-isometric if it satisfies the operator equation

m∑
k=0

(−1)m−k
(
m

k

)
T ∗kT k = 0,

where T ∗ is the adjoint operator of T . Equivalently, for all v ∈ H,

m∑
k=0

(−1)m−k
(
m

k

)
‖T kv‖2 = 0.

In a series of papers [5, 6, 7], Agler and Stankus gave an extensive study
of m-isometric operators. It is clear that any 1-isometric operator is an
isometry. Multiplication by z on the Dirichlet space over the unit disk
is not an isometry but it is a 2-isometry. Richter [30] showed that any
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cyclic 2-isometry arises from multiplication by z on certain Dirichlet-type
spaces. Very recently, researchers have been interested in algebraic proper-
ties, cyclicity and supercyclicity of m-isometries, among other things. See
[28, 24, 14, 16, 15, 18, 13, 12, 26, 11, 22] and the references therein.

It was showed by Agler, Helton and Stankus [4, Section 1.4] that any
m-isometry T on a finite dimensional Hilbert space admits a decomposition
T = S + N , where S is a unitary and N is a nilpotent operator satisfying
SN = NS. In [12], it was showed that if S is an isometry on any Hilbert
space and N is a nilpotent operator of order n commuting with S then the
sum S +N is a strict (2n− 1)-isometry. This result has been generalized to
m-isometries by several authors [26, 11, 22].

Let A be a positive operator on H. An operator T is called an (A,m)-
isometry if it is a solution to the operator equation

m∑
k=0

(−1)m−k
(
m

k

)
T ∗kAT k = 0.

Such operators were introduced and studied by Sid Ahmed and Saddi in [8],
then by other authors [17, 25, 29, 23, 19, 10]. In the case m = 1, we call such
operators A-isometries. Since A is positive, the map v 7→ ‖v‖A := 〈Av, v〉
(where 〈·, ·〉 denotes the inner product on H) gives rise to a seminorm. In
the case A is injective, ‖ · ‖A becomes a norm. It follows that an operator
T is (A,m)-isometric if and only if T is m-isometric with respect to ‖ · ‖A.
As a result, several algebraic properties of (A,m)-isometries follow from the
corresponding properties of m-isometries with more or less similar proofs (see
[8, 10]). However, there are great differences between (A,m)-isometries and
m-isometries, specially when A is not injective. For example, it is known [5]
that the spectrum of an m-isometry must either be a subset of the unit circle
or the entire closed unit disk. On the other hand, [10, Theorem 2.3] shows
that for any compact set K on the plane that intersects the unit circle, there
exist a non-zero positive operator A and an (A, 1)-isometry whose spectrum
is exactly K. The following question was asked in [10].

Question 1. Let T be an (A,m)-isometry on a finite dimensional Hilbert
space. Is it possible to write T as a sum of an A-isometry and a commuting
nilpotent operator?

In this paper, we shall answer Question 1 in the affirmative. Indeed, we
are able to prove a much more general result, in the setting of multivariable
operator theory.
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Gleason and Richter [20] considered the multivariable setting ofm-isometries
and studied their properties. A commuting d-tuple of operators T = [T1, . . . , Td]
is said to be an m-isometry if it satisfies the operator equation

m∑
k=0

(−1)m−k
(
m

k

) ∑
|α|=k

k!

α!
(Tα)∗Tα = 0. (1.1)

Here α = (α1, . . . , αd) denotes a multiindex of non-negative integers. We
have also used the standard multiindex notation: |α| = α1 + · · · + αd,
α! = α1! · · ·αd! and Tα = Tα1

1 · · ·T
αd
d . Note that 1-isometric tuples are

called spherical isometries. It was shown in [20] that the d-shift on the
Drury-Arveson space over the unit ball in Cd is d-isometric. This generalizes
the single-variable fact that the unilateral shift on the Hardy space H2 over
the unit disk is an isometry. Gleason and Richter also studied spectral prop-
erties of m-isometric tuples and they constructed a list of examples of such
operators, built from single-variable m-isometries. Many algebraic properties
of m-isometric tuples have been discovered by the author in an unpublished
work and independently by Gu [21]. As an application of our main result in
this note, we shall answer the following question in the affirmative.

