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1. Introduction

Let G be a semisimple, simply connected algebraic group defined over an algebraically
closed field k of characteristic zero. Fix a maximal torus 7. Let W = Norg (T") /Centg (T)
be the Weyl group and X (7)) = Hom(T', G L1 (k)) be the group of characters. For a finite
dimensional T-module V and y € X(T),setV, ={v e V |tv = x(t)v, YVt € T}. The
finitely many y € X(T') such that V, # 0 are called weights. Then V decomposes into a
direct sum of weight spaces, i.e. V = &P 5 Vxi» Where x; are weights.

Let g and b be the Lie algebras of G and T respectively. Let T act on g by the adjoint
representation. The non-zero weights of this representation are called roots and we denote
the set of all roots by ®. The weight space corresponding to the zero weight is . We
identify X (T') canonically as a subset of X(7') ® R. Let A denote the set of simple roots,
that is a subset of ® such that (i) A is a basis of X(7T') ® R, (ii) for each root &« € ® there
exist integers n; of like sign such that @ = ) n;«;, o; € A. The set of all roots & € @
for which the n; are not negative is denoted by ®* and an element of ®* is called a
positive root. &~ := ® — ®T is the set of negative roots. The number of simple roots is
called the rank of G. Let B be the Borel subgroup of G such that the Lie algebra b of B
is h D @ae@‘ Ha-

There is a natural faithful W action on X (7') ® R and there exists a W invariant bilinear
form (,) on X(T) ® R.Fora € A, oV := 2a/(a, ). For each a € @ there is a reflection
So € W such that s4(¥) = ¥ — (¢, V), Vi € X(T) ® R. The set {sy, « € A}
generates W. For each «; € A there exists a weight w; € X (T') such that (w;, a}/) = §;j.
Here § is the Kronecker delta. These w; are called fundamental weights. An element
A=) ;njw; € X(T)iscalled adominant weightif n; > 0, Vi.Let X (T)™ denote the set
of all dominant weights. Note that the action of W permutes the roots. We define length of
an element w of W to be the number of positive roots moved by w to the negative roots,
and we denote it by [(w).
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The Schubert varieties are subvarieties of G/B, indexed by W. For w € W the corre-
sponding Schubert variety X (w) is defined to be Bw B(modB). The variety G/ B itself is
a Schubert variety for wy € W, the longest element, that is the element which takes all
positive roots to negative roots. The dimension of X (w) = I(w).

Let A € X(T). There is a unique extension of A to a character of B; we denote this
extension also by A. We denote by L, the line bundle on G/B whose total space is the
quotient of G x k by the equivalence relation (g, x) ~ (gb, A(b)"'x) where g € G, b € B
and x € k. For A € X(T), we denote the restriction of the line bundle L, to a Schubert
variety X (w) also by L.

Finally recall that the ‘dot-action’ of W on X (T') is defined as w - A = w(A + p) — p,
where p is the half sum of positive roots. Note that under the usual action of W any weight
can be moved to a dominant weight. But this is not true under dot-action. Those weights
which cannot be moved to dominant weights are called singular weights. It can be easily
seen that these are weights A’s such that (A + p, @) = 0 for some root a € ®.

1.1 The main results

We give explicitly the vanishing and non-vanishing of cohomology modules of ‘most’ line
bundles over Schubert subvarieties of flag varieties of semisimple algebraic groups of rank
2 defined over algebraically closed fields of characteristic 0. The term ‘most’ is defined
in the tables in §3 (there is one table each for A,, B>, and G;) — the weight associated
to the line bundle should belong to a Weyl group orbit of the dominant Weyl chamber
C under the ‘dot’ action and further it should not lie along certain ‘forbidden’ lines (the
tables specify the inequalities defining each w - C for w € W and also the equations of the
forbidden lines).

The results are graphically expressed in terms of matrices in the figures in §7. For each
type of group, there are d pictures (or matrices), named H O HY ..., HY ofsizer xr
consisting of dark and light boxes, where d = dim(G/B) and r = #W, and columns
and rows are indexed by the Weyl group elements (to minimise the size of the table we
have written, o for sy, B for sg, af for s4sg and so on). If the weight A belongs to
w’ - C and is not forbidden, then H'(X (w), L) vanishes if and only if the (w, w’)th
entry, i.e. the intersection of wth row and the w’th column in the H'th picture is not a
dark box.

1.1.1. Remarks

(1) Besides being easily readable, by the method of depicting the results in this picto-
rial form we are able to observe some nice structures which are both illustrative and
instructive. We remark that the symmetries in these pictures were the basis of some of
the results proven in a more general context in [1]. These explicit computations also
facilitate and provide evidence for certain conjectures made in [1]. The rank 2 set-up
is the prototype for the general strategy followed in [1].

(2) Tomake the computation uniform with respect to the Weyl chamber (cf. Remark in4.1),
more importantly to make statements of vanishing and non-vanishing of cohomology
modules with respect to Weyl chambers, we need to omit certain lines (we call them
as forbidden lines). However we note that the techniques used in the computation
continue to work even for a forbidden line bundle, i.e. line bundle corresponding to a
weight lying on a forbidden line.



Cohomology of line bundles on Schubert varieties 347

2. Preliminaries

In this section we fix some more notations and collect all the results which are frequently
used in this paper. A standard reference for all this material is Jantzen’s book [3].

1. Definition of Py, By, and SL(2, a). We denote by U,, the root subgroup corresponding
to «. We denote by P, the minimal parabolic subgroup of G containing B and U,,. Let L,
denote the Levi subgroup of P, containing 7. We denote by B,, the intersection of L, and
B. Then L, is the product of T and a homomorphic image of SL(2) in G (cf. [3], II.1.3).
We denote this copy of SL(2) in G by SL(2, ).

