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1. Introduction

Quantum topology/algebra has developed over the last few decades since the discovery of
Jones polynomial [J]. Later in 1988 E. Witten invented the notion of a topological quantum
field theory(TQFT) and related the Jones polynomial to a 2-dimensional modular functor
arising in conformal field theory [Wi1, Wi2]. Quantum topology/algebra is closely related
to representation theory of quantum groups [K], theory of von Neumann algebra, condensed
matter physics, and topological quantum computation [Wa].
The fundamental notions are modular tensor category(MTC) and TQFT. MTCs provide

the algebraic data to build up TQFTs from which one obtains invariants of 3-manifolds,
namely quantum invariants [Tu1]. In this sense, the study of MTC is more or less equivalent
to the study of TQFT. So the classification of MTCs is an interesting and important subject
in both of algebraic and topological point of view. MTCs are also used to describe anyonic
properties of certain quantum systems and topological quantum computing is encoded by
braiding non-abelian anyons, in which sense MTCs also form the algebraic base of topological
quantum computation [FKLW].
I am working on a classification of MTCs and more generally fusion categories. I am also

studying a generalized version of Yang-Baxter operator in the connection of this operator to
braid group representations, link invariants, and the structure of ribbon categories.

2. Classification of fusion categories

A Fusion category is a tensor category with certain conditions [BK, ML], among them
pentagon axioms(a.k.a. Elliott-Biedenharn identity) (idx ⊗αy,z,w) ◦ αx,yz,w ◦ (αx,y,z ⊗ idw) =
αx,y,zw ◦ αxy,z,w allows associativity on tensor products and reduces the number of fusion
categories to exist on any given set of fusion rules. MTC is a fusion category with additional
structures such as braiding, twist, and non-degeneracy of S-matrix.

2.1. Classification by solving pentagon equations. In most cases, it often takes a long
time to solve pentagon equations. However once one has all pentagon solutions in hands,
many of the other structures can be obtained relatively quickly. My work [HH] with T.
Hagge was done by doing so. Based on the pentagon solutions we completely classified fusion
categories on a specific set of fusion rules, and which would complete the classification of rank
3 fusion categories if a conjecture of V. Ostrik is true [O2]. Furthermore, this work was the
first classification on the fusion rules with multiplicity > 1.
The pentagon solutions which appeared in [HH] were used again in the construction of a

MTC by the so called quantum double construction [M] (a.k.a. Drinfeld center) in [HRW].
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Figure 1. Pentagon Axiom

In the paper we studied two MTCs which are believed to be exotic in a certain sense. I
have solved pentagon equations for a few other categories as well. Pentagon solutions for
the category SO(N)2 were used to construct a family of generalized Yang-Baxter operators in
[H2]. A category of rank 10 was considered in [BGHKNNPR] and my pentagon solutions were
used to show the existence and some structures of the category. Another pentagon solution
appears in [CHW], where we consider a universal quantum computation and the main example
is the quantum double of S3.

2.2. Classification of MTCs of low rank. Despite a great progress, there is no complete
classification of fusion categories yet. One feasible approach is doing it upon rank which is
the number of simple objects. Until 2009, classification of MTCs had been done for rank 2,
3, and 4 [CP, O1, O2, RSW] (Recently a progress has been made in this direction [BNRW]).
As the rank grows up, classification becomes much more challenging in the full generality. It
was why E. Rowell and I imposed another constraint, non-self-dual condition, for the next
case, rank 5. Each simple object has its dual object which is automatically simple again.
We considered (pseudo-unitary) MTCs of rank 5 for which some object is not isomorphic to
its dual. As a result there would be at least two distinct simple objects that are dual to
each other. This condition induces more symmetries in S-matrix, called the Galois symmetry
[CG, RSW], and thus reduces the number of possibilities to be considered. We applied the
Galois symmetry and developed a symbolic computational approach to obtain a complete
classification of such MTCs of rank ≤ 5 [HR].

2.3. Classification of (weakly) integral MTCs. Frobenius-Perron dimension is defined
for each object and for each category. A fusion category is said to be integral if the dimension
is integer valued for all simple objects. If the dimension of category is an integer, we call the
category weakly integral. Group-theoretical categories are obtained from finite groups and
well-understood. Many integral MTCs are known to be group-theoretical. Indeed, any integral
MTC of dimension pn, pq, pqr, pq2 or pq3 is group-theoretical [EGO, DGNO, NR, GNN].
On the other hand, examples of non-group-theoretical integral MTCs of dimension 4q2 were
considered [GNN, NR].
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In [BGHKNNPR], we classified integral MTCs of dimension pq4 and p2q2. We applied some
general results concerning the structure of integral MTCs such as universal grading, pointed
subcategory, and centralizer of subcategory. We showed that integral MTCs of dimension
pq4 or odd p2q2 are all group-theoretical. We also classified non-group-theoretical ones of
dimension 4q2. Among those categories, some categories of dimension 36 were new.

2.4. Project on classification of fusion categories. As stated above (pseudo-unitary)
MTCs of rank at most 5 have been classified and integral MTCs have been done upon several
Frobenius-Perron dimensions. A rank-wise approach to classifying (weakly) integral MTCs
is also interesting. Currently I am working on this project for categories of low rank. In
particular we are looking at strictly weakly integral categories which are weakly integral but
not integral. Thus the Frobenius-Perron dimension of at least one object is equal to square root
of an integer for some square-free integer. In such a case one may apply another structural
tool, so called the Gelaki-Nikshych grading. This project is also related to a conjecture
concerning the image of braid group representation (see section 3.1 below).