Question 2. Let T be an m-isometric tuple acting on a finite dimensional
Hilbert space. Is it possible to write T as a sum of a 1-isometric S (that is,
a spherical isometry) and a nilpotent tuple N that commutes with S?

To state our main result, we first generalize the notion of (A,m)-isometric
operators to tuples. Let A be any bounded operator on H (we do not need
to assume that A is positive). A commuting tuple T = [T1, . . . , Td] is said to
be (A,m)-isometric if

m∑
k=0

(−1)m−k
(
m

k

) ∑
|α|=k

k!

α!
(Tα)∗ATα = 0. (1.2)

It is clear that (I,m)-isometric tuples (here I stands for the identity operator)
are the same as m-isometric tuples. We shall call (A, 1)-isometric tuples
spherical A-isometric. They are tuples T that satisfies

T ∗1AT1 + · · ·+ T ∗dATd = A.

A main result in the paper is the following theorem.
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Theorem 1.1. Suppose T is an (A,m)-isometric tuple on a finite dimen-
sional Hilbert space. Then there exist a spherical A-isometric tuple S and a
nilpotent tuple N commuting with S such that T = S + N.

In the case of a single operator, Theorem 1.1 answers Question 1 in the
affirmative. In the case A = I, we also obtain an affirmative answer to
Question 2.

2. Hereditary calculus and applications

Our approach uses a generalization of the hereditary functional calculus
developed by Agler [1, 2]. We begin with some definitions and notation. We
use boldface lowercase letters, for example x, y, to denote d-tuples of complex
variables. Let C[x,y] denote the space of polynomials in commuting variables
x and y with complex coefficients. Let A be a bounded linear operator on a
Hilbert space H and X, Y be two d-tuples of commuting bounded operators
on H. These two tuples may not commute with each other. We denote by
X∗ the tuple [X∗1 , . . . , X

∗
d ]. Let f ∈ C[x,y]. If

f(x,y) =
∑
α,β

cα,βx
αyβ,

where the sum is finite, then we define

f(A;X,Y) =
∑
α,β

cα,β(Xα)∗AYβ. (2.1)

It is clear that the map f 7→ f(A;X,Y) is linear from C[x,y] into (B(H))d.
If g ∈ C[x,y] depending only on x, then g(A;X,Y) = g(X∗)A. On the
other hand, if h ∈ C[x,y] depending only on y, then h(A;X,Y) = Ah(Y).
Furthermore, if F = g f h, then

F (A;X,Y) = g(X∗)f(A;X,Y)h(Y). (2.2)

If X = Y, we shall write f(A;X) instead of f(A;X,X). In the case A = I,
the identity operator, we shall use f(X,Y) to denote f(I;X,Y). Therefore,
f(X) denotes f(I;X,X). We say that X is a hereditary root of f if f(X) = 0.

Example 2.1. Define pm(x,y) =
(∑d

j=1 xjyj − 1)m ∈ C[x,y]. It is then
clear that T is m-isometric if and only if T is a hereditary root of pm, that
is, pm(T) = 0. Similarly, T is (A,m)-isometric if and only if pm(A;T) = 0.
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Even though the map f 7→ f(A;X,Y) is not multiplicative in general, it
turns out that its kernel is an ideal of C[x,y]. This observation will play an
important role in our approach.

Proposition 2.2. Let A be a bounded linear operator and let X and Y be
two d-tuples of commuting operators. Define

J(A;X,Y) =
{
f ∈ C[x,y] : f(A;X,Y) = 0

}
.

Then J(A;X,Y) is an ideal of C[x,y].

Proof. For simplicity of the notation, throughout the proof, let us write J

for J(A;X,Y). It is clear that J is a vector subspace of C[x,y]. Now let
f be in J and g be in C[x,y]. We need to show that gf belongs to J. By
linearity, it suffices to consider the case g is a monomial g(x,y) = xαyβ for
some multi-indices α and β. By 2.2,

(fg)(A;X,Y) = (Xα)∗ · f(A;X,Y) ·Yβ = 0,

since f(A;X,Y) = 0. This shows that fg belongs to J as desired.