2. We define the Bott—Samelson schemes which play an important role in our computation.
Let w = Sq¢,Sa, - - . Sa, be areduced expression for w € W. Define

Py, x Pyy X --- X Py,

Z(w) = Bx.--xB

k]

where the actionof Bx - - - x B on Py, X Py, X+ - -x Py, isgivenby (p1, ..., pu)(b1, ..., by)
=(p1-b1, bl_1 -p2-bo, ... ,b;}l - Pn - bp), pi € Py, b;i € B. Note that Z(w) depends
on the reduced expression chosen for w. It is well-known that Z(w) is a smooth B-variety
and is a resolution for X (w).

We use the following non-trivial theorem (cf. [3]): The cohomology module
Hi(X(w), L) is isomorphic to the cohomology module H'(Z(w), L;), for all Schubert

varieties X (w) and for all line bundles L.
3. New notations. Forw € W and A € X(T), wedenote H (X (w), L,) = H (Z(w), Ly)

by Hi(w,A). When w = 54,54, ..-52, € W, we denote H'(Z(w), L;) also by
H (ajay. ..o, A).

r

4. We recall the following propositions (cf. [3], II.5.2) which are often used in the compu-
tations. Let« € A and A € X(T). Then

1. if (A, ) = —1, then H'(a, 1) = 0, Vi;
2. if (A, oY) =r >0, then H (o, 1) = 0, Vi, i # 0 and the module Ho(oz, M) has a

basis vg, vi,..., Vs such that rv; = (A —ia)(H)v;, 0 <i <r;
3. if (A,a¥) < =2, then H' (o, 1) =0, Vi, i # 1 and the module H!(a, 1) has basis
uo, Uy ...ur wherer = —(A, aVv)—2 suchthattu; = (so-A—jo)(Buj, 0 < j <r.

5. Now we explain the steps of our computation. We compute the cohomology modules by
induction on /(w). Let w € W and w = 54, Sq, - - - S, be a reduced decomposition of w.

Z(Sq Say -+ - Sa,) m xB Z(Sqy -+ -Sa,) = Py, xB Z(Say -+ - Sa,)
lZ (Say - - - Say)
Py, /B ~ P!
Let w = s,¢ and [(¢) < [(w). By applying the Leray spectral sequence to the fibration
X (w) Z(w)

lX(tﬁ) - lZ(dJ)
X () Z(x)
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since the base is P! we get short exact sequence of cohomology of B-modules for a given
A e X(T)

0— H'(, H-1(¢. 1)) — H'(w, x) — H%a, Hi(p. 1)) — 0. ()

Note that we are using our new notation (3). Since we know the cohomology of the
base space by (4), inductively, we can determine the cohomology of the fibre space; hence
we can compute the cohomology of the total space using the above short exact sequence.
More precisely, suppose we are to compute cohomology modules of X (w). Let w =
SaySays - - - » Sa, be areduced decomposition. Since we know the cohomology modules of
X (8q,) and X (s4,_,) we can compute the cohomology modules of X (sq, S, ) using the
short exact sequence with w = s4, 5o, Now we proceed with w = sy, ,54, ;Sq, and
¢ = Sq,_,S«, in the short exact sequence (k).

3. Genericity conditions on weights

Let G be a simple, simply connected algebraic group of rank 2. Then it will be one of
the following type; A2, B, G». Fix a maximal torus 7. Then the weights, roots, etc are
as defined in §1. Let o, B denote the simple roots and wy, wg denote the fundamental
weights.

W-X(DHt=hreXM|w-re X)), forsomew e W}.

For w € W we define ‘w-chamber’ as the set {A € X(T) |w-A € X(T)T} Cc W-X(T).

Clearly W - X(T)" = [J,ew {w-chamber}. We now write conditions on n and m for
A = nwy + mwg to be in a w-chamber. We will examine vanishing and non-vanishing of
cohomology modules in a chamberwise manner, i.e. for A € W - X(T)", and w € W we
would like to make statements about vanishing and non-vanishing of cohomology modules
H'(w, 1) only using the datum of chambers to which A belongs. To have a consistent set of
statements, we may need to omit certain hyperplanes from these chambers. We summarise
all these computations in the following tables.

Table for A».
Weights Identity Sa sg SaSp SBSa SaSBSa
n>0 n<-=-2 n>-m-—1 n>0 n<-m-—-3 n<-=-2
A =nwy +mwg
m>0 m>-n—1 m<-=2 m<-n-—3 m >0 m< -2
¥ m=-n—1 n=-m-—1 n=20 m=0

+ = omitting the hyperplane from the chamber to make a general statement about vanishing and
non-vanishing of cohomology of Schubert varieties with respect to Weyl chamber.

The table can be read as follows:

(1) A = nwy + mwg belongs to identity chamber if n > 0 and m > 0. We need not
omit any weights in this chamber to make general statements about vanishing and
non-vanishing of cohomology modules.

(il) A = nwy +mawg belongs to s, chamberifn < —2andm > —n — 1. To make general
statements about vanishing and non-vanishing of cohomology modules we need to
omit the hyperplane given by m = —n — 1 and so on.
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We make similar tables for B, and G, and because of space constraints, we omit the
first column, i.e the weight column. In the following tables A = nwy +mwg (we are using
same notation for simple roots (fundamental weights) for A>, B> and G»).

Table for B,. (B is the short root.)