3. Representation of braid groups and invariants of links

Topological quantum computation is realized based on topological phases of matter. In-
formation is stored in anyonic systems and processed by braiding non-abelian anyons. It is
believed that this model is inherently fault tolerant [FKLW, Wa]. Inspired by topological
quantum computation, I studied representation of braid groups and related topics such as
Yang-Baxter operators(YB-operators) and invariants of links.
A YB-operator R : V ⊗2 → V ⊗2 is a solution to the (quantum) Yang-Baxter equation

(R ⊗ idV )(idV ⊗R)(R ⊗ idV ) = (idV ⊗R)(R ⊗ idV )(idV ⊗R). It is well known that each YB-
operator gives rise to a representation of braid groups in a natural way.

3.1. Localization of representation of braid groups. The localization problem lies on a
connection between two different sources of braid group representations: one is associated to
a YB-operator R via σi 7→ id⊗i−1

V ⊗R⊗ id⊗n−i−1
V and the other is to a braided category using

the braiding structure. The former representation is explicitly local. E. Rowell and Z. Wang
studied the connection between such two methods and examined whether or not it is possible
to have an equivalence between two representations. They called it a localization and showed
that certain unitary Jones representation is localizable by a unitary 9× 9 R-matrix [RW].
In [GHR] we extended the above result in two directions: one is generalized–localization

and the other quasi–localization. My contribution to this work is limited to the generalized–
localization for which we considered generalized YB-operators R : V ⊗k → V ⊗k, k ≥ 2 (gYB-
operators) which satisfy generalized Yang-Baxter equation and additionally a far-commutativity
condition (see Figure 2). One of the motivations of this consideration is that certain repre-
sentation of braid groups is not localizable by ordinary YB-operators while it is localizable
by a gYB-operator. Such an example is explicitly discussed in the paper. The main result
is that if a representation obtained from an object of a braided category is localizable by a
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Figure 2. Each strand stands for a vector space V . Upper diagrams are (a) Yang-Baxter equation
and (b) its generalized version for k = 3. Lower diagrams are far-commutativity. (a) Ordinary YB-operator
trivially satisfies the far-commutativity, while (b) gYB-operator does not so automatically since two operators
possibly act on the same tensor factor.

gYB-operator then the Frobenius-Perron dimension of the object is a square root of integer.
This is a partial proof of a conjecture that the conditions are indeed equivalent.

3.2. gYB-operators and invariants of links. In 1988 V. Turaev introduced a notion
of enhanced YB-operator and from which he constructed invariants of links [Tu2]. This
construction is based on the Alexander’s theorem: Every link can be obtained by closing
some braids. The invariant is obtained essentially from the trace of braid image under the
representation associated to a YB-operator. The trace itself however does not directly give
rise to an invariant of links because there are infinitely many braids whose closures are all
isotopic to the given link. Such braids are related by Markov moves β 7→ βσ±1

n , β 7→ η−1βη

where β, η ∈ Bn and thus the trace needs to be normalized in a certain way to be preserved
under Markov moves (see Figure 3). Enhancement comes up in this context.

(σ1)3 ∈ B2

closure

Trefoil knot

=

(σ1)3σ2 ∈ B3

η−1

η

η−1(σ1)3η ∈ B2

or
closure

Figure 3. Upper diagram is an example of Alexander’s theorem (braid closure). Lower diagram illus-
trates Markov moves for the same example. The two braids are obtained from (σ1)3 by applying each of
Markov moves and result in the same link which is Trefoil knot in this example.
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In [H1] I extended the enhancing method to gYB-operators. However, Turaev’s definition
does not generalize immediately: there is a somewhat subtle orthogonality condition that
must be satisfied in the definition of enhanced gYB-operators. This modification is indeed
unavoidable because none of the known examples of gYB-operators can be enhanced otherwise.
The essential part lies in the Markov moves again and I was able to enhance all known examples
upon the definition. Resulting link invariants were discussed and identified as specializations
of either HOMFLY-PT or Kouffman polynomials.
Far-commutativity of gYB-operators is highly nontrivial and there had been only few ex-

amples known until 2012 [RZWG, GHR, Ch]. Following the idea in [KW] I constructed a new

family of gYB-operators from ribbon categories SO(N)2 [H2]. These operators act on V ⊗3

for a 2-dimensional vector space V , and thus are given by 8× 8 matrices with the parameter
N in them. Furthermore I addressed the following question: One may consider two different
approaches to link invariant, one is directly from a ribbon category and the other from a
gYB-operator. If a gYB-operator is obtained from a ribbon category, then would the two
resulting link invariants be necessarily equivalent? The answer is YES. The essential part is
that the enhancement comes canonically from the twist structure in the ribbon category.

3.3. Project on representation of the loop braid groups. The loop braid group LBn

is the motion group of n loops within a 3-dimension and directly related to 4d-BF theory,
describing exotic statistics of string-like defects [BWC]. There are two types of motions: one
is an exchange of two adjacent loops, and the other is passing one loop through another. We
note that the motions of the first type satisfy the braid relation and form the braid group
Bn ⊂ LBn. Therefore one may obtain representation of loop braid groups by lifting that
of braid groups. Based on the result by I. Tuba and H. Wenzl [TW], we are considering a
classification of representations of LB3 for dimension ≤ 5. Also we are looking at the images
of those representations and trying to identify those which have finite images.
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