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Abstract

In this paper we construct a degeneration of Bott-Samelson-Demazure-Hansen

varieties to toric varieties in an algebraic family and study the geometry of the

resulting toric varieties. We give a natural set of torus invariant curves that gener-

ate the Chow group of 1-cycles of the limiting toric variety and express the ample

cone of this toric variety as a sub-cone of the ample cone of the corresponding

Bott-Samelson-Demazure-Hansen variety. We also give a description of Extremal

and Mori rays and determine when this toric variety is Fano.

1 Introduction

Let G be an almost simple, simply connected, affine algebraic group defined

over an algebraically closed field k of arbitrary characteristic. Let B be a

Borel subgroup of G. Then G acts from the left on the flag variety G/B. The
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B-invariant closed subvarieties of G/B are called Schubert varieties. Every

Schubert variety is uniquely represented by an element of the Weyl group.

After choosing a reduced expression for Weyl group elements as product of

simple reflections, one constructs certain smooth birational modifications of

the corresponding Schubert varieties. These desingularizations used to be

called as Bott-Samelson varieties and the constructions were first described

by Demezure and indepently by Hansen ([J], Chapetr 13, page 353). These

constructions (cf. [D] or [J]) extend naturally to any given sequence of simple

reflections. The resulting varieties are referred as Bott-Samelson-Demazure-

Hansen varieties. We often abbreviate this long name and call these as BSDH

varieties.

For k = C, the field of complex numbers, the authors Grossberg and

Karshon (cf. [GK]) obtained a family of complex structures on BSDH variety

as differentiable manifold which degenerate to a different complex structure,

with resulting manifold having a toric variety structure. We give an algebraic

degeneration by constructing a smooth family of varieties parametrised by

the affine line with general fibre isomorphic to the BSDH variety and the

special fibre isomorphic to a smooth toric variety (cf. Section 3).

In another direction it may be desirable to obtain degenerations of Schu-

bert varieties using the degenerations of their BSDH resolutions. Using

Standard Monomial basis Gonciulea and Lakshmibai [GL] degenerated Flag

varieties and some Schubert varieties to toric varieties. Later Caldero [C]

had constructed degeneration of Schubert varieties into toric varieties using

Lusztig’s canonical basis.

Lauritzen and Thomsen have given an ampleness criterion for line bun-

dles on these BSDH varieties (cf. [LT], Theorem 3.1). In fact they gave a

set of line bundles and showed that the ample cone is the strict positive cone

generated by these line bundles (cf. section 7). Here we describe the ample

cone of the toric variety. We also give a necessary and sufficient condition
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for the anti canonical bundle to be ample, i.e. whether this toric variety is a

Fano variety.

The paper is arranged as follows. In section 2 we fix some notations and

recall some basic results. The main observation here is the relation between

the self intersection number of a BSDH surface constructed using two sim-

ple reflections and the pairing between the corresponding roots (Lemma 3).

Section 3 is devoted to obtain the degeneration of BSDH variety to a toric

variety in an algebraic family (Theorem 9). In section 4 we study the Chow

group of cycles of dimension 1 (curves) of the limiting toric variety. We label

certain torus invariant curves and obtain some basic relation between them

(Proposition 17, Remark 21). In section 5, we obtain a basis for the Chow

group of one cycles of the limiting toric variety such that all torus invarian

curves are non negative linear combination of elelments of this basis (The-

orem 22). We also give two algorithms to find these torus invariant curves

(Lemmas 23 and 24). In section 6 we study the Extremal rays and Mori

rays and describe them completely in the limiting toric variety (Theorem 30,

Theorem 35). The last section deals with description of the ample cone of

these toric varieties as a subcone of the ample cone of the corresponding

BSDH variety (Theorem 39).

2 Preliminaries

Let G be an almost simple, simply connected, affine algebraic group defined

over an algebraically closed field k of arbitrary characteristic. Fix a maximal

torus T ⊂ G. Then the Weyl group is defined as N(T )/T , where N(T ) is

the normaliser of T in G. If we denote the character group of T by X(T ),

then the Weyl group W has a faithful representation on the real vector space

X(T )⊗ R. Let ( , ) be a non-degenerate W invariant pairing on X(T )⊗ R.

Let S, Φ+, Φ− ⊂ X(T ) be simple roots, positive roots and negative roots
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respectively. Let Uα be the root subgroup corresponding to the root α and B

be the Borel subgroup of G generated by the root subgroups corresponding

to the negative roots and maximal torus T. Let α∨ := 2α
(α,α)

be the co-root

of α. For a given simple root α ∈ S, let sα denote the simple reflection

on X(T ) ⊗ R defined by sα(x) = x − (x, α∨)α. Then W is generated by

{sα | α ∈ S}. For a simple root α, the minimal parabolic subgroup Pα is

defined to be the subgroup generated by B and the root subgroup Uα. The

fundamental weight corresponding to the simple root α is denoted by ωα.

Recall the following well-known description of parabolic subgroups of G.

Let ξ : Gm −→ G be a one parameter subgroup of G. Define a Gm-action on

G by x ∗ g = ξ(x)gξ(x)−1. Then we have the following (cf. [S] p. 148):

Lemma 1.. The set P (ξ) := {g ∈ G | limx→0 x ∗ g exists} is a parabolic

subgroup and the unipotent radical Ru(P (ξ)) of P (ξ) is given by

{g ∈ G | limx→0 x ∗ g = identity}.

Moreover any parabolic subgroup of G is of the form P (ξ) for some ξ :

Gm −→ G. ♦

We fix a ξ : Gm −→ T once and for all such that B = P (ξ) and the

unipotent radical BU of B is {g ∈ G | limx→0 x ∗ g = identity }. Then we

have the following:

Lemma 2.. Let A := spec k[t] denote the affine line over k. Define a family

of homomorphisms φx : B → B parametrised by x ∈ A as follows:

φx(b) = ξ(x)bξ(x)−1 if x 6= 0 and φ0(b) = lim
x→0

ξ(x)bξ(x)−1

Then φx is an automorphsm for x 6= 0 and φ0 is the natural Levi projection

B → T with unipotent radical BU of B as the kernel. ♦

Let w = (s1, s2, · · · , sm) be a sequence of simple reflections, where m is

any positive integer. Each simple reflection sj is defined by a simple root,
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say αj. We call m the length of the sequence and we denote it by l(w).

Length of an empty sequence is defined to be 0. Note that this lenth is

just the number of terms in the sequence. We also have a lenth function

on the Weyl group W . Every element w of W can be written as a product

of simple reflections, w = sj1sj2 · · · sjr . If w can not be written as of less

than r number of simple reflections then this expression is called a reduced

expression and r is called the the length of w. We have a natural map from

(finite) sequences of simple relfections to the the Weyl group W . This maps

a sequence w = (s1, s2, · · · , sm) to the element w = s1s2 · · · sm. But this

representation may not be reduced and hence the length of the sequnce w

may not be equal to the length of the corresponding Weyl group element w.

A sequence of integers I = (i1, · · · , ir) is called m-admissible if 1 ≤
i1 < i2 < · · · < ir ≤ m. The entries i1 and ir of I = (i1, · · · , ir) are

called initial and final entries respectively. Define the subsequence wI of

w = (s1, s2, · · · , sm) for every m-admissible sequence I = (i1, · · · , ir) by

wI := (si1 , · · · , sir). For 0 ≤ r ≤ m we define the truncated m-admissible

sequences I[r] := (1, 2, · · · , r) and [r]I := (r + 1, r + 2, · · · ,m), we denote

the corresponding subsequence of simple reflections wI[r] and w[r]I by w[r]

and [r]w respectively. Note that I[0] = [m]I is the empty sequnce of integers

and w[m] = w = [0]w and [m]w = w[0] is the empty sequence of simple

reflections.