If f is a polynomial of y in the form f(y) =
∑

α cαy
α, we define f̄(x) as

f̄(x) =
∑
α

c̄αx
α.

In the case A is positive and X = Y, we obtain an additional property of
the ideal J(A;Y,Y) as follows.

Proposition 2.3. Let A be a positive operator and Y be a d-tuple of com-
muting operators. Suppose f1, . . . , fm are polynomials of y such that the sum
f̄1(x)f1(y) + · · ·+ f̄m(x)fm(y) belongs to J(A;Y,Y). Then f1(y), . . . , fm(y)
also belong to J(A;Y,Y).

Proof. Note that f̄j(Y
∗) = (fj(Y))∗ for all j. By the hypotheses, we have

(f1(Y))∗Af1(Y) + · · ·+ (fm(Y))∗Afm(Y) = 0,

which implies

[(A1/2f1(Y)]∗[A1/2f1(Y)] + · · ·+ [A1/2fm(Y)]∗[A1/2fm(Y)] = 0.

It follows that for all j, we have A1/2fj(Y) = 0, which implies Afj(Y) = 0.
Therefore, fj(y) ∈ J(A;Y,Y) for all j.
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Recall that the radical ideal of an ideal J ⊂ C[x,y], denoted by Rad(J),
is the set of all polynomials p ∈ C[x,y] such that pN ∈ J for some positive
integer N . In the following proposition, we provide an interesting relation
between generalized eigenvectors and eigenvalues of X and Y whenever we
have f(A;X,Y) = 0.

Proposition 2.4. Let X and Y be two d-tuples of commuting operators.
Suppose k is a positive integer, λ = (λ1, . . . , λd), ω = (ω1, . . . , ωd) ∈ Cd and
u, v ∈ H such that

(Xj − λj)ku = (Yj − ωj)kv = 0

for all 1 ≤ j ≤ d. Then for any polynomial f ∈ Rad(J(A;X,Y)), we have

f(λ̄, ω)〈Av, u〉 = 0. (2.3)

Proof. We first assume that f ∈ J(A;X,Y). Using Taylor’s expansion, we
find polynomials g1, . . . , gd and h1, . . . , hd such that

f(λ̄, ω)− f(x,y) =
d∑
j=1

(xj − λ̄j)gj(x,y) +
d∑
j=1

hj(x,y)(yj − ωj).

Take any integer M ≥ 1 + 2d(k − 1). By the multinomial expansion, there
exist polynomials G1, . . . , Gd and H1, . . . , Hd such that

(
f(λ̄, ω)− f(x,y))

)M
=

d∑
j=1

(xj − λ̄j)kGj(x,y) +
d∑
j=1

Hj(x,y)(yj − ωj)k.

The left-hand side, by the binomial expansion, can be written as

(f(λ̄, ω))M + f(x,y)H(x,y)

for some polynomial H. Since f(A;X,Y) = 0, using Equation (2.2) and
Proposition 2.2, we conclude that

(f(λ̄, ω))M · A =
d∑
j=1

(X∗j − λ̄j)kGj(A;X,Y) +
d∑
j=1

Hj(A;X,Y)(Yj − ωj)k.
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Consequently,

(f(λ̄, ω))M〈Av, u〉

=
d∑
j=1

〈
Gj(A;X,Y)v, (Xj − λj)ku

〉
+

d∑
j=1

〈
Hj(A;X,Y)(Yj − ωj)kv, u

〉
= 0,

which implies (2.3).
In the general case, there exists an integer N ≥ 1 such that fN belongs to

J(A;X,Y). By the case we have just proved, (f(λ̄, ω))N〈Av, u〉 = 0, which
again implies (2.3). This completes the proof of the proposition.

Remark 2.5. In the case of a single operator, Proposition 2.4 provides a
generalization of [4, Lemmas 18 and 19]. Our proof here is even simpler and
more transparent.

