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1. Introduction

Let G be a semisimple, simply connected algebraic group defined over an algebraically
closed field k of characteristic zero. Fix a maximal torus T . LetW = NorG(T )/CentG(T )
be the Weyl group and X(T ) = Hom(T ,GL1(k)) be the group of characters. For a finite
dimensional T -module V and χ ∈ X(T ), set Vχ = {v ∈ V | tv = χ(t)v, ∀t ∈ T }. The
finitely many χ ∈ X(T ) such that Vχ �= 0 are called weights. Then V decomposes into a
direct sum of weight spaces, i.e. V = ⊕

χi
Vχi , where χi are weights.

Let g and h be the Lie algebras of G and T respectively. Let T act on g by the adjoint
representation. The non-zero weights of this representation are called roots and we denote
the set of all roots by �. The weight space corresponding to the zero weight is h. We
identify X(T ) canonically as a subset of X(T )⊗ R. Let � denote the set of simple roots,
that is a subset of � such that (i) � is a basis of X(T )⊗ R, (ii) for each root α ∈ � there
exist integers ni of like sign such that α = ∑

niαi, αi ∈ �. The set of all roots α ∈ �

for which the ni are not negative is denoted by �+ and an element of �+ is called a
positive root. �− := � −�+ is the set of negative roots. The number of simple roots is
called the rank of G. Let B be the Borel subgroup of G such that the Lie algebra b of B
is h ⊕⊕

α∈�− gα .
There is a natural faithfulW action onX(T )⊗R and there exists aW invariant bilinear

form (, ) on X(T )⊗ R. For α ∈ �, α∨ := 2α/(α, α). For each α ∈ � there is a reflection
sα ∈ W such that sα(ψ) = ψ − (ψ, α∨)α, ∀ψ ∈ X(T ) ⊗ R. The set {sα , α ∈ �}
generates W . For each αi ∈ � there exists a weight ωi ∈ X(T ) such that (ωi, α∨

j ) = δij .
Here δ is the Kronecker delta. These ωi are called fundamental weights. An element
λ = ∑

i niωi ∈ X(T ) is called a dominant weight if ni ≥ 0,∀ i. LetX(T )+ denote the set
of all dominant weights. Note that the action ofW permutes the roots. We define length of
an element w of W to be the number of positive roots moved by w to the negative roots,
and we denote it by l(w).
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The Schubert varieties are subvarieties of G/B, indexed by W . For w ∈ W the corre-
sponding Schubert variety X(w) is defined to be BwB(modB). The variety G/B itself is
a Schubert variety for w0 ∈ W , the longest element, that is the element which takes all
positive roots to negative roots. The dimension of X(w) = l(w).

Let λ ∈ X(T ). There is a unique extension of λ to a character of B; we denote this
extension also by λ. We denote by Lλ the line bundle on G/B whose total space is the
quotient ofG×k by the equivalence relation (g, x)∼ (gb, λ(b)−1x)where g ∈ G, b ∈ B
and x ∈ k. For λ ∈ X(T ), we denote the restriction of the line bundle Lλ to a Schubert
variety X(w) also by Lλ.

Finally recall that the ‘dot-action’ of W on X(T ) is defined as w · λ = w(λ+ ρ)− ρ,

where ρ is the half sum of positive roots. Note that under the usual action ofW any weight
can be moved to a dominant weight. But this is not true under dot-action. Those weights
which cannot be moved to dominant weights are called singular weights. It can be easily
seen that these are weights λ’s such that (λ+ ρ, α∨) = 0 for some root α ∈ �.

1.1 The main results

We give explicitly the vanishing and non-vanishing of cohomology modules of ‘most’ line
bundles over Schubert subvarieties of flag varieties of semisimple algebraic groups of rank
2 defined over algebraically closed fields of characteristic 0. The term ‘most’ is defined
in the tables in §3 (there is one table each for A2, B2, and G2) – the weight associated
to the line bundle should belong to a Weyl group orbit of the dominant Weyl chamber
C under the ‘dot’ action and further it should not lie along certain ‘forbidden’ lines (the
tables specify the inequalities defining eachw ·C forw ∈ W and also the equations of the
forbidden lines).