Identity Sa sg SaSp SpSq SuSpSa SpSaSp SaSgSaSp
n>0 n<-2 m< -2 n+m<-3 n+m>-1 n+m=<-3 n>0 n<-2
m=>0 m+4+2n>-2 m+n>—-12n+m=>-2 2n+m=<-4 m >0 2n4+m<-4 m<-2

m+2n=-2 m=-2 2m+m=-1 n+m=-1 m=0 n=20
m—+2n=—1 2n+m=-2 2n+m=—4 m=1

Table for G». (« is the short root.)

Identity Sa sg SaSp SpSa SaSpSa
n>0 n<-=-2 n+3m> -3 n—+3m<-5 2n +3m > —4 2n+3m < —6
m>0 m+n=>-1 m<-=2 n+2m> -2 n+m<-=-3 n+2m> -2
m+n=-—1 n+3m=p n+2m=-—1 2n+3m=p n+2m=-—1
p=—1,-2,-3 n+4+2m=-2 p=-1,-2,-3,-4 n+2m=-2
SpSaSp SaSpSaSp SpSaSpSa SaSpSaSpSa SpSaSpSasSp SaSpSaSpSasSp
2n+3m > —4 2n+3m < —6 n+3m> -3 n+3m< -5 n>0 n<-=-2
n+2m< -4 m+n>—1 n+2m<—4 m >0 n+m<-3 m< -2
2n+3m=p n+m=0 n+3m=p m=0 n=p
p=-1,-2,-3 -4 n+m=—1 p=0-1,-2,-3 p=0,12

Remark. Sometimes it is convenient to have figures for Weyl chambers. We depict the
above tables pictorially. In the above table we have considered the ‘“Weyl chambers’ under
‘dot’-action. In the following figures (figures 1-3) we draw the usual Weyl chamber with
forbidden lines. As we stated in the introduction, the difference between the usual Weyl
group action and the ‘dot’-action is that the ‘singular weights’ cannot be moved to a
dominant weight under dot-action but can be moved under usual action. For the convenience
of the reader we have drawn the singular lines also.

Since there are too many forbidden lines in G, we have drawn two figures: one with
forbidden lines and another one with singular lines.

4. Computations of cohomology

Since the computations are almost similar for all Schubert varieties and for all chambers,
we do not write down all the computations. We give computation for some chambers in
Aj and G (note that A, is simply laced but B> and G, are not) to illustrate how the
computations are carried out. The final pictures give vanishing and non-vanishing of all
cohomology modules for all Schubert varieties and for all chambers.

4.1 A type
Even though in the simply laced types (in particular in A, type) ¥ = «, to avoid confusion

we continue to write .
Let A = nwy + mwg € sysg-chamber. Thenn > 0, andm < —n — 3.

Z(sy): Since (A, a¥) =n > 0, by (2.4) H%a, 1) #0and H (¢, 1) =0, Vr > 1.
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Figure 1. Pictorial representation of A,. Thick lines stand for forbidden lines,
dashed lines stand for singular lines, and the shaded region stands for the dominant
chamber.

Figure 2. Pictorial representation of B,. Thick lines stand for forbidden lines,
dashed lines stand for singular lines, and the shaded region stands for the dominant
chamber.
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Figure 3. Pictorial representation of G,. Thick lines stand for forbidden lines

dashed lines stand for singular lines, and the shaded region stands for the dominant
chamber.
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Z(sp): Since (A, B¥) =m < —2,by 2.4) H'(B, 1) #0and H (B, 1) =0, Vr, r # 1.
Z(sesp): Since HO(B, 1) = 0, we have H(aB, ) ~H(a, HO(B, 1)) = H%(a, 0) = 0.

From (x), we have H'(aB, 1) ~ Ha, H'(B, 1)), because H'(B8, 1) = 0. By (2.4)
H! (B, M) hasbasis ug, u1, ... , u_,—2 such that the weightofu; = A —(m+1+j)B, 0 <
j<-m-—2.

Recall that H'! (B, A)is a Pg-module, and B, C Pg. Think of H 1 (B, 1) as a B,-module.
Then H! (B, A) decomposes into one-dimensional B,-submodules.

—m—2
H'(aB, )) = @ H%a, A — (m + 1+ j)B) as By-module
j=0

G—m+14+)pa)=n+m+14;

<-2, if0<j<-m-n-3
=4q1=-1, if j=—n—m-2

>0, if —m—n—-1<j<-m-—2.Assumen > 0.

Remark. Here we could see why we need to avoid certain hyperplanes to make general
statements about vanishing and non-vanishing. We need to know whether n — 1 > 0 or
n—1<—-2orn—1= —1.Since A € sysg-chamber, it follows that n > 0. It is clear
thatn — 1 > 0, V n except n = 0. We want to avoid such odd cases. The vanishing and
non-vanishing pattern of such A could be the same as that of any other ‘generic’ A, but for
computational purposes we omit them.

Now by (2.4) and (k) we have H' (a8, 1) # 0, H* (e, \) ~H ' (a, H' (B, 1)) # 0, and
H (aB,2) =0, Vr >3.

Z(sgse) : Here HO(Ba, A) ~ H(B, H%(a, 1)). By (2.4) H (e, 1) hasabasis vy, vy, ... , v,
such that the weightof v; = A—ia, 0 <i <n.(A—io, ) =m+i <-3,0<i <n—=
(by (2.4)) Ho(ﬂa, A) = 0, and Hl(ﬂa, A) Hl(ﬂ,HO(a, A)) # 0. From (k), we have
H" (Ba,A) =0, Vr > 2.