Question 1 and Question 2 in the introduction concern operators acting
on a finite dimensional Hilbert space. It turns out that this condition can be
replaced by a weaker one. Recall that a linear operator T is called algebraic
if there exist complex constants c0, c1, . . . , c` such that

c0I + c1T + · · ·+ c`T
` = 0.

Algebraic operator roots of polynomials were investigated in [4].
We first discuss some preparatory results on algebraic operators acting on

a general complex vector space V. It is well known that if T is an algebraic
linear operator on V, then the spectrum σ(T ) is finite and there exists a direct
sum decomposition V = ⊕a∈σ(T )Va, where each Va is an invariant subspace
for T (the subspace Va is a closed subspace if V is a normed space and T is
bounded) and T − aI is nilpotent on Va. Indeed, if the minimal polynomial
of T is factored in the form

p(z) = (z − a1)m1 · · · (z − a`)m` ,

where a1, . . . , a` are pairwise distinct and m1, . . . ,m` ≥ 1, then σ(T ) =
{a1, . . . , a`} and Vaj = ker(T − aj)mj for 1 ≤ j ≤ `. See, for example, [32,
Section 6.3], which discusses operators acting on finite dimensional vector
spaces. However, the arguments apply to algebraic operators on infinite
dimensional vector spaces as well.
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Suppose now T = [T1, . . . , Td] is a tuple of commuting algebraic operators
on V. We first decompose V as above with respect to the spectrum σ(T1).
Since each subspace in the decomposition is invariant for all Tj, we again
decompose such subspace with respect to the spectrum σ(T2). Continuing
this process, we obtain a finite set Λ ⊂ Cd and a direct sum decomposition
V = ⊕λ∈ΛVλ such that for each λ = (λ1, . . . , λd) ∈ Λ and 1 ≤ j ≤ d, the
subspace Vλ is invariant for T and Tj−λjI is nilpotent on Vλ. Let Eλ denote
the canonical projection (possibly non-orthogonal) from V onto Vλ. Then we
have

∑
λ∈ΛEλ = I, E2

λ = Eλ, and EλEγ = 0 if λ 6= γ. Define

S =
∑
λ∈Λ

λ · Eλ =
[∑
λ∈Λ

λ1Eλ, . . . ,
∑
λ∈Λ

λdEλ

]
(2.4)

Then S is a tuple of commuting operators which commutes with T, and T−S
is nilpotent. For any multiindex α, we have

Sα = Sα1
1 · · ·S

αd
d =

∑
λ∈Λ

λαEλ.

In the case V is a normed space and T is bounded, each operator in the tuple
S is bounded as well.

We now prove a very general result, which will provide affirmative answers
to Questions 1 and 2 in the introduction.

Theorem 2.6. Let X and Y be two d-tuples of commuting algebraic opera-
tors on a Hilbert space H. Let U (respectively, V) be the commuting tuple
associated with X (respectively, Y) as in (2.4). Then

Rad(J(A;X,Y)) ⊆ J(A;U,V). (2.5)

Proof. Write X = [X1, . . . , Xd] and decompose H = ⊕λ∈ΛHλ such that for
each λ = (λ1, . . . , λd) ∈ Λ, the subspace Hλ is invariant for X and Xj − λjI
is nilpotent on Hλ. Let Uλ denote the canonical projection from H onto Hλ.
Then U =

∑
λ∈Λ λ · Uλ and for any multiindex α, we have

Uα =
∑
λ∈Λ

λα · Uλ.

Similarly, write Y = [Y1, . . . , Yd] and decompose H = ⊕ω∈ΩKω. Let Vω be
the canonical projection from H onto Kω. Then V =

∑
ω∈Ω ω · Vω and for

any multiindex β,

Vβ =
∑
ω∈Ω

ωβ · Vω.
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Take any polynomial p ∈ Rad(J(A;X,Y)). For λ ∈ Λ, ω ∈ Ω and vectors
u ∈ Hλ and v ∈ Kω, there exists an integer k ≥ 1 sufficiently large such that

(Xj − λjI)ku = (Yj − ωjI)kv = 0

for all 1 ≤ j ≤ d. Proposition 2.4 shows that p(λ̄, ω)〈Av, u〉 = 0, which
implies

p(λ̄, ω)U∗λAVω = 0.