The results are graphically expressed in terms of matrices in the figures in §7. For each
type of group, there are d pictures (or matrices), named H 0, H 1, . . . , Hd , of size r × r

consisting of dark and light boxes, where d = dim(G/B) and r = #W , and columns
and rows are indexed by the Weyl group elements (to minimise the size of the table we
have written, α for sα , β for sβ , αβ for sαsβ and so on). If the weight λ belongs to
w′ · C and is not forbidden, then Hi(X(w), Lλ) vanishes if and only if the (w,w′)th
entry, i.e. the intersection of wth row and the w′th column in the Hi th picture is not a
dark box.

1.1.1. Remarks

(1) Besides being easily readable, by the method of depicting the results in this picto-
rial form we are able to observe some nice structures which are both illustrative and
instructive. We remark that the symmetries in these pictures were the basis of some of
the results proven in a more general context in [1]. These explicit computations also
facilitate and provide evidence for certain conjectures made in [1]. The rank 2 set-up
is the prototype for the general strategy followed in [1].

(2) To make the computation uniform with respect to the Weyl chamber (cf. Remark in 4.1),
more importantly to make statements of vanishing and non-vanishing of cohomology
modules with respect to Weyl chambers, we need to omit certain lines (we call them
as forbidden lines). However we note that the techniques used in the computation
continue to work even for a forbidden line bundle, i.e. line bundle corresponding to a
weight lying on a forbidden line.
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2. Preliminaries

In this section we fix some more notations and collect all the results which are frequently
used in this paper. A standard reference for all this material is Jantzen’s book [3].

1. Definition ofPα, Bα, and SL(2, α). We denote byUα the root subgroup corresponding
to α. We denote by Pα the minimal parabolic subgroup ofG containing B and Uα . Let Lα
denote the Levi subgroup of Pα containing T . We denote by Bα the intersection of Lα and
B. Then Lα is the product of T and a homomorphic image of SL(2) in G (cf. [3], II.1.3).
We denote this copy of SL(2) in G by SL(2, α).

2. We define the Bott–Samelson schemes which play an important role in our computation.
Let w = sα1sα2 . . . sαn be a reduced expression for w ∈ W . Define

Z(w) = Pα1 × Pα2 × · · · × Pαn

B × · · · × B
,

where the action ofB×· · ·×B onPα1×Pα2×· · ·×Pαn is given by (p1, . . . , pn)(b1, . . . , bn)

= (p1 · b1, b
−1
1 · p2 · b2, . . . , b

−1
n−1 · pn · bn), pi ∈ Pαi , bi ∈ B. Note that Z(w) depends

on the reduced expression chosen forw. It is well-known that Z(w) is a smooth B-variety
and is a resolution for X(w).

We use the following non-trivial theorem (cf. [3]): The cohomology module
Hi(X(w), Lλ) is isomorphic to the cohomology module Hi(Z(w), Lλ), for all Schubert
varieties X(w) and for all line bundles Lλ.

3. New notations. Forw ∈ W and λ ∈ X(T ), we denoteHi(X(w), Lλ) =Hi(Z(w), Lλ)

by Hi(w, λ). When w = sα1sα2 . . . sαr ∈ W , we denote Hi(Z(w), Lλ) also by
Hi(α1α2 . . . αr , λ).

4. We recall the following propositions (cf. [3], II.5.2) which are often used in the compu-
tations. Let α ∈ � and λ ∈ X(T ). Then

1. if (λ, α∨) = −1, then Hi(α, λ) = 0, ∀i;
2. if (λ, α∨) = r ≥ 0, then Hi(α, λ) = 0, ∀i, i �= 0 and the module H 0(α, λ) has a

basis v0, v1, . . . , vr such that tvi = (λ− iα)(t)vi, 0 ≤ i ≤ r;
3. if (λ, α∨) ≤ −2, then Hi(α, λ) = 0, ∀i, i �= 1 and the module H 1(α, λ) has basis
u0, u1 . . . ur where r = −(λ, α∨)−2 such that tuj = (sα ·λ−jα)(t)uj , 0 ≤ j ≤ r .

5. Now we explain the steps of our computation. We compute the cohomology modules by
induction on l(w). Let w ∈ W and w = sα1sα2 . . . sαr be a reduced decomposition of w.

Z(sα1sα2 . . . sαr ) � Bsα1B ×B Z(sα2 . . . sαr ) = Pα1 ×B Z(sα2 . . . sαr )�Z(sα2 . . . sαr )

Pα1/B � P1.