Z(seSgSe): We have HO(afa,r) =~ H%a, HO(Ba, 1)) = H%«,0) = 0, and

Hl(ot,Ba, A) HO(Ol, H!(Ba, 1)). We decompose the Pg-module Hl(,ch, A) as inde-
composable By-modules. Let us write the weight diagram of the Pg-module H L(Ba, A);

A—m+DB A—m+2)p i A= (m+n+ 1B e A= (=D
A—a—m+2)B .. r—a—(m+n+1DB .. A—a— (=1

')L—noz—(m—i—n%—l)ﬂ A—no— (=18

We will encounter diagrams of this nature quite often in our computation. So we study
this diagram carefully and pin-point some facts which will be used frequently. The entries
of this diagram are weights of a B, -module, y a simple root (here it is the Pg-module
H'(Ba, 1)).

Corresponding to each weight there is a unique weight vector of that weight. Let Y,
denote the Chevalley operator for B,. Recall that if v is a weight vector of weight A then
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Y, v is either zero or a weight vector of weight A — «v. This suggests that the weight vectors
corresponding to the weights of a particular column is a By-module. We term these as
column modules.

The diagram is drawn in such a way that entries of each column are weights of a B,-
submodule, namely, the column module defined above.

Claim. The column modules are indecomposable B,-modules.
Proof of the Claim. We consider the following B-isomorphism given by Serre duality.

H'(B, HO(a, 1))* = HO(B, HO(c, 1)* ® L_p)).

(We remark that the Serre duality isomorphism in general can have an ambiguity of a twist
by a character (cf. [1], Remark 3.4; [4] §3.9). Since the weights of these two modules are
the same, there cannot be any non-trivial twist by a character.)

Now let us write the weight diagram of this dual module:

—A+na—p oo =A+na+m+n+ 1)
—A+m—-—1Da—-p- —A+m—-—Da+m+n+1)p —A+m—-Da+ m+n)p

—-2—pB o =A+m+n+ 1B —A+(m+n)p e —A+(m+1)B

Let e denote the evaluation map at the identity: HO(B, HO(ar, M)* ® L_p)) — H%a, V)*®
k_g. Since e is a B-map and Ho%, M)* ® k_g is a cyclic By-module, the first column
module of the weight diagram of the dual module which is mapped isomorphically onto
the image is also cyclic By-module and hence indecomposable. We have proved that the
left most column module is an indecomposable B,-module. To prove that the other col-
umn modules are indecomposable we use induction, i.e. we prove that if the ith column
module is indecomposable then the (i + 1)th column module is also indecomposable.

Let X4, Y, denote the Chevalley basis. Let v;; denote the weight vectors of the respective
weights in the dual weight diagram (we use matrix notation for the weight diagram). Our
claimis that for afixed jo, the B,-module generated by {v;,, asi varies} is indecomposable.
For that we prove that Y,v;j, # 0, for all i,i # n + 1; note that the v;,,; is the last
weight in any column in our diagram. We have proved that the first column module is
an indecomposable B,-module. Assume the claim for the column jy. We prove the claim
for the column jy + 1. Suppose Yyv;(jo+1) = 0. We know that the ‘row-modules’ are
SL(2, B)-modules. Now XgYqv;(jo+1) = YaXpi(jy+1) = Yavij, = 0 which contradicts
our assumption that the joth column module is indecomposable, if i # n + 1. Now the
claim follows from the following simple facts: (i) If V is indecomposable, then V* is
indecomposable. (ii) If V >~ @; V;, then V* >~ @; V.*.

Now we go back to the weight diagram of H'(Ba, 1). We denote the column modules
corresponding to the first n + 1 columns by V;, 1 <i < n+ 1, and the next (—m —n —2)
column modules by U;, n+2 < j < —m — 1. The highest weight of V; = A — (m +1)8,
and the dimension of V; = i. The highest weight of U; = A — (m + j) 8 and its dimension
isn+1Vj. Themodule V;, 1 <i <n+4+1,andU;, n+2 < j < —m — 1 are all
indecomposable B,-modules.

One knows that in general, the indecomposable By-modules are of the form W & y,
where W is an irreducible L, module and x is a character (cf. §9.3). Since we are in the
rank 2 case, for our column modules we can write explicitly the x’s.
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Let x = A+ m+DB,and ¥y; = m+ j)B, n+2 < j < —m — 1. Then
Viex,2<i<n+landU;®¥;,n+2 < j < —m— 1areirreducible SL;(a)-module.

H'(aBa, )

~ H%a, H'(Ba, 1))

n+1 —m—1
=H° (a,@viea ) uj>
i=1

j=n+2

n+1 —m—1
~ H° (a, Pviene —x]) & P H>. (WU @) @ —y;1 W)
i=2

j=n+2
n+1 —m—1
~Piviex1e® B« —0te P U @ vl He, —y))} & H@, V)
i=2 j=n+2

(By the generalized tensor identity) ([3], .4.8).

Now (—x, ") = A—(m+DB,a) =n+m+1 < =2, Vi, 2 <i <n-+
land (=¢j,0") = (=m + j)p,a) =m+j < =1, ¥Vj, n+2 < j < -m—1
Note that the weight of —x is the weight of V| also. Thus by Proposition 2.4, we have
H'(aBa, 1) = 0.