Write p(x,y) =
∑

α,β cα,βx
αyβ. We compute

p(A;U,V) =
∑
α,β

cα,βU
∗αAVβ

=
∑
α,β

cα,β

(∑
λ∈Λ

λ̄αU∗λ

)
A
(∑
ω∈Ω

ωβ · Vω
)

=
∑

λ∈Λ,ω∈Ω

(∑
α,β

cα,βλ̄
αωβ

)
U∗λAVω

=
∑

λ∈Λ,ω∈Ω

p(λ̄, ω)U∗λAVω = 0.

We conclude that p ∈ J(A;U,V). Since p ∈ Rad(J(A;X,Y)) was arbitrary,
the proof of the theorem is complete.

Theorem 2.6 enjoys numerous interesting applications that we now de-
scribe.

Proof of Theorem 1.1. We shall prove the theorem under a more general
assumption that T is a tuple of commuting algebraic operators. Since T
is (A,m)-isometric, the polynomial (

∑d
j=1 xjyj − 1)m belongs to the ideal

J(A;T,T). It follows that the polynomial p(x, y) =
∑d

j=1 xjyj − 1 belongs
to the radical ideal of J(A;T,T). By Theorem 2.6, we may decompose T =
S + N, where N is a nilpotent tuple commuting with S and p(A;S,S) = 0,
which means that S is a spherical A-isometry.

Example 2.7. Recall that an operator T is called (m,n)-isosymmetric (see
[33]) if T is a hereditary root of f(x, y) = (xy − 1)m (x − y)n. Theorem 2.6
shows that any such algebraic T can be decomposed as T = S + N , where
N is nilpotent, S is isosymmetric (i.e. (1, 1)-isosymmetric) and SN = NS.
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Example 2.8. Several researchers [27, 9] have investigated the so-called
toral m-isometric tuples. It is straightforward to generalize this notion to
toral (A,m)-isometric tuples, which are commuting d-tuples T that satisfy∑

0≤α1≤m1
...

0≤αd≤md

(−1)|α|
(
m1, . . . ,md

α

)
(Tα)∗ATα = 0.

for all m1 + · · ·+md = m. Equivalently, T is a common hereditary root of all
polynomials of the form (1− x1y1)m1 · · · (1− xdyd)md for m1 + · · ·+md = m.
This means that all these polynomials belong to the ideal J(A;T,T). We
see that toral (A, 1)-isometries are just commuting tuples T such that each
Tj is an A-isometry, that is, T ∗j ATj = A. Note that for any toral (A,m)-
isometry T, the radical ideal Rad(J(A;T,T)) contains all the polynomials{

1 − xjyj : j = 1, 2, . . . , d
}

. Theorem 2.6 asserts that T = S + N, where S
is a toral (A, 1)-isometry and N is a nilpotent tuple commuting with S.

3. On 2-isometric tuples

It is well known that any 2-isometry on a finite dimensional Hilbert space
must actually be an isometry. On the other hand, there are many examples
of finite dimensional 2-isometric tuples that are not spherical isometries. The
following class of examples is given in Richter’s talk [31].

Example 3.1. If α = (α1, . . . , αd) ∈ ∂Bd and Vj : Cm → Cn such that∑d
j=1 αjVj = 0, then W = (W1, . . . ,Wd) with

Wj =

(
αjIn Vj

0 αjIm

)
defines a 2-isometric d-tuple.

The following result was stated in [31] without a proof and as far as the
author is aware of, it has not appeared in a published paper.