Let Pw and Bw denote the products P1 × · · · × Pm and B × · · · ×B (m

copies) respectively, where Pj denotes the minimal parabolic subgroup Pαj
.

The Bott-Samelson-Demazure-Hansen (BSDH) variety, Zw, is defined ( see

Definition 5 and Definition 7 below for a twisted version) as the quotient

Zw :=
P1 × P2 × · · · × Pm
B ×B × · ×B

=
Pw

Bw

5



where the Bw acts on Pw from the right as follows:

(p1, p2, p3 · · · pm)(b1, b2, b3 · · · bm) = (p1b1, b
−1
1 p2b2, b

−1
2 p3b3 · · · b−1m−1pmbm)

The BSDH variety also has the following inductive geometric construc-

tion. The induction is on the length of the sequence w = (s1, s2, · · · , sm). We

construct the BSDH variety Zw[r] and a map fr : Zw[r] −→ G/B inductively

for all 0 ≤ r ≤ m.

When l(w) = 0 i.e. w = w[0], we define the corresponding BSDH

variety to be the unique B fixed point, the identity coset eB, of G/B. The

map f0 : Zw[0] −→ G/B is the inclusion.

When the l(w) = 1 i.e. w = w[1] = s1, we define the corresponding

BSDH variety Zw[1]
∼= P1/B as the fiber product Zw[0] ×B/P1 G/B Ob-

serve that our construction gives the BSDH variety Zw[1] with the map

f1 : Zw[1] −→ G/B, the projection ψ1 : Zw[1] −→ Zw[0], and the section

σ0 : Zw[0] −→ Zw[1].

Suppose the BSDH variety Zw[r] together with a map fr : Zw[r] −→ G/B

is already constructed. Now the fiber product Zw[r]×B/Pr+1 G/B defines the

BSDH variety Zw[r+1] and the map fr+1 and ψr+1 are canonical projections.

A section σr to this projection ψr+1 is equivalent to giving a lift of the

map Zw[r] −→ G/Pr+1 to G/B. Our inductive procedure already provided

us such a map, fr (see diagram below).

Zw[r+1]
fr+1 //

ψr+1

��

G/B

πr+1

��

�

Zw[r]

σr

HH

πr+1◦fr // G/Pr+1

In summary, we have indcutively constructed the following:
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i) The BSDH variety Zw[r] with the map fr : Zw[r] −→ G/B, for all r.

ii) The projection ψr : Zw[r] −→ Zw[r−1], for 1 ≤ r ≤ m.

iii) The section σr : Zw[r] −→ Zw[r+1], for 0 ≤ r ≤ m− 1.

The next two Lemmas appear in [[K], Lemma 3(a), Lemma 2(3)] in

slightly different notations. Since these Lemmas are crucial for our compu-

tations we give a proof of one of these lemmas for the convenience of the

reader.

Lemma 3.. Let u = (s1, s2) be a sequence of simple reflections. Then the

self intersection number of the section σ1(Zs1) in the surface Zu is (α2, α
∨
1 ).

By abuse of notation we sometimes denote this number (α2, α
∨
1 ) by (2, 1).

Proof: The self intersection number of the section σ1(Zs1) in the surface Zu

is by definition the degree of the normal bundle Nσ1(Zs1 )/Zu . But the normal

bundle of a section in a fibration can be identified with the restriction of the

relative tangent bundle. Since this fibration is a fibre product of Zs1 → G/P2

with the natural fibration π2 : G/B → G/P2, the relative tangent bundle is

the pull back of the relative tangent bundle of π2

Zs2

��

P2/B

��
Zu

f //

ψ2

��

G/B

π2
��

Zs1

σ1

DD

// G/P2

Now the relative tangent bundle of π2 is canonically identified with Lα2 ,

the line bundle on G/B associated to the character α2. Hence it suffices to

prove that the degree of Lα2 restricted to f(σ1(Zs1)) is (α2, α
∨
1 ), as f defines

an embedding. In fact f(σ1(Zs1)) = P1/B ⊂ G/B.
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Using Part II, Proposition 5.2 of [J], we obtain the individual cohomology

groups of the restriction of Lλ for any character λ on P1/B, which in turn

determine the line bundle. The Lemma will then follow by substituting the

character α2 for λ.

Proposition 5.2 (b) implies when (λ, α∨1 ) = −1 then H i(P1/B, Lλ) = 0

for all i ≥ 0, hence Lλ |P1/B is isomorphic to OP1/B(−1), whose degree is

−1 = (λ, α∨1 ),

Proposition 5.2 (c) implies when (λ, α∨1 ) ≥ 0, then H1(P1/B, Lλ) = 0

and H0(P1/B, Lλ) has dimension (λ, α∨1 ) + 1. Hence the line bundle Lλ |P1/B

is OP1/B((λ, α∨1 )).

Proposition 5.2 (d) implies when (λ, α∨1 ) ≤ −2, then H0(P1/B, Lλ) = 0

and H1(P1/B, Lλ) has dimension−(λ, α∨1 )−1. Hence the line bundle Lλ |P1/B

is OP1/B((λ, α∨1 )). ♦

In fact the proof provides a more general result. Consider the following

diagramme with natural maps

Zsr+1

��

Pr+1/B

��
Zw[r+1]

fr+1 //

ψr+1

��

G/B

πr+1

��
Zw[r]

σr

EE

//

fr
99tttttttttt
G/Pr+1

then we have:

Lemma 4.. The relative tangent bundle of ψr+1 is f ∗r+1(Lα), where Lα is the

line bundle on G/B associated to the character α, and α is the simple root

corresponding to sr+1. ♦
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3 Construction of the Degeneration

Consider a sequence w = (s1, s2, · · · , sm) of simple reflections. Let B denote

B × A and Pj denote Pj × A for 1 ≤ j ≤ m. Then Bw = B ×A B · · · ,×AB =

Bw×A and Pw = P1×BP2 · · ·×BPm = Pw×A. Both Bw and Pw are group

schemes over A.

Definition 5.. Define the following twisted action of Bw on Pw over A as

follows:

[(p1, p2, · · · , pm), x] · [(b1, b2, · · · , bm), x]

= [(p1 b1, φx(b1)
−1p2b2, · · · , φx(bm−1)−1pmbm), x]

where φx : B → B is the family of homomorphisms defined in Lemma 2.

Lemma 6.. The action of Bw on Pw over A is free.

Prooof: Recall that an action σ : G×S X −→ X of a group scheme G over

a scheme S on a Scheme X over S is said to be free if the map (σ, π2) :

G×S X −→ X ×S X is a closed immersion. [[MFK], Page 10].

We show the map Pw ×A Bw −→ Pw ×A Pw is injective.

Suppose

((p1, p2, · · · , p3) · (b1, b2, · · · , bm), (p1, p2, · · · , pm)) ‘

= ((p′1, p
′
2, · · · , p′m) · (b′1, b′2, · · · , b′m), (p′1, p

′
2, · · · , p′m))

over a point x. Then p1 = p′1, p2 = p′2, · · · pm = p′m, and (refer Definition

5) p1b1 = p1b
′
1, φx(b1)

−1p2b2 = φx(b
′
1)
−1p2b

′
2, φx(b2)

−1p2b3 = φx(b
′
2)
−1p2b

′
3,

· · · , φx(bm−1)
−1pmbm = φx(b

′
m−1)

−1pmb
′
m. Which successively implies b1 =

b′1, b2 = b′2, · · · bm = b′m. Using the fact that the B orbits in Pi are closed

embedding, one can show that the map Pw×A Bw −→ Pw×APw is a closed

immersion. ♦
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Definition 7.. Since the action of Bw on Pw over A is free, the quotien

Zw = Pw/Bw exists as an algenraic space over A [[KM], Theorem 1.1]. Let

π : Zw −→ A denote the defining morphism.