From (k), we have H2(afa, A) ~ H' (o, H' (B, 1)). As before,

n+1
H* (o, 1) ~ DIV @ x1® H' (@, —x)}
i=2

—m—1

& P U @v;1® H' (@ v} & H' (@, V).
j=n+2
Since (—x,a¢¥) < -2, 2<i<n+land (—¥yj,a)<—-1,n+2<j<-m—1,
by Proposition 2.4, H?(aBa, 1) # 0.
Since H" (Ba, 1) =0, VY r > 2 by (k), we get H (o, A) =0, Vr, r > 3.

4.2 Gy type

Let o, B be simple roots with (o, 8¥) = —1 and (B, a¥) = —3.

Let A = nwy + mwg € sq-chamber. Thenn < —2 and n + m > —1. We assume that A
does not lie in the hyperplane n +m = —1.

We examine the cohomology modules for the Schubert variety Z (sqsg5458).

Z(sp): Since (A, BY) = m > 0, by Proposition 2.4, HO(,B,A) # 0and H (B, 1) =
0, Vr > 1.

Z(sysp) : From the short exact sequence (k), we have Ho(aﬂ, L) x> Ho(a, HO(B, 1)).
By Proposition 2.4 the Pg module H 0(,3, A) has basis vg, vi,..., v, and the weight

of vy = A —iB, 0 < i < m.If we think of H°(B, 1) as a By-module then H°(B, 1)
decomposes into one-dimensional B,-submodules.

H%@p.») = @ H (. » — i) as By-module
i
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<=2 if0<i<-%-1

r—iB,a)y=n+3i=3" " - .

( Are’) >0, if —3<i<m

We assume that 3 divides —n. Otherwise 3 must divide either —n — 1 or —n — 2. If 3
divides —n — 1, then we will have

< -2, if 0<i<-—m4
A—ipa)=n+3i={=-1, ifi="2"
>0, if =2 <i<m

If 3 divides —n — 2, then we will have

<-2, if0o<i<-n2
G—ifay=n+3i=]" nP=r=""7

>0, if 2t <i<m’

In any case, H(aB, A) ~ H(a, HO(B, 1)) ~ @y H (o, A —if) D H(a, 1 —

mp) # 0. Similarly H'(ap, A) ~ H'(a, HO(B, 1)) =~ @oH (@, 2 —if) D
H'(a, 1) # 0. Thus we have both HO(SaS/g, 2) and H! (SaSg, A) are non-zero.

Remark. Note that the weights of certain cohomology modules will change depending
on whether 3 divides —n or —n — 1 or —n — 2. But vanishing and non-vanishing of the
cohomology module will not be affected. So we assume that 3 divides —n.

Let M denote the P,-module Ho(a, A) = {(vg, vi,...,v,), M| denote the B-
submodule (v_;/3, ... , vy) and N denote the quotient module M /M.

Z(spsqSp) : We write the weight diagram of the P,-module H 1 (@B, A) :

.
— 3
H'(@p, )~ H' (0, HOB, 1) ~ @D H' (e, A —iB).
i=0
A—n+Da A—n+2)a r—n+3)a L—n+da e A+ 2a A+a
A—B—m+dHa -+ A—PB+2a A—B+a

i—(%—1)5+2a ;\—(*T"—l);ﬂa

First we prove that the column modules are indecomposable Bg-modules.

We have H' (a8, \) ~H'(a, HO(B, 1)) ~H ' (a, N).

Now H(a, HO(B8, M))* ~H"(a, N)* ~ H (o, N* @ L_y,).

Let ¢ denote the evaluation map at the identity: H O, N* @ L_y) —> N*®k_q. Note
that e is a B-map and N* ® k_, is a cyclic B,-module. Now the rest of the proof is similar
to that of §4.1.

As we explained earlier each column is a Bg-module. We denote the column modules
by Vi, 1 <i < —n — 1. Let V; be the associated vector bundle of V;,

—n—1

H'(Bap,2) =~ P H'(B. V).
i=1
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Figure 4. Pictorial representation of the weights of the B-module H (a8, 1).

Let u; be the highest weight of V; and d; be the dimension of V;. As we explained earlier,
the cohomology H 1 (B, V) is zero or non-zero depends on whether (u;, B¥)+1—d; >0
or not. (If (i, BY) + 1 —d; < —2then H2(B, V;) # 0.If (ui, BY) + 1 —d; = —1 then
H*B,V,)) =0, Vk.)

Now (u;, )+ 1—-di=(A—m+Da,BY)+1—1=m+n+1 > 0. Therefore
H'(B, V1) # 0. Note that(u;, B) increases by 1 when i increases but the dimension of
V; increases either by 0 or by 1, hence (u;, 8¥) +1—d; >0, Vi.

This implies that the cohomology module H'!(Bap, 1) # 0.

Now we examine H(BafB, 1). We have H°(Bap, 1) ~H' (B, HO(«B, 1)). We decom-

pose the Py-module H O(a,B , 1) into indecomposable Bg-modules. Let us write the weight
diagram of the B-module H°(af, ). Note that

H%aB, 1) = @ H%a, A —if) = @ H%a, A — ip).
i=0 j=—1

I==-3

A+ 5B
MG -DB A+ -DB—a A+ (3 —DB =20 A+ (5 - DB -3

A—mp A—mB —a A—mpB —2a A—mpB —3a oo A=mf — (n+3m)a

To prove that column modules are indecomposable Bg-modules, consider H 0 (B, 1) =
Ho(a, M) LI M. The rest of the proof is the same as that of §4.1.
The pictorial representation of the above weight diagram is as shown in figure 4.

In figure 4, » does not have any special meaning. For the computational purpose we
want to consider the column modules starting with .