Theorem 3.2 (Richter-Sundberg). If T is a 2-isometric tuple on a finite
dimensional space, then

T = U⊕W,

where U is a spherical unitary and W is a direct sum of operator tuples
unitarily equivalent to those in Example 3.1.
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In this section, we shall assume that A is self-adjoint and investigate
(A, 2)-isometric d-tuples. We obtain a characterization for such tuples that
generalizes the above theorem. We first provide a generalization of Example
3.1. We call N = (N1, . . . , Nd) an (A, n)-nilpotent tuple if ANα = 0 for any
indices α with |α| = n.

Proposition 3.3. Assume that A is a self-adjoint operator. Let S be an
(A, 1)-isometry and N an (A, 2)-nilpotent tuple such that S commutes with
N. Suppose S∗1AN1 + · · ·+ S∗dANd = 0, then S + N is an (A, 2)-isometry.

Proof. By the assumption, we have ANjNk = N∗jN
∗
kA = 0 for 1 ≤ j, k ≤ d,∑d

j=1 S
∗
jASj = A, and

∑d
j=1 S

∗
jANj =

∑d
j=1N

∗
jASj = 0. It follows that

d∑
j=1

(Sj +Nj)
∗A (Sj +Nj) = A+

d∑
j=1

N∗jANj.

We then compute∑
1≤k,j≤d

(Sk +Nk)
∗(Sj +Nj)

∗A (Sj +Nj)(Sk +Nk)

=
d∑

k=1

(S∗k +N∗k )(A+
d∑
j=1

N∗jANj)(Sk +Nk)

=
d∑

k=1

(S∗k +N∗k )A (Sk +Nk) +
∑

1≤k,j≤d

(S∗k +N∗k )N∗jANj(Sk +Nk)

= A+
d∑

k=1

N∗kANk +
∑

1≤k,j≤d

S∗kN
∗
jANjSk

= A+
d∑

k=1

N∗kANk +
d∑
j=1

N∗j

( d∑
k=1

S∗kASk

)
Nj

= A+
d∑

k=1

N∗kANk +
d∑
j=1

N∗jANj

= A+ 2
d∑
j=1

N∗jANj
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= 2
d∑
j=1

(Sj +Nj)
∗A (Sj +Nj)− A.

Consequently, the sum S + N is an (A, 2)-isometric tuple.

Remark 3.4. We have provided a direct proof of Proposition 2.3. Using the
hereditary functional calculus and the approach in [26], one may generalize
the result to the case S being an (A,m)-isometry and N an (A, n)-nilpotent
commuting with S. Under such an assumption, if S∗1AN1 + · · ·+S∗dANd = 0,
then S + N is an (A,m + 2n − 3)-isometry. We leave the details for the
interested reader.

We now show that any algebraic (A, 2)-isometric tuple has the form given
in Proposition 3.3 and as a result, provide a proof of Richter-Sundberg’s
theorem.

Theorem 3.5. Assume that A is a positive operator. Let T be an algebraic
(A, 2)-isometric tuple on H. Then there exists an (A, 1)-isometric tuple S
and a tuple N commuting with S such that T = S+N,

∑d
`=1 S

∗
`AN` = 0, and

ANjN` = 0 for all 1 ≤ j, ` ≤ d (we call such N an (A, 2)-nilpotent tuple).
In the case H is finite dimensional and A = I, the identity operator, we

recover Theorem 3.2.

Proof. Recall that there exists a finite set Λ ⊂ Cd and a direct sum de-
composition H = ⊕λ∈ΛHλ such that for each λ ∈ Λ, the subspace Hλ is
invariant for T and Tj − λjI is nilpotent on Hλ. Let S be defined as in (2.4)
and put N = T−S. From the construction, N is nilpotent and Theorem 2.6
shows that S is (A, 1)-isometric. We shall show that N satisfies the required
properties.

Restricting on each invariant subspace Hλ, we only need to consider the
case H = Hλ and so S = λI. Proposition 2.4 asserts that (|λ|2−1)〈Av, u〉 = 0
for all v, u ∈ H. If |λ| 6= 1, then A = 0 and the conclusion follows. Now
we assume that |λ| = 1. Since N is nilpotent, there exists a positive integer
r such that ANα = 0 whenever |α| = r. We claim that r may be taken to
be 2. To prove the claim, we assume r ≥ 3 and show that ANα = 0 for all
|α| = r − 1.
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Since T = λI + N is (A, 2)-isometric, the tuple N is an A-root of the
polynomial

p(x,y) =
( d∑
j=1

(xj + λ̄j)(yj + λj)− 1
)2

=
( d∑
j=1

xjyj + λjxj + λ̄jyj

)2

.