Remark 8.. Note that the projection Pw[r] → Pw[r−1] is equivariant for the

actions of Bw[r] and Bw[r−1] on Pw[r] and Pw[r−1] respectively. Hence this

projection descend to give a morphism of the quotient spaces ψr,A : Zw[r] −→
Zw[r−1],. It is a Pr/B fibration. There is also a section σr,A : Zw[r] ↪→ Zw[r+1]

to the projection ψr+1,A induced by the inclusion

Pw[r] ∼= P1 × P2 × . . .× Pr × {1} × A ↪→ P1 × P2 × . . .× Pr+1 × A = Pw[r+1]

Now we describe a scheme structure on the algebraic space Zw.

Theorem 9.. The morphism π : Zw −→ A has the following properties:

1. π is a smooth projective morphism

2. The fiber over 1, Z1
w := π−1(1) is the BSDH variety Zw and Zxw :=

π−1(x) is isomorphic to Zw for x 6= 0

3. Z0
w := π−1(0) is a smooth toric variety.

Proof of (1) We construct A schemes Yi and smooth morphisms ψi,A :

Yi/B −→ Yi−1/B, and sections σi−1,A : Yi−1/B −→ Yi/B for i = 1, 2, · · · ,m
inductively. Set Y0 = B, Y1 = P1 and ψ1,A is the defining morphism from

Zw[1] = P1/B −→ A. For i ≥ 2, define

Yi := Yi−1 ×B Pi

where the B action is defined by (y, p)·b = (yb, φx(b)
−1p) for y ∈ Yi−1, p ∈ Pi,

b ∈ B, and x ∈ A . There is still an action of B (in fact Pi) on Yi coming

from right multiplication on Pi and Yi/B ∼= Zw[i]. Note that the Pi action

is free and Yi/Pi ∼= Zw[i−1]. In fact, the scheme Yi is a principal Pi bundle

over Zw[i−1].
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We define ψi,A to be the composite of the following maps

ψi,A : Zw[i] = Yi/B −→ Yi/Pi ∼= Yi−1/B = Zw[i−1]

The map sending y to the class [y, 1] from Yi−1 to Yi descend to give

σi−1,A : Yi−1/B −→ Yi/B

Since G is simply connected group, there exists an irreducible rank 2

representation Vi of Pi which trivially extends over the base A to Pi. This

gives rise to a rank 2 vector bundle Vi on Zw[i−1] such that the B quotient

Yi/B ∼= Zw[i] is cannonically isomorphic to P(Vi). We get the following

diagramme:

Zw[i]

ψi,A
��

∼= // P(Vi)

zzuuuuuuuuu

Zw[i−1]

Since each ψi,A is smooth proper morphism as it is isomorphic to the

projective bundle of a vector bundle, the composition π = ψm,A ◦ ψm−1,A ◦
· · · ◦ ψ1,A is a smooth projective morphism.

Proof of (2): For x 6= 0, consider the map fx : P1 × . . .× Pm −→ P1 × . . .×
Pm given by fx((p1, . . . , pm)) = (p1, ξ(x) · p2, . . . , ξ(x) · pm), where ξ(x) · pi
is the multiplication in Pi. We show that this is a Bw equivarient map:

fx((p1, p2 . . . pm)·(b1, b2 . . . bm)) = fx((p1b1, φx(b1)
−1p2b2 . . . φx(bm−1)

−1pmbm))

= (p1b1, ξ(x)φx(b1)
−1p2b2 . . . ξ(x)φx(bm−1)

−1pmbm) (Refer Lemma 2 for φx)

= (p1b1, b
−1
1 ξ(x)p2b2 . . . , b

−1
m−1ξ(x)pmbm)) = fx((p1, p2 . . . pm)) · (b1, b2 . . . bm)

ThisBw equivarient isomorphism descends to give a well defined isomorphism

fx : Zw −→ Zxw. Note that the map f1 is the identity map. Which proves

the claim Z1
w = Zw.

Proof of (3):
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Note that Z0
w[i] can also be viewed as

Z0
w[i] = Y0

i−1 ×B (Pi/B)

where B acts on Pi/B via its projection to the maximal torus T . We observe

that the action of the maximal torus T on Pi/B factors through the action

of the multiplicative group on the projective line Pi/B via the character αi.

We denote this quotient of T by Ti. We define Tw[r] := T1 × · · · × Tr, for all

1 ≤ r ≤ m. Then one see that the action of T × · · · × T on Z0
w[i] factors

through Tw[i].

For i ≥ 2, consider the principal B-fibration Y0
i−1 −→ Y0

i−1/B = Z0
w[i−1].

Let Ei := Y0
i−1 ×B Ti) −→ Z0

w[i−1] be the principal Ti bundle obtained using

the associated construction with the quotient homomorphism B → Ti. Then

Ei is a Tw[i] variety with Ei −→ Z0
w[i−1] is a Tw[i−1] equivariant map. Then

we have

Z0
w[i] = Y0

i−1 ×B Pi/B = (Y0
i−1 ×B Ti)×Ti Pi/B = Ei ×Ti Pi/B

Now the Theorem follows as Z0
w[i] has a dense open orbit for the action

of Tw[i−1] × Ti ∼= Tw[i]. Hence Z0
w[i] is a smooth toric variety. ♦

Notice that Pr+1/B has two Tr+1-fixed points, one is the B-fixed point

called the Schubert point and the other called non-Schubert point. These give

rise to two sections

σ0
r , σ

1
r : Z0

w[r] → Z0
w[r+1]

The section σ0
r corresponding to the B-fixed point is called a Schubert section

which is the restriction of the section σr,A to the special fibre. The other Tr+1

fixed point of Pr+1/B gives the other section σ1
r disjoint from the Schubert

section. This section will be called non-Schubert section.

The point σ0,A(x) ∈ (P1/B)x ∼= Zxw[1] is called the Schubert point in

Zxw[1] The Schubert point of Zxw[r] is defined inductively as the image of the

Schubert point under the Schubert section, σr−1,A |Zx
w[r−1]

.
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A Schubert line in Z0
w[r] is defined to be any Tw[r]-invariant curve contain-

ing the Schubert point. More generally we may call a face to be a Schubert

face if it contains the Schubert point.

The following Lemma is standard.

Lemma 10.. Suppose V be a rank 2 vector bundle over a curve C and P(V )

be the projective bundle. Then the sections σ : C −→ P(V ) are in one to

one corresspondence with the line bundle quotients Q of V . Moreover the self

intersection number of σ(C) in the surface is given by deg Q− deg V , where

deg denote the degree of the locally free sheaves. ♦

We also need the following result which can be extracted from the proof

of Theorem 9. We state this as a separate Lemma.

Lemma 11.. The section σi−1,A : Zw[i−1] −→ Zw[i] provides a line bundle

quotient Vi −→ Q. Let Si be the kernel (a line bundle). For each x ∈ A

let us denote the restrictions of these bundles on Zxw[i−1] by Vxi , Sxi and Qxi
respectively. Then

Zxw[i]
∼= P(Vxi )

Z0
w[i]
∼= P(Q0

i ⊕ S0
i )

with the projection Vxi −→ Qxi providing the Schubert section σ0
i−1(Zxw[i−1])

for all x ∈ A. Moreover the non-Schubert section, σ1
i−1(Z0

w[i−1]), is provided

by the quotient Q0
i ⊕ S0

i −→ S0
i . ♦

We can now state a generalization of Lemma 3 to the family.

Lemma 12.. Let u = (s1, s2) be a sequence of simple reflections. Then the

self intersection number of the section σ1,A(Zxs1) in the surface Zxu is (α2, α
∨
1 ),

for all x ∈ A.