Let w = sαφ and l(φ) < l(w). By applying the Leray spectral sequence to the fibration

X(w)�X(φ)
X(α)


⇒
Z(w)�Z(φ)
Z(α)
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since the base is P1 we get short exact sequence of cohomology of B-modules for a given
λ ∈ X(T )

0 → H 1(α, ˜Hi−1(φ, λ)) → Hi(w, λ) → H 0(α, ˜Hi(φ, λ)) → 0. (κ)

Note that we are using our new notation (3). Since we know the cohomology of the
base space by (4), inductively, we can determine the cohomology of the fibre space; hence
we can compute the cohomology of the total space using the above short exact sequence.
More precisely, suppose we are to compute cohomology modules of X(w). Let w =
sα1sα2 , . . . , sαr be a reduced decomposition. Since we know the cohomology modules of
X(sαr ) and X(sαr−1) we can compute the cohomology modules of X(sαr−1sαr ) using the
short exact sequence with w = sαr−1sαr . Now we proceed with w = sαr−2sαr−1sαr and
φ = sαr−1sαr in the short exact sequence (κ).

3. Genericity conditions on weights

Let G be a simple, simply connected algebraic group of rank 2. Then it will be one of
the following type; A2, B2, G2. Fix a maximal torus T . Then the weights, roots, etc are
as defined in §1. Let α, β denote the simple roots and ωα, ωβ denote the fundamental
weights.

W ·X(T )+ = {λ ∈ X(T )|w · λ ∈ X(T )+, for some w ∈ W }.
Forw ∈ W we define ‘w-chamber’ as the set {λ ∈ X(T ) |w ·λ ∈ X(T )+} ⊂ W ·X(T ).
Clearly W · X(T )+ = ⋃

w∈W {w-chamber}. We now write conditions on n and m for
λ = nwα +mwβ to be in a w-chamber. We will examine vanishing and non-vanishing of
cohomology modules in a chamberwise manner, i.e. for λ ∈ W · X(T )+, and w ∈ W we
would like to make statements about vanishing and non-vanishing of cohomology modules
Hi(w, λ) only using the datum of chambers to which λ belongs. To have a consistent set of
statements, we may need to omit certain hyperplanes from these chambers. We summarise
all these computations in the following tables.

Table for A2.

Weights Identity sα sβ sαsβ sβsα sαsβsα

λ = nwα +mwβ
n ≥ 0 n ≤ −2 n ≥ −m− 1 n ≥ 0 n ≤ −m− 3 n ≤ −2

m ≥ 0 m ≥ −n− 1 m ≤ −2 m ≤ −n− 3 m ≥ 0 m ≤ −2

† m = −n− 1 n = −m− 1 n = 0 m = 0

† = omitting the hyperplane from the chamber to make a general statement about vanishing and

non-vanishing of cohomology of Schubert varieties with respect to Weyl chamber.

The table can be read as follows:

(i) λ = nωα + mωβ belongs to identity chamber if n ≥ 0 and m ≥ 0. We need not
omit any weights in this chamber to make general statements about vanishing and
non-vanishing of cohomology modules.

(ii) λ = nωα+mωβ belongs to sα chamber if n ≤ −2 andm ≥ −n−1. To make general
statements about vanishing and non-vanishing of cohomology modules we need to
omit the hyperplane given by m = −n− 1 and so on.
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We make similar tables for B2 and G2, and because of space constraints, we omit the
first column, i.e the weight column. In the following tables λ = nωα +mωβ (we are using
same notation for simple roots (fundamental weights) for A2, B2 and G2).

Table for B2. (β is the short root.)
Identity sα sβ sαsβ sβsα sαsβsα sβsαsβ sαsβsαsβ

n ≥ 0 n ≤ −2 m ≤ −2 n+m ≤ −3 n+m ≥ −1 n+m ≤ −3 n ≥ 0 n ≤ −2
m ≥ 0 m+ 2n ≥ −2 m+ n ≥ −1 2n+m ≥ −2 2n+m ≤ −4 m ≥ 0 2n+m ≤ −4 m ≤ −2

m+ 2n = −2 m = −2 2n+m = −1 n+m = −1 m = 0 n = 0
m+ 2n = −1 2n+m = −2 2n+m = −4 m = 1

Table for G2. (α is the short root.)