On the other hand, N is an A-root of xα and yα for all |α| = r. This shows
that p(x,y), xα and yα belong to J(A;N,N) for all |α| = r. To simplify the
notation, we shall denote J(A;N,N) by J in the rest of the proof. Take any
multiindex β with |β| = r − 2. We write

xβp(x,y)yβ = xβ
( d∑
j=1

λjxj

)( d∑
`=1

λ̄`y`

)
yβ +

∑
|γ|≥r

xγ Hγ(x,y) +Gγ(x,y)yγ

for some polynomials Hγ and Gγ. Since the left-hand side and the second
term on the right-hand side belong to J, which is an ideal, we conclude that

xβ
( d∑
j=1

λjxj

)( d∑
`=1

λ̄`y`

)
yβ ∈ J.

Proposition 2.3 shows that both
(∑d

`=1 λ̄`y`

)
yβ and xβ

(∑d
j=1 λjxj

)
are in

J. Now for any multiindex γ with |γ| = r − 3, we compute

xγp(x,y)yγ = xγ
( d∑
j=1

xjyj
)2
yγ +

∑
|β|=r−2

xβ
( d∑
j=1

λjxj

)
Pβ(x,y)

+
∑
|β|=r−2

( d∑
j=1

λjxj

)
yβQβ(x,y).

Since the left-hand side and the last two sums on the right-hand side belong
to J, it follows that xγ(

∑d
j=1 xjyj)

2yγ belongs to J. Another application of
Proposition 2.3 then shows that yjy`y

γ belongs to J for all 1 ≤ j, ` ≤ d. That
is, yα belongs to J whenever |α| = r−1 (as long as r ≥ 3). As a consequence,
we see that yα, and hence xα, belong to J for all |α| = 2. This together with
the fact that p(x,y) ∈ J forces (

∑d
j=1 λjxj)(

∑d
`=1 λ̄`y`) to belong to J, which

implies that
∑d

`=1 λ̄`y` is in J. We have then shown ANjN` = 0 for all

1 ≤ j, ` ≤ d and
∑d

`=1 S
∗
`AN` =

∑d
`=1 λ̄`AN` = 0, as desired.

13



Now let us consider T a 2-isometric tuple on a finite dimensional space
H. Recall that we have the decomposition H = ⊕λ∈ΛHλ such that for each
λ ∈ Λ, the subspace Hλ is invariant for T and Tj − λjI is nilpotent on
Hλ. By Proposition 2.4, we have (〈ω, λ〉 − 1)2〈v, u〉 = 0 for all v ∈ Hω and
u ∈ Hλ. It follows that |λ| = 1 for all λ ∈ Λ and Hλ ⊥ Hω whenever
λ 6= ω. As a result, each subspace Hλ is reducing for T. To complete the
proof, it suffices to consider H = Hλ. We shall show that either T is a
spherical unitary or it is unitarily equivalent to a tuple given in Example
3.1. Indeed, we have T = λI + N, where

∑d
`=1 λ̄`N` = 0 and NjN` = 0 for

all 1 ≤ j, ` ≤ d. If N = 0, then T is a spherical unitary. Otherwise, let
M = ker(N1) ∩ · · · ∩ ker(Nd). Then N`(H) ⊆ M for all 1 ≤ ` ≤ d. As a
consequence, with respect to the orthogonal decomposition H = M ⊕M⊥,
each N` has the form

N` =

(
0 V`
0 0

)
for some V` : M⊥ → M. Since

∑d
`=1 λ̄`N` = 0, we have

∑d
`=1 λ̄`V` = 0. It

follows that T is unitarily equivalent to an operator tuple in Example 3.1.
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