Proof: The above Lemma 10 and Remark 11 shows the the self intersection

number of σ1,A(Zs1) does not change in the family. Over a general fiber this
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surface is isomorphic to a Schubert surface. For x 6= 0 this follows from

Lemma 3 and Theorem 9(2). ♦

4 Chow group of 1-cycles

Given a variety X defined over k we denote the group of 1-cycles on X

modulo numerical equivalence by N1(X). Let A1(X) denote the real vector

space N1(X)⊗ R. Similarly let N1(X) be the group of line bundles modulo

numerical equivalence and A1(X) denote the real vector space N1(X) ⊗ R.

Both A1(X) and A1(X) are finite dimensional by a theorem of Neron-Severi.

It is also known that the intersection pairing A1(X)⊗RA1(X)→ R is perfect.

Let us denote the rational curve Zxw[1] = Zxs1 by L1. The fibre of ψr,x =

ψr,A |Zx
w[r]

over the Schubert point is the Schubert line Lr. We index (label)

all Tw-invariant curves in Z0
w, which project to a Schubert point in Z0

w[j] for

some j, by m-admissible sequences as follows. For r ≥ 2, let I = (i1, · · · , ij)
be an r − 1 admissible sequence and LI be the corresponding labelled curve

in Z0
w[r−1]. Then the Tw[r]-invariant curve σ0

r−1(LI) in Z0
w[r] is denoted by

the same symbol LI and σ1
r−1(LI) is denoted by LIr, where Ir denote the

r-admissible sequence (i1, · · · , ij, r).

The group A1(Zxw) is freely generated by the Schubert lines L1, L2 · · ·Lm
(cf. [Ba], Lemma 1.1). Hence for anym-admissible sequence I = (i1, i2 · · · , ir)
we have LI =

∑m
j=1 djLj, for some dj ∈ R. In the next proposition we give

an explicit formula to write down the coefficients dj.

Example 1: In the following pictures T -invariant curves are shown for Z0
w[1],

Z0
w[2] and Z0

w[3] respectively.
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L23
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• L1 • • L1