Identity sα sβ sαsβ sβsα sαsβsα

n ≥ 0 n ≤ −2 n+ 3m ≥ −3 n+ 3m ≤ −5 2n+ 3m ≥ −4 2n+ 3m ≤ −6
m ≥ 0 m+ n ≥ −1 m ≤ −2 n+ 2m ≥ −2 n+m ≤ −3 n+ 2m ≥ −2

m+ n = −1 n+ 3m = p n+ 2m = −1 2n+ 3m = p n+ 2m = −1
p = −1,−2,−3 n+ 2m = −2 p = −1,−2,−3,−4 n+ 2m = −2

sβsαsβ sαsβsαsβ sβsαsβsα sαsβsαsβsα sβsαsβsαsβ sαsβsαsβsαsβ

2n+ 3m ≥ −4 2n+ 3m ≤ −6 n+ 3m ≥ −3 n+ 3m ≤ −5 n ≥ 0 n ≤ −2
n+ 2m ≤ −4 m+ n ≥ −1 n+ 2m ≤ −4 m ≥ 0 n+m ≤ −3 m ≤ −2

2n+ 3m = p n+m = 0 n+ 3m = p m = 0 n = p

p = −1,−2,−3,−4 n+m = −1 p = 0,−1,−2,−3 p = 0, 1, 2

Remark. Sometimes it is convenient to have figures for Weyl chambers. We depict the
above tables pictorially. In the above table we have considered the ‘Weyl chambers’ under
‘dot’-action. In the following figures (figures 1–3) we draw the usual Weyl chamber with
forbidden lines. As we stated in the introduction, the difference between the usual Weyl
group action and the ‘dot’-action is that the ‘singular weights’ cannot be moved to a
dominant weight under dot-action but can be moved under usual action. For the convenience
of the reader we have drawn the singular lines also.

Since there are too many forbidden lines in G2, we have drawn two figures: one with
forbidden lines and another one with singular lines.

4. Computations of cohomology

Since the computations are almost similar for all Schubert varieties and for all chambers,
we do not write down all the computations. We give computation for some chambers in
A2 and G2 (note that A2 is simply laced but B2 and G2 are not) to illustrate how the
computations are carried out. The final pictures give vanishing and non-vanishing of all
cohomology modules for all Schubert varieties and for all chambers.

4.1 A2 type

Even though in the simply laced types (in particular inAn type)α∨ = α, to avoid confusion
we continue to write α∨.

Let λ = nωα +mωβ ∈ sαsβ -chamber. Then n ≥ 0, and m ≤ −n− 3.

Z(sα) : Since (λ, α∨) = n ≥ 0, by (2.4) H 0(α, λ) �= 0 and Hr(α, λ) = 0, ∀ r ≥ 1.
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Figure 1. Pictorial representation of A2. Thick lines stand for forbidden lines,
dashed lines stand for singular lines, and the shaded region stands for the dominant
chamber.

Figure 2. Pictorial representation of B2. Thick lines stand for forbidden lines,
dashed lines stand for singular lines, and the shaded region stands for the dominant
chamber.
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Figure 3. Pictorial representation of G2. Thick lines stand for forbidden lines,
dashed lines stand for singular lines, and the shaded region stands for the dominant
chamber.
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Z(sβ) : Since (λ, β∨) = m ≤ −2, by (2.4) H 1(β, λ) �= 0 and Hr(β, λ) = 0, ∀ r, r �= 1.

Z(sαsβ) : Since H 0(β, λ) = 0, we have H 0(αβ, λ) �H 0(α, ˜H 0(β, λ)) = H 0(α, 0) = 0.

From (κ), we have H 1(αβ, λ) � H 0(α, ˜H 1(β, λ)), because H 0(β, λ) = 0. By (2.4)
H 1(β, λ) has basis u0, u1, . . . , u−m−2 such that the weight of uj = λ−(m+1+j)β, 0 ≤
j ≤ −m− 2.

Recall thatH 1(β, λ) is a Pβ -module, andBα ⊂ Pβ . Think ofH 1(β, λ) as aBα-module.
Then H 1(β, λ) decomposes into one-dimensional Bα-submodules.

H 1(αβ, λ) =
−m−2⊕
j=0

H 0(α, λ− (m+ 1 + j)β) as Bα-module

(λ− (m+ 1 + j)β, α∨) = n+m+ 1 + j

=




≤ −2, if 0 ≤ j ≤ −m− n− 3

= −1, if j = −n−m− 2

≥ 0, if −m− n− 1 ≤ j ≤ −m− 2. Assume n > 0.

Remark. Here we could see why we need to avoid certain hyperplanes to make general
statements about vanishing and non-vanishing. We need to know whether n − 1 