Let Uj, 0 < j < n + 3m denote the column modules and v/; denote their highest
weight. Let d; denote the dimension of U;. Let U; be the associated bundle of U},

n+3m

HYBaB, 1) ~ @ H(B,U)).
=0

The cohomology module Ho(ﬂ,l/{j) is zero or non-zero depending on whether
W) BY) + 1 —d; = 0 or not. Now (Yusam. B¥) + 1 = duyam = (b — mp — (n +
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3m)a, BY)Y+1—1=m —2m +n+3m =n + 2m > 0. Therefore Ho(ﬂ,un+3m) #0,
which implies that H%(Baf, A) # 0.

We want to determine the U;’s which contribute to H Oie HOB, U i) # 0.Itdepends on
whether (¥, 8¥)+1—d; > 0 or not. We need this information to compute HOBaB, 1).
Now (Yo, BY)+1—do=m+ 2n/3) + 1 — (m + (n/3) + 1) = %. Suppose n = —3,
then n/3 = —1. In this case (¥}, BYY+1— dj >0, ¥V j > 0, so all the column modules,
except the first one will contribute to H°. We consider the other case i.e. n < 0.

The column modules starting with %, i.e. U3j—p, 1 < i < m + (n/3), have A +
((n/3) —i)B — (3i — 2)« as their highest weight, and dimension m + (n/3) + 1 —i. Now
A+(n/3)—DB—Gi—2)a,BY)=m+ 2n/3) —2i+3i —2=m+ 2n/3) +i —2.
Now we do the desired computation (highest weight, 8Y) + 1-dimension = m + (2n/3) +
i—2—(m+ (n/3)—i)=(n/3) — 2+ 2j. Without loss of generality, we may assume 6
divides n. Observe that the computation (highest weight, 8¥) + 1-dimension is the same
for the x column module and the previous column module. Now it is clear that the column
module with highest weight A 4 (1n/2) 8 + (n/2)« onwards (including this) contributes to
HO, i.e. the modules HO(,B, Uj) #0,VYj, (—n/6) < j < n + 3m. Therefore the weight
diagram of the column modules of H°(a, A) contributing to H(Bap, 1) is:

A+ iB+ b

A+ —DB+%a A+E—DE+E—Da A+ -DB+ (4 —Da 1+ (4 - DB+ (L -3

A—mp+ rA=mB+ (5 — Da rA=mB+ (5 =2 A=mB+ (5 =3 s A=—mB — (n+3ma

The shape of the weight diagram of H°(Bap, 1) will be as shown in figure 5 (we omit
the entries except the last one).

The last column module is one-dimensional and its weightis u = A — (n + 3m)B —
n+3m)a. A — (n+3m)B — (n+3m)a,a¥) = 2n + 3m > 0, which implies that
H%pap, 1) # 0.

Now we look at the weights of H'(Baf, 1). From (k), we have

0 — H'(B, H(aB, 1)) — H'(BaB, ») — H(B, H' (B, 1)) —> 0.

Note that the above exact sequence is not a split exact sequence as a B-module exact
sequence. If we think of this as a 7-module then it splits. In particular we know all the

T ™,

Figure 5. The shape of the weight diagram of H°(Bag, A).
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weights of the B-module H'(Bag, 1). If we look at its weights carefully, we will have a
column B, -module consisting of the weight vectors A — (n+ 1), A —(n+2)a, A— (n+3)c,
..., A= (=1Da.In fact it is an SL>(cr)-module. Let us denote it by V. Since H(r, V) # 0

we have HO (o, H'(BaB, 1)) # 0 hence H' (aBaf, 1) # 0.

Thus we have proved that for Z(aBaf) we have both H(afap,r) # 0, and
H! (xBap, 1) # 0. Other higher cohomology modules H" (¢BaB, 1) =0, Vr, r > 2 can
be seen from the computation (i.e. by observing all the column modules of H!(Baf, 1)
contributes only to H O(a, )) or from the following result [1].

If A belongs to w’-chamber and [ (w’) = I, then for any w € W the cohomology module
H (X(w), L) =0, Vr, r > Iy.

5. Remarks about the computation

For A € W - X(T) and w € W, we are interested in knowing whether Hf(w, 1) is
zero or not. This is comparatively easier than actually having the full description of the
cohomology module H*(w, A). Here we highlight some points which we used to find out
the vanishing and non-vanishing of cohomology modules.

(1) Suppose w = s,w; such that [(w) = [(w;) + 1. We have

—_—~ —_~—

0 — H'a, H=Y(w, 1) — H'(w, ) — H%a, Hi(w, 1)) —> 0.

—_~—

From the above exact sequence H'(w,A) # 0 if H'(a, H=1(wy, 1)) # 0, or

H«, Hi(w, 1)) # 0.

(2) Let w be as in 1 above. We decompose the B-module H "(wy, 1) into indecomposable
By-submodules, V;. If H'(«, V;) # 0, for some i, then H+!(w, 1) # 0. Similarly if,
HO%a, V;) # 0, for some i, then H' (w, ) # 0.

(3) In the case of A, and B, we do not use any theorem other than the spectral sequence
argument and Proposition 2.4. We can do the same thing for G, also. But it is tedious.
If we use Demazure trick (given below) half of the work will be reduced. The following
is from Demazure’s work [2].

At this point we would like to mention that Demazure’s work is for G/ B only. Note
that G/B = X (wo) and for any simple root , wg has a representation wg = w's,.
We use Demazure’s trick for X (t), T € W, under some special condition, which will
be clear below.

Let T = wsq, [(1) = l(w) + L. If (A, @) > 0, then H'(r, 1) = H' ™ (z, 54 - 1)
and if (A, @¥) < —2, then H'(t, 1) = H' "l (t, 50 - A).