L2
~~~~~~~

•

~~~~~~~
•

L1

L2

~
~

~
~

•

~~~~~~~

Example 2: consider the curve L35679 in Z0
w[r] for r ≥ 9. This line project

down to L3 in Z0
w[3], i.e ψ4ψ5ψ6ψ7ψ8ψ9 · · ·ψr(L35679) = L3 and

σ0
r−1 · · ·σ0

9σ
1
8σ

0
7σ

1
6σ

1
5σ

1
4σ

0
3(L3) = L35679.

The following observations will be useful in later sections:

1. The schubert section σ0
j (Z0

w[j]) and the non-Schubert section σ1
j (Z0

w[j])

do not intersect. In the above picture (Example 1), the Schubert surface

is placed at the ‘bottom’ and the non-Schubert surface placed at the

‘top’.

2. Let I = (i1, i2, · · · , , ir) be an m admissible sequence. Then LI does not

exist in Z0
w[j] for j < ir, Moreover LI lies in the non Schubert section

of Z0
w[j] for j = ir and in the Schubert section of Z0

w[j] for all j > ir

Remark 13.. (i) The indexing set consists of 2m−1 elements as it corresponds

to the set of nonempty subsets of the set {1, · · · ,m}.

(ii) We show that the total number of Tw-invariant curves in Z0
w ism2m−1.

One can inductively show that the number of Tw[r] invariant points, ptr,

in Z0
w[r] is 2r. The Tw[r] invariant curves, lr, in Z0

w[r] can be counted as follows:

There are lr−1 Tw[r]-invariant curves in the Schubert section σ0(Z0
w[r−1]) and

lr−1 Tw[r]-invariant curves in the non-Schubert section σ1(Z0
w[r−1]). Also there

are 2r−1 Tw[r]-invariant curves in the fibre which project down to the 2r−1

15



Tw[r−1]-invariant points of Z0
w[r−1]. Thus

lr = 2lr−1 + ptr−1 r ≥ 2

Now we prove the assertion by induction on m. Clearly the assertion

is true when m = 1. Assume the result for m = r, the number Tw[r]-

invariant curves in Z0
w[r] is r2r−1. By the above observation the number

Tw[r+1]-invariant curves in Z0
w[r+1] is 2r2r−1 + 2r = 2r(r + 1).

We can also count these Tw-invariant curves using our labellings. We have

labelled certain curves with non-empty-ordered(increasing order) subsets of

the set {1, 2, · · · ,m}. Clearly there are 2m−1 curves with the labelling set

starting with 1. Any Tw-invariant curves with the labelling set starting with

i, i ≥ 2 will project down to Li, The curve Li will project down to a Tw[i−1]-

invariant point (the Schubert point) of Z0
w[i−1]. The number of labelling set

starting with i is 2m−i. But Z0
w[i−1] has 2i−1 Tw[i−1]-invariant points. Any

Tw-invariant curves projecting down to any of these points other than the

Schubert points are not labelled. There are 2m−i Tw-invariant curves over

each of the Tw[i−1]-invariant points, each of these curves is equivalent to one of

those labelled curves. The total number of curves (labelled and un-labelled)

which are equivalent to one of the labelled curves with labelling set starting

with i is 2m−i × 2i−1 = 2m−1. This is true for all 1 ≤ i ≤ m. Hence the total

number Tw-invariant curves is m2m−1.

Lemma 14.. Suppose Y ⊂ X be smooth projective varieties and C1, C2 be

two curves in Y . If a1C1 + a2C2 = 0 in A1(Y ) then a1C1 + a2C2 = 0 in

A1(X).

In most of our computations on the limiting toric varieties Z0
w[r] we will

work on a suitable surface (refer Lemma 12) Z0
u ⊆ Z0

w[r] . The following

Lemma is used repeatedly in most of the computation related to curves.

Lemma 15.. Let u = (s1, s2) be a sequence of simple reflections. Let L1

denote the section σ0
1(Z0

s1
), L12 denote the section σ1

1(Z0
s1

) and L2 denote the

16



fiber (P2/B)0 over the Schubert point in Z0
u. Then L12 = L1 − (2, 1)L2 in

N1(Z0
u). Recall that the notation (2, 1) stands for (α2, α

∨
1 )

Proof: Since the curves L1, L2 generate A1(Z0
u) there exist numbers a, b

such that L12 = aL1 + bL2. Recall that L1 · L1 = (2, 1) (by Lemma 12), and

L2 ·L2 = 0 (because L2 is a fiber). Clearly L1 ·L12 = 0, L1 ·L2 = 1 = L2 ·L12.

By intersecting with L2, L12 ·L2 = aL1 ·L2 + bL2 ·L2, we get 1 = a. Similarly

intersecting with L1, we get 0 = a(2, 1) + b. Thus a = 1 and b = −(2, 1)

♦

Recall sα∨(x) := x− (x, (α∨)∨)α∨ = x− (x, α)α∨.

Definition 16.. Set α∨j1j2···jr := sα∨jr sα
∨
jr−1
· · · sα∨j2 (α∨j1).

Proposition 17.. Let w = (s1, · · · , sm) be a sequence of simple reflections

with m ≥ 2. For 2 ≤ r ≤ m, let I = (i1, i2, · · · , ir) := (i1, i2, I
′) be an

m-admissible sequence and LI be the corresponding curve. Then in the Chow

group A1(Z0
w) of 1-cycles, we have:

(i) LI = Li1I′ − (i2, i1)Li2I′

(ii) LI = Li1 +
∑r

k=2

∑k
d=2

∑
1=j1<···<jd=k(−1)d+1(ijd , ijd−1

) · · · (ij2 , ij1)Lik
(iii) Set di1 := 1 and dik =

∑k−1
j=1 −dij(ik, ij) for 2 ≤ k ≤ r. Then LI =∑r

j=1 dijLij .

(iv) dij = −(α∨i1i2···ij−1
, αij) for all j > 1

Proof of (i): Note that the curves, Li1I′ , Li2I′ and Li1i2I′ are edges of a

surface that is obtained from the Schubert surface < Li1 , Li2 , Li1i2 > by

successively taking sections and hence are isomorphic. Now (i) follows from

Lemma 15.

Proof of (ii): By (i) Li1i2···ir = Li1i3···ir − (i2, i1)Li2i3···ir . By induction we

get:

Li1i3···ir =

17



Li1−
r∑

k=3

(ik, i1)Lik+
r∑

k=4

k−3∑
d=1

∑
2<j1<···<jd<k

(−1)d+1(ik, ijd)(ijd , ijd−1
) · · · (ij1 , i1)Lik

and Li2i3···ir =

Li2−
r∑

k=3

(ik, i2)Lik+
r∑

k=4

k−3∑
d=1

∑
2<j1<···<jd<k

(−1)d+1(ik, ijd)(ijd , ijd−1
) · · · (ij1 , i2)Lik

By multiplying the second equation with −(i2, i1) and adding to the first,

one can easily check (ii).

Proof of (iii): For k = 1, 2, the formula follows directly from definition and

(ii). For k ≥ 3, the coefficient of Lik in the expansion of LI is given by (ii):

k∑
d=2

∑
1=j1<···<jd=k

(−1)d+1(ijd , ijd−1
) · · · (ij2 , ij1) =

k∑
d=2

−(ijd , ijd−1
)

∑
1=j1<···<jd−1

(−1)d(ijd−1
, ijd−2

) · · · (ij2 , ij1)

=
k∑
d=2

−(ijd , ijd−1
)dijd−1

That proves (iii).

Proof of (iv): Proof is by induction on j. Clearly di2 = −(i2, i1) = −(αi2 , α
∨
i1

) =

−(α∨i1 , αi2). Assume the result for di1 , · · · , dij−1
. Now

(α∨i1i2···ij−1
, αij) = (sα∨ij−1

(α∨i1i2···ij−2
), αij) = (α∨i1i2···ij−2

−(α∨i1i2···ij−2
, αij−1

)α∨ij−1
, αij) =

(α∨i1i2···ij−2
, αij)−(α∨i1i2···ij−2

, αij−1
)(α∨ij−1

, αij) = (α∨i1i2···ij−2
, αij)+dij−1

(α∨ij−1
, αij)

(by inducation hypothesis) = (α∨i1i2···ij−3
, αij)+dij−2

(α∨ij−2
, αij)+dij−1

(α∨ij−1
, αij)

= · · · = (α∨i1 , αi2)+di2(α
∨
i2
, αij)+ · · · dij−2

(α∨ij−2
, αij)+dij−1

(α∨ij−1
, αij) = −dij

by (iii).

♦
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Corollary 18.. Suppose I = (i1, i2, · · · , ir) with αi1 = αi2. Then

LI =
r∑
j=2

cijLij

a) ci2 = −1 and for

k > 2, cik =
k∑
d=2

∑
2=j1<···<jd=k

(−1)d(ijd , ijd−1
) · · · (ij2 , ij1)

b) cij = (α∨i2i3···ij−1
, αij) for all j > 2

Proof: Replace i1 by i2 and use the fact (i2, i1) = 2 in Proposition 17 (ii)

and (iv).

Remark 19.. The coefficients cij in corollary 18 are negative of the coeffi-

cients of LI′ where I ′ = (i2, i3, · · · , ir)

Remark 20.. The coefficient of Lk in Li1i2···ir vanishes for all k 6∈ {i1, i2 · · · ir}.
For any m-admissible sequence (i1, · · · ir, I) the coefficient of Lij in Li1···irI

and the coefficient of Lij in Li1···ir are the same for all j, 1 ≤ j ≤ r.

Remark 21.. For an m-admissible sequence I = (i1, i2 · · · , ir), the coefficient

dij of Lij in the expression LI =
∑
dijLij is the negative of the self inter-

section of σ0
ij−1(Li1···ij−1

) in the surface ψ−1ij (Li1···ij−1
). From the inductive

definition of the coefficients of LI , the coefficients may seem to take arbi-

trary values but Proposition 17 (iv) shows that these numbers belong to the

set {(α, γ∨) | α ∈ S and γ∨ is any dual root. In other words, the coefficients

are bounded by coxeter number of the dual root system

5 A basis for A1(Z0
w)

The main result of this section is the following basis theorem and the two

algorithms to find out this basis from the given sequence w.
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Theorem 22.. Let w = (s1, s2, · · · , sm) be a sequence of simple reflections.

Then there exist a set of m linearly independent Tw invariant curves, Lj(w)

1 ≤ j ≤ m, of Z0
w which generate A1(Z0

w) such that every Tw invariant curve

lies in the Z≥0 span of this set.

Proof: We choose the generating set inductively. To begin the induction we

note that for Z0
w[1]
∼= P1, the assertions of the theorem are valid. Suppose we

have chosen a generating set Lj(w[r]), 1 ≤ j ≤ r for Z0
w[r] such that every

Tw[r] invariant curve in Z0
w[r] are non-negatively generated by Lj(w[r]). Then

a generating set for Z0
w[r+1] can be chosen as

Lj(w[r + 1]) :=

{
σ0
r(Lj(w[r])) if σ0

r(Lj(w[r]))2 ≤ 0 in ψ−1r+1(Lj(w[r]))

σ1
r(Lj(w[r])) if σ0

r(Lj(w[r]))2 > 0 in ψ−1r+1(Lj(w[r]))

for 1 ≤ j ≤ r and Lr+1(w[r+ 1]) := Lr+1. Here σ0
r(Lj(w[r]))2 denote the self

intersection number in the surface ψ−1r+1(Lj(w[r])). By induction we know

that any Tw[r] invariant curve in Z0
w[r] is a positive linear combination of

Lj(w[r]). First observe from the definition of Lj(w[r + 1]), j = 1, · · · r, that

the set of curves σ0
r(Lj(w[r])) and σ1

r(Lj(w[r])) are non-negative linear com-

binations of < Lr+1, Lr(w[r + 1]), · · ·L1(w[r + 1]) >. Any Tw[r+1]-invariant

curve in Z0
w[r+1] is either equivalent to the fibre Lr+1 or lies in either of the

sections σir(Z0
w[r]). Now any Tw[r+1]-invariant curve in either of the sections

σir(Z0
w[r]) are non-negative linear combinations of σir(Lj(w[r])) by induction

hypothesis. Hence they lie in the Z≥0 span of Lj(w[r + 1]). ♦

Note that the curve Lj(w) is represented by an m-admissible sequence

with initial entry j, i.e., Lj(w) = LI where I = (j, · · · ).

We have seen that any Tw invariant curve LI is a linear combination

of Schubert lines Li with integer coefficients. But the coefficients can be

negative. For example if s1 = s2 then L12 = L1− 2L2. The idea is to replace

L1 by L12 in the generating set whenever L12 = L1 + d2L2 and d2 < 0. This

20



observation provides an algorithm to obtain the basis.

Lemma 23.. Let w = (s1, s2, · · · , sm) be a sequence of simple reflections.

1. If i2 > 1 is the smallest positive integer such that si2 = s1 then L1(w[j])

= L1,∀j, 1 ≤ j ≤ i2 − 1 and L1(w[i2]) = L1i2. If there is no such i2

then L1(w) = L1(w[k]) = L1, for all k ≥ 1.

2. Suppose there exist an i2 such that si2 = s1. If i3 > i2 be the smallest

positive integer such that c3 := (i3, i2) < 0 then L1(w[j]) = L1i2 ,∀j, i2 ≤
j ≤ i3 − 1 and L1(w[i3]) = L1i2i3. If there is no such i3 exists then

L1(w) = L1(w[k]) = L1i2, for all k ≥ i2.

3. Let L1(w[ir−1]) = L1i2i3···ir−1 be chosen inductively for r ≥ 3. If ir >

ir−1 is the smallest positive integer such that cr = (ir, i2)− c3(ir, i3)−
c4(ir, i4)−· · ·−cr−1(ir, ir−1) < 0 then L1(w[j]) = L1i2 · · · ir−1,∀j, ir−1 ≤
j ≤ ir − 1 and L1(w[r]) := L1i2i3···ir . If there is no such ir exists then

L1(w) = L1(w[k]) = L1i2···ir−1, for all k ≥ ir−1.

4. For j > 1, we repeat these procedures for the truncated word [j − 1]w.

In other words Lj(w) = L1([j − 1]w).

Proof:

We obtain L1(w) inductively. Clearly L1(w[1]) = L1 gives the required

basis for A1(Z0
w[1]). By Theorem 22 and Lemma 3, L1(w[2]) is L1 or L12

(note that σ0
1(L1) = L1 and σ1

1(L1) = L12) depending on whether (2, 1) is

non positive or positive. From the theory of root system we know that (2, 1) is

positive only when s2 = s1 If s1 6= sj,∀j > 1 in the sequence w = (s1, · · · , sm)

then L1(w[k]) = L1, ∀k ≥ 1

If there exists a j > 1 such that sj = s1 then let i2 > 1 be the smallest

positive integer such that s1 = si2 . As above we have L1(w[k]) = L1∀k < i2

and L1(w[i2]) = L1i2 . Again by Theorem 22 L1(w[i2 + 1]) is σ0
i2

(L1(w[i2]))

or σ1
i2

(L1(w[i2])) depending on whether σ0
i2

(L1(w[i2])
2 is non positive or pos-

itive in the surface ψ−1i2+1(L1i2). But σ0
i2

(L1(w[i2])
2 is the negative of the

21



coefficient of Li2+1 in L1i2(i2+1) ( i.e if L1i2(i2+1) = L1 + di2Li2 + di2+1Li2+1

then σ0
i2

(L1(w[i2])
2 is −di2+1).

By Proposition 17(iii) di2+1 = −1(1, i2 + 1)− di1(i2, i2 + 1) = −(i2, i2 + 1) +

2(i2, i2 + 1) = (i2, i2 + 1) [as s1 = si2 and di1 = −2]

This justifies step 2. A similar argument will work for step 3. Note that cr is

the coefficient of Lir in L1i2i3···ir−1ir , which is negative of the self intersection

number, σ0
ir−1(L1i2i3···ir−1)

2, in the surface ψ−1ir (L1i2i3···(ir−1)). Now the proof

follows from Theorem 22. ♦

The above algorithm can be written using root data related to the alge-

braic group G. This will also prove the Remark 20.

Recall also that the height of a positive root γ =
∑

i niγi, where γi’s

are simple roots, is defined to be the number
∑

i ni and is denoted by ht(γ)

in a root system. We will use this definion for the ‘dual roots’ {α∨} in

the following lemma. Recall α∨ = 2α
(α,α)

and the simple reflection sα∨(x) :=

x− (x, (α∨)∨)α∨ = x− (x, α)α∨.

Definition 24.. Set α∨j1j2···jr := sα∨jr sα
∨
jr−1
· · · sα∨j2 (α∨j1).

Let w = (s1, s2, · · · , sm) be a sequence of simple reflections. We give an

algorithm to find the subsequence I(w)

Let i2 > 1 be the smallest positive integer such that si2 = s1. Let i3 > i2

be the smallest positive integer such that ht(α∨i2i3) >ht(α∨i2).

Suppose we have chosen i1, ir−1 inductively with r ≥ 3. Let ir > ir−1 be

the smallest positive integer such that ht( α∨i2i3i4···ir) >ht( α∨i2i3i4···ir−1
).

Theorem 25.. Given a sequence w = (s1, s2, · · · , sm) the Schuber lines

LI([j−1]w) = Lj(w), 1 ≤ j ≤ m.

Proof: By definition α∨i2···ij = sα∨ij
(α∨i2···ij−1

) = α∨i2···ij−1
− (α∨i2···ij−1

, αij)α
∨
ij

.

It is easy to see that (α∨i2···ij−1
, αij) = cij . Note that ht(α∨i2i3i4···ij) >ht(

α∨i2i3i4···ij−1
) if and only if cij < 0. Now the Lemma follows from the previous

Lemma 23. ♦
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Remark 26.. Even though the length of the sequence could be very large, the

number of steps in the above algorithm can not be very large. For example