6. Observations from the computations

We would like to mention that we have verified the following conjecture for A, and B>
and certain cases in G».

(1) Letl(sqw) =I(w)+ 1 and H' (w, 1) # 0. We consider this B-module H' (w, 1) as a
By-module and decompose into indecomposable B,-modules, and then list them one
after another so that the highest weights are in the decreasing order. Let us denote them
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as Vi, Vo, ..., V.. The observation is that there exists an iy, 1 < iy < r such that
H'(a, V) #0, Vi, i <ig,and HO(a, V;) # 0, Vi, i > io+ 1 or, there exista jo, 1 <
jo < rsuchthat H'(a, V) #0, Vj, j < jo—1,and H(a, V}) # 0, Vj, j > jo+1,
and both H(e, Vj,) = 0 and H' (e, V},) = 0.

(2) Forw € W and A € X(T), we define a positive integer ¢ to be an upper bound for the
non-vanishing index of cohomology modules if H*(w, 1) = Oforallk > ng. Similarly
we define a lower bound. We explain an algorithm to find (inductively) these bounds.

Let G be any semisimple simply connected algebraic group, not necessarily rank
two. Let w = s152...5,, Where 5; = sy;’s are simple reflections (not necessarily
distinct) and /(w) = n. Let ;| be the highest weight and | be the lowest weight of
H"(sy,2) # 0 (r = 0 or 1). For the Schubert variety X (s,) we have upper bound
= lower bound = r. For the Schubert variety X (s,,—1s,) we compute the bounds as
follows:

We compute the bounds by the following rules. Upper bound for X (s, —1s,) = ny =
r+ 1, if (u1, o)) < =2, otherwise r.

Lower bound for X (s,_1s,) =my =r + 1, if (wl,arﬁl) < —2, otherwise r.

Let us decompose the B-module H"2(s,—1s,,A) into indecomposable By, ,-
module. Pick the set of highest weights of these B, ,-modules, and denote it by §,_>.
Let uo be the highest weight in §,_> and a be the dimension of the corresponding
By, _,-module.

Let us decompose the B-module H™2(s,—1s,,A) into indecomposable By, ,-
module. Pick the set of highest weights of these By, _,-modules, and denote it by &, _».
Let v, be the lowest weight in &,_» and b, be the dimension of the corresponding
By, ,-module.

Upper bound for X (s,—28,—15,) = n3 = ny + Lif (U2, 0p—2) +1 —ax < -2,
otherwise n3 = ny. Lower bound for X (s,—28,—15,) = m3 = mp + 1 if (Y2, ay—2) +
1 — by < —2, otherwise m3 = m».

Proceeding this way we get the bounds for X (s1s3 . .. s,). There are some theorems
regarding these bounds in [1].

7. Pictures of vanishing and non-vanishing of cohomology

We give explicitly the vanishing and non-vanishing of Schubert cohomology modules
H' (X (w), Ly) for all the rank two groups, and for all non-singular weights which are not
forbidden. We give the complete results in the form of pictures (figures 6-8). Note that
there are three types (Dynkin classification) of rank two groups, namely, A>, B>, and G».
For each type, we have d pictures (or matrices), named H 0 mgl .. HY ofsizer xr
consisting of dark and light boxes, where d = dim(G/B) and r = #W, and columns and
rows are indexed by identity, o, 8, of8, B, aBa, BaB, afaf, BaBa, afaBa, Bafaf,
afapaf. In columns they stand for identity, S¢, Sg, SaSg, S85a> SaSpSas SBSaSE, SuSESaSE,
SBSauSESas SaSESuSESas SESaSESaSHs SaSpSaSpSaSp. In rows they stand for a point, X («),
X(B), X(ap), X (Ba), X (afa), X (Bap), X (afap), X (Bapa), X (afapa), X (Bafap),
X (afaBap).

Now we explain how to read the pictures. Let w, w’ € W and A € w’-chamber (but
not in the forbidden hyperplanes as we have mentioned in §3),1i.e. w’ - A € X(T)™. If we
want to know whether H' (X (w), L;) is zero or not, we look at the (w, w’)th entry, i.e.
the intersection of wth row and the w’th column in the H'th picture, if the entry is a dark
box, then it is non-zero, otherwise it is zero.
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Weyl Chambers — 110 Hl
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||~ @@0000| 000080 C00e0e 000000
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+ @O0000] 08000 COOCeeO CC000e

Figure 6. The vanishing and non-vanishing of cohomology of Schubert varieties

in Az.
¢ 100000000 COO00000 00000000
! (@0000000| Ce00ee0e 00000000
: (@0000000 | 00008 00000000
1+ @@000000| 00000000 OO0 ee
|+ @0ee0000 | CeeeeeeC 00000
« @O@OC0000| 000000 00080
o @@OCO00000| 000 CO0CeeeeO
| @O000000] 000000 0008000
100000000 || 00000000
«Q0000000 | 00000000
100000000 || 00000000
00000000 100000000
»«OO0000000 || 00000000
« 00000808 | 00000000
L OO000088 |  O0000000
= 00000000 0000000e
Figure 7. The vanishing and non-vanishing of cohomology of Schubert varieties
in Bz.
7.1 Remark

In the thesis [4], we have computed vanishing and non-vanishing of cohomology modules
for singular weights for A, and B». There we have also shown that the conjecture 9.3 is
not true for singular weights.