if the height of the longest root in the dual Weyl group orbit of α∨1 (i.e the

unique dominant weight in the orbit containing α∨1 ) is n1 then the number

of steps in the algorithm for L1(w) will be at most n1. In other words if

L1(w) = L1i1···ir , then r ≤ n1.

6 Extremal Rays and Mori Rays

Let X be a normal projective variety defined over k. Then we recall the

following definitions (motivated by the definition given for k = C in Page 254

of [W]).

Definition 27.. Let NE(X) ⊂ A1(X) be the R≥0 cone spanned by effective

1-cycles. A ray R ⊂ NE(X) is an extremal ray if given Z1, Z2 ∈ NE(X)

such that Z1 + Z2 ∈ R, then both Z1, Z2 ∈ R.

Definition 28.. If an extremal ray R satisfies R ·KX < 0, then R is called

a Mori extremal ray (also referred as a Mori ray) where KX denote the

canonical bundle of X.

Lemma 29.. Let X be a variety such that NE(X) is nonnegatively generated

by a linearly independent set of effective 1-cycles. Then the rays defined by

this generating set are precisely the extremal rays.

Proof: Let Z1, · · · , Zn be the linearly independent set of effective curves

generating A1(X). First we prove that the rays R≥0Zi’s are extremal rays.

Suppose
∑

ai≥0 aiZi +
∑

bi≥0 biZi = cZk ∈ R≥0Zk. Then ai = bi = 0, for

i 6= k as Zi’s are linearly independent. Now both
∑

ai≥0 aiZi = akZk and∑
bi≥0 biZi = bkZk lie in R≥0Zk.

Consider any extremal ray generated by R =
∑

ai≥0 aiZi. If it is not one

of the R≥0Zi’s, then there are at least two nonzero coefficients, say ak and
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al. Let R1 :=
∑

i 6=l aiZi and R2 := alZl. Then clearly R1 + R2 = R lies in

R≥0R, but neither R1 nor R2 lies in R≥0R, a contradiction. Which proves

that R≥0Zi’s are the only extremal rays. ♦

Theorem 30.. The extremal rays of the toric variety Z0
w are precisely the

curves Lj(w).

Proof: In view of Lemma 29 it suffices to prove that the effective cone

NE(Z0
w) coincides with the positive convex cone generated by the torus

invariant curves Li(w). Since Li(w) form a basis for A1(Z
0
w), we can write

any effective curve C as a linear combination
∑
niLi(w). For each 1 ≤ l ≤

l(w), consider the divisor D(al) =
∑

i 6=l D̃i(w) + alD̃l(w). Then D(al) is

ample for all al > 0 by Theorem 39(a). Hence D(al) ·C =
∑

i 6=l ni+alnl > 0.

But
∑

i 6=l ni + alnl > 0 for all al > 0 implies nl ≥ 0. Hence C belongs to the

cone generated by Li(w). ♦

Now we give a criterion for an extremal ray to be a Mori ray (cf. Page

254 [W]).

Recall the following standard lemma:

Lemma 31.. Let Z be a complex manifold and X, Y submanifolds of Z

intersecting transversally. Let NX/Z denote the normal bundle of X in Z.

Then NX/Z |X∩Y∼= NX∩Y/Y . If X is a divisor in Z then NX/Z = OZ(X) |X .

We recall the boundary of a toric variety as the complement of the dense

open orbit or equivalently as the union of all torus invariant divisors. Then

the boundary of Z0
w can be inductively shown to be

∂(Z0
w[r]) := ψ−1r (∂(Z0

w[r−1])) ∪ σ0
r−1(Z

0
w[r−1]) ∪ σ1

r−1(Z
0
w[r−1])

Then the canonical bundle KZ0
w[r]

∼= −∂(Z0
w[r]) (cf. [O]). Given a Schubert

line Lr, we compute it’s intersection with the boundary components in the

following:
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Lemma 32.. For i 6= r − 1, (ψi+1)−1σ0
i (Z0

w[i]) ∩ 〈Lr, Li+1〉 = Lr. Moreover

1. i < r − 1, (ψi+1)−1σ0
i (Z0

w[i]) · Lr = 0 = (ψi+1)−1σ1
i (Z0

w[i]) · Lr

2. i > r−1, (ψi+1)−1σ0
i (Z0

w[i])·Lr = (i+1, r) and (ψi+1)−1σ1
i (Z0

w[i])·Lr = 0

3. i = r − 1, (ψi+1)−1σ0
i (Z0

w[i]) · Lr = 1 = (ψi+1)−1σ1
i (Z0

w[i]) · Lr

Proof: Note that Li+1 6⊆ (ψi+1)−1σ0
i (Z0

w[i]), in fact, Li+1 is normal to

(ψi+1)−1σ0
i (Z0

w[i]) and all other Schubert lines are contained in (ψi+1)−1σ0
i (Z0

w[i])

When i 6= r − 1, Li+1 6= Lr. Hence Lr is in (ψi+1)−1σ0
i (Z0

w[i]). One

can easily see that (ψi+1)−1σ0
i (Z0

w[i]) ∩ 〈Lr, Li+1〉 = Lr. Now by Lemma 31

(ψi+1)−1σ0
i (Z0

w[i]) · Lr is the self intersection number Lr · Lr in the Schubert

surface 〈Lr, Li+1〉

When i < r − 1, the Schubert surface 〈Lr, Li+1〉 maps onto Li+1 with

firber Lr. Hence Lr.Lr = 0 in this surface. Which proves 1.

When i > r−1, the Schubert surface 〈Lr, Li+1〉 maps onto Lr with firber

Li+1. Now 2) follows from the Lemma 12.

It is clear that Lr intersect transversally at the Schubert point and at

the non Schubert point of Lr transversally. This proves 3.

♦

Proposition 33.. KZ0
w
· Lr = −∂(Z0

w[r]) · Lr = −2−
∑m−1

j=r (j + 1, r)

Proof: Note that Lr ⊂ σ0
j (Z

0
w[j]), for each j ≥ r, we see that σ1

j (Z
0
w[j])·Lr = 0

for j ≥ r. Hence we have

KZ0
w
· Lr = −(∂(Z0

w)) · Lr

= −(σ0
r−1(Z

0
w[r−1]) + σ1

r−1(Z
0
w[r−1])) · Lr −

m−1∑
j=r

(ψj+1)−1(σ0
j (Z

0
w[j])) · Lr

The restriction of the pull back divisor (ψj+1)−1(σ0
j (Z

0
w[j])) to Lr is isomorphic

to the normal bundle of Lr in the surface < Lr, Lj+1 >. Hence the degree,
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(ψj+1)−1(σ0
j (Z

0
w[j])) · Lr = (j, r) by Lemma 12. Now

KZ0
w
· Lr = −∂(Z0

w[r]) · Lr = −2−
m−1∑
j=r

(j + 1, r)

♦

Lemma 34.. If an extremal ray in Z0
w[r] is not a Mori ray then the extremal

ray lying over this ray cannot be a Mori ray for any Z0
w[j], j > r.

Proof: By induction it suffices to prove for j = r + 1. Let I be an r + 1-

admissible sequence such that LI is an extremal ray in Zw[r+1]. Assume

ψr+1(LI) is not a Mori ray. Then we have

KZ0
w[r+1]

· LI = KZ0
w[r]
· ψr+1(LI)− d

where d is the self intersection of the curve LI in the surface ψ−1r+1(ψr+1(LI)).

Since ψr+1(LI) is not a Mori ray, it follows that KZ0
w[r]
·ψr+1(LI) ≥ 0. By the

construction of extremal rays (cf. Theorem 22) it follows that d ≤ 0. Hence

K0
Zw[r+1]

· LI ≥ 0 as claimed. ♦

This leads to a criterion for an extremal ray to be a Mori ray.

Theorem 35.. An extremal ray LI is a Mori Ray if and only if there exists

an r > 0 such that LI is the Schubert line Lr and there is at most one j > r

such that (j, r) < 0 and it should be −1.

Proof: A Schubert line Lr is an extremal ray if and only if (j, r) ≤ 0 for all

j > r ( refer Lemma 23, Theorem 30). Lr is a Mori ray if and only if it is an

extremal ray and KZ0
w
· Lr = −

∑
j>r(j, r)− 2 < 0 i.e.,

∑
j>r(j, r) ≥ −1. So

there is at most one j > r such that (j, r) < 0 and it must be −1.

Let I = (i1, · · · , ir) such that LI =
∑
dijLij be a non-Schubert extremal

ray and hence LI = Li1(w) (by Theorem 30). Notice that (i2, i1) = 2 and

26



(j, i1) ≤ 0 for all i1 < j < i2 by Lemma 23. Hence

KZ0
w[i2]
· Li1i2 = −

∑
i1<j<i2

(j, i1)− 2 + (i2, i1) = −
∑

i1<j<i2

(j, i2) ≥ 0

This shows Li1,i2 is not a Mori ray in Z0
w[i2]

. Now by Lemma 34 LI is not a

Mori ray in Z0
w. ♦

Recall that a smooth projective variety is called Fano if it’s anti-canonical

bundle is ample.

Corollary 36.. For a ginve w = (s1, s2, · · · , sm) The toric variety Z0
w is

Fano if and only if all Schubert lines are Mori.

Prooof: Suppose all the Li’s are Mori, then by definition of Mori, they are

all extremal and hence by Theorem 30 and Theorem 22 they generate all the

torus invariant lines positively. Now the ampleness of −KZ0
w

follows from

Toric Nakai Criterion. Conversely if Z0
w is Fano then Lj(w) (refer 22) are

Mori. By Theorem 35 Lj(w) is the Schubert line Lj. Thus all Schubert lines

are Mori. ♦

Example 3: G = SLn+1 and the sequence w0 = (1, 2, · · · , n, 1, 2 · · · , n −
1, · · · .1, 2, 1) is a reduced expression for the longest element w0 of the Weyl

Group. Then there are exactly n Mori rays which are:

Ln, Ln+n−1, · · · , Ln+n−1+n−2+···n−r, · · · , Ln(n+1)/2.

7 Ample Cone

Let w = (s1, s2, · · · , sm) be a sequence of simple reflections and Zw[i] be the

intermediate BSDH variety. Let fi : Zw[i] → G/B be the B-equivariant map.

Let L(ωj) denote the line bundle on G/B corresponding to the fundamental

weight ωj.
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Let ψi := ψi+1 ◦ · · · ◦ ψm : Zw → Zw[i] be the composite projection.

Then define Lj := (ψj)∗(f ∗j (L(ωj)). Then Lauritzen and Thomsen [LT] have

proved that Lj for j = 1, · · · ,m form a basis for the Picard group of line

bundles, hence a basis for A1(Zw). In fact they also proved that the ample

cone is the ‘strict positive cone’ generated by Lj.

Lemma 37..

Lj · Lr =

{
0 if j < r or αj 6= αr

1 if j ≥ r and αj = αr

Proof:

For j < r, choose a section of Lj that does not contain the Schubert point

of Zw[j]. Then the inverse image of this section under ψj does not intersect

with the Schubert line Lr and hence the Lj · Lr = 0.

For j ≥ r, fm restricts to lr as an embedding wth image is Pr/B. More-

over, Lj restricted to Lr can be identified with the restriction of line bundle

L(ωj) to Pr/B. Now the theorem follows from the fact that L(ωj) has degree

0 if αr 6= αj it is 1 if αr = αj ♦

The boundary components (ψjA)−1σj−1,A(Zw[j−1]), 1 ≤ j ≤ m, are simple

normal crossing A divisors in Zw. For each x ∈ A, these divisors form a basis

for the Picard group Pic(Zxw). In particular Lj can be expressed uniquely as

linear combination of these boundary divisors of Z1
w = Zw.

Lj =

j∑
i=1

aij(ψ
i)−1σi−1(Zw[i−1])

Now consider the following relative divisor

Lj,A :=

j∑
i=1

aij(ψ
i
A)−1σi−1,A(Zw[i−1])

We denote the line bundle L0
j given by the restriction of this relative
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divisor to the special fiber at 0. Now by using Lemma 32, we can show an

analogue of Lemma 37 in the toric variety for the line bundle L0
j .

Lemma 38.. A relative line bundle L given by
∑m

i=1 ai(ψ
i
A)−1σi−1,A(Zw[i−1])

on Zw represents a relatively ample bundle if and only if L0 · Lj(w) > 0 for

all j, where L0 is the line bundle given by
∑m

i=1 ai(ψ
i)−1σi−1(Z0

w[i−1])

Proof: Ampleness being an open condition in a flat family to check the

relative ampleness it sufices to check ove the special fiber Z0
w. Note that by

our choice of Lj(w) any torus invariant curve can expressed as non negative

linear combination of these Lj(w) (refer 22). Now the stated condition is

equivalent to the Toric Nakai Criterion for ampleness for a smooth toric

variety. ♦

Theorem 39.. The ample cone of Z0
w is a naturally a subcone of the ample

cone of the BSDH variety Zw

Proof: Using the basis (ψiA)−1σi−1,A(Zw[i−1]) for the relative Pic(Zw) and

the openness of the ampleness one can identify the ample cone of Z0
w as a

subcone of the ample cone of Z1
w.

We would like to give more computable comparison of this sub cone

in terms of the natural generators of the ample cone of the BSDH variety.

For this purpose let us denote the coeffecients of Lj(w) by dij([j − 1]w) for

j = 1, · · ·m. Then we have

Lk(w) = Lk +
∑
ijij>k

dij([k − 1]w)Lij

Note that dij([k−1]w) < 0 for all ij. Now consider an ample line bundle

L =
∑
aiLi. Then

L · Lk(w) = ak +
∑

aidij([k − 1]w)
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where the sum is taken all indices i, ij > k and αi = αij . We can prove that

am > 0 as L ·Lm(w) = am. By (downward) induction we assume that ai > 0

fo all i > k. then we observe that L · Lk(w) = ak +
∑
aidij([k − 1]w) > 0

implies

ak > −
∑

aidij([k − 1]w) > 0

This infact proves that the line bundle L is ample on the BSDH variety

by the Theorem of Lauritzen and Thomsen. This gives an inclusion of the

ample cone. ♦

Acknowledgement: The authors would like to thank the referee for

many valuable comments and suggestions.

Appendix

1. Li1i2i3i4i5

= Li1i3i4i5 − (i2, i1)Li2i3i4i5

= Li1i4i5 − (i3, i1)Li3i4i5 − (i2, i1)Li2i4i5 + (i3, i2)(i2, i1)Li3i4i5

= Li1i4i5 − (i2, i1)Li2i4i5 + [−(i3, i1) + (i3, i2)(i2, i1)]Li3i4i5

= Li1i5 − (i4, i1)Li4i5 − (i2, i1)[Li2i5 − (i4, i2)Li4i5 ]

[−(i3, i1) + (i3, i2)(i2, i1)][Li3i5 − (i4, i3)Li4i5 ]

= Li1i5−(i2, i1)Li2i5+ [−(i3, i1)+(i3, i2)(i2, i1)]Li3i5+ [-(i4, i1)+(i4, i2)(i2, i1)+

(i4, i3)(i3, i1)− (i4, i3)(i3, i2)(i2, i1)]Li4i5

= Li1 − (i5, i1)Li5 − (i2, i1)[Li2 − (i5, i2)Li5 ] +

[- (i3, i1) + (i3, i2)(i2, i1)][Li3 − (i5, i3)Li5 ]+

[−(i4, i1)+(i4, i2)(i2, i1)+(i4, i3)(i3, i1)− (i4, i3)(i3, i2)(i2, i1)][Li4− (i5, i4)Li5 ]

= Li1 − (i2, i1)Li2+[- (i3, i1) + (i3, i2)(i2, i1)]Li3+ [−(i4, i1) + (i4, i2)(i2, i1) +

(i4, i3)(i3, i1)−(i4, i3)(i3, i2)(i2, i1)]Li4+[ -(i5, i1)+(i5, i2)(i2, i1)+(i5, i3)(i3, i1)+

((i5, i4)(i4, i1)−(i5, i3)(i3, i2)(i2, i1)−(i5, i4)(i4, i2)(i2, i1)−(i5, i4)(i4, i3)(i3, i1)+

(i5, i4)(i4, i3)(i3, i2)(i2, i1)]Li5

Let Li1i2i3i4i5 := di1Li1 + di2Li2 + di3Li3 + di4Li4 + di5Li5 ♦
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2. Suppose αi1 = αi2 . Then we replace i1 with i2 and use (i2, i1) = 2 in

the above expression to get

Li1i2i3i4i5 = Li2 − 2Li2+ [−(i3, i2) + 2(i3, i2)]Li3+ [−(i4, i2) + 2(i4, i2) +

(i4, i3)(i3, i2)−2(i4, i3)(i3, i2)]Li4+[ -(i5, i2)+2(i5, i2)+(i5, i3)(i3, i2)+(i5, i4)(i4, i2)−
2(i5, i3)(i3, i2)−2(i5, i4)(i4, i2)− (i5, i4)(i4, i3)(i3, i2)+ 2(i5, i4)(i4, i3)(i3, i2)Li5

= −Li2+(i3, i2)Li3+ [(i4, i2)−(i4, i3)(i3, i2)]Li4+ [(i5, i2)−(i5, i3)(i3, i2)−
(i5, i4)(i4, i2) + (i5, i4)(i4, i3)(i3, i2)]Li5

Let Li1i2i3i4i5 := ci2Li2 + ci3Li3 + ci4Li4 + ci5Li5 ♦

3. α∨i1 : (α∨i1 , αi2) = (αi2 , α
∨
i1

) = (i2, i1) = −di2

α∨i1i2 = sαi2
(α∨i1) = α∨i1 − (α∨i1 , αi2)α

∨
i2

:

(α∨i1i2 , αi3) = (i3, i1)− (i3, i2)(i2, i1) = −di3

α∨i1i2i3 = sα∨i3
(α∨i1i2) = α∨i1 − (α∨i1 , αi2)α

∨
i2
− (α∨i1 − (α∨i1 , αi2)α

∨
i2
, αi3)α

∨
i3

= α∨i1 − (α∨i1 , αi2)α
∨
i2
− (α∨i1 , αi3)α

∨
i3

+ (α∨i1 , αi2)(α
∨
i2
, αi3)α

∨
i3

:

(α∨i1i2i3 , αi4) = (i4, i1)−(i4, i2)(i2, i1)−(i4, i3)(i3, i1)+(i4, i3)(i3, i2)(i2, i1) =

−di4

It is easy to check that

(α∨i1i2i3i4 , α5) = −di5 and

(α∨i2 , α3) = −ci3 , (α∨i2i3 , α4) = −ci4 , (α∨i2i3i4 , α5) = −ci5
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