8. Observations from the pictures

We define matrices corresponding to the pictures. Let T/; denote the (7, j)th entry of the kth
matrix, i.e. the matrix corresponding to the H*th cohomology picture. We assign values

to Ti’;’s as follows: Tl.k. = 1, if (i, j)th box is dark, otherwise zero.
Then we can observe the following:

(1) The pictures H®, H4~" and H? are symmetric, where d is the dimension of G/B.
(2) Continuity of non-zeroness of the Schubert cohomology modules. Suppose m < n,
H™(X(w),A) # 0and H*(X (w), A) # 0, then H' (X (w), A) #0, Vi, m <i <n.
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Figure 8. The vanishing and non-vanishing of cohomology of Schubert varieties
in Gz.

(3) For 0 < k < dim(G/B), ) _; T/j‘ depends only on /(j) = length of j (note that j

corresponds to a Weyl group element). We are saying if /(ji1) = [(j2), then ) ; Tl’j‘1 =
> TzI;zk Similarly Xk: j T1]; depenis only on l(i).k

4) Zi’k T, = Zj’k le = Zi,k Ti|W| = Zj,k TIW\j = |W]|. This reflects the Borel-
Weil-Bott theorem and the fact that if A € wp-chamber (recall that wy is the longest
element of W), then only one cohomology survives for each Schubert variety, more
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precisely if A € wg-chamber then H¥(X (w), A) # 0 only for k = [(w) = the dimen-
sion of X (w).

8.1 Remark

The pictures have more nice structures which are yet to be formulated. For example the
diagonal of H 0 in B, and G have a nice pattern.

9. Conjectures

Let G be semisimple, simply connected algebraic group over an algebraically closed field.
Here we are not assuming rank of G to be two.

9.1 Chain condition or continuity of non-zeroness of Schubert cohomology modules

Ifm <n, H"(X(w), 1) # 0 and H"(X(w), ») # 0 then H (X (w), ) # 0, Vi, m <
i <n.

9.2 Cohomological non-triviality of Schubert cohomology modules

The following conjecture is stated in [1]. Let w € W be an element of the Weyl group
and let « € A be a simple root such that /(sow) = I(w) + 1. Let A be any generic
weight. If the cohomology module H'(w, A) is non-zero then it is cohomologically non-
trivial when considered as a B, 1n\oiule. More precisely, if H i(w, 1) is non-zero then both

—~—

H%, Hi(w, 1)) and H' (o, Hi (w, 1)) cannot simultaneously vanish.
9.3 Conjecture 3

Let [(sqw) = [(w) + 1. Let H (w, 1) # 0. As we have done in the rank 2 cases we think
of this B-module as a B,-module and decompose it into indecomposable B,-modules.
Let us denote these indecomposable By-modules by V;, 1 <i < n. We can make these
modules as SL(«)-modules by tensoring with a suitable one-dimensional module —;.
The conjecture is that (;, a¥) # —1, Vi.

In connection with the above conjecture, we recall the following results [1, 5] for the
convenience of the reader.

Lemma. If'V is a finite dimensional By-module then 'V is a direct sum of cyclic By-modules
each of them generated by weight vectors.

COROLLARY

Let V be an indecomposable B,-module. Then, there exists a character x: By —> Gy,
such that V.~ W ® x, with W an irreducible L,-module.

9.4 Remarks

(1) Itis easy to see that the cohomological non-triviality conjecture and Conjecture 3 are
equivalent.
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(2) For the rank two cases the Conjecture 9.1 can be verified from the pictures of vanishing
and non-vanishing of cohomology modules. Conjecture 9.2 can not be seen from
the picture (reason can be seen in the next remark). But we remark that the second
conjecture is verified in all chambers in A, and B, and verified in some cases in G.

(3) Immediately we cannot say whether the first two conjectures are equivalent or one is
stronger than the other. The conjecture (cohomological non-triviality) implies that if
Hi(w, 1) # 0 and I(sqw) = I(w) + 1 then H (sqw, 1) # 0, or H T (sqw, 1) # 0.
Now let w = s15253, where s;’s are simple /re\ﬂgctions and [(w) = 3. Elig)llowing

could happen. H'(s3, 1) # 0and H%(sy, H!(s3, 1)) # 0 and H'(s2, H'(s3, 1)) # 0.
Then we will have H'(s2s3, 1) # 0 and H%(s2s3, 1) # 0. For the sake of argu-

ment we assume that H'(sy, H2(s2s3, 1)) # 0 and HO(s1, H2(s253, 1)) = 0. Also

assume that HO(sy, H'(s2s3, 1)) % 0 and H'(sy, H!(s253, A)) = 0. Then we will
have H3(s1s253, ) # 0 and H'(s15253, A) # 0 but H>(s15253, A) = 0. This implies
that the cohomological non-triviality conjecture need not imply the continuity of coho-
mology conjecture.

Similarly, the conjecture ‘continuity of non-zeroness of Schubert cohomology modules’
need not imply cohomological non-triviality conjecture.
0—> H'(a, H=2(w, 1)) —> H' "' (sqw, ») — H(a, H=1(w, 1)) —> 0.
0— H'(a, H=!(w, 1) —> H' (sqw, %) —> H(a, H (w, 1)) —> 0.

—~—

0—> H' (o, Hi (w, 1)) —> H M (sqw, 1) — H (o, HI ! (w, 1)) —> 0.

From the above exact sequences we can see that H%w«, Hi(w,2)) = 0 and

Hl(sqy, _Hi(w, 1)) = Owill not create any problem to have H' ! (sqw, 1) # 0, H' (sqw, A)
# 0, Ht (sqw, A) # 0 simultaneously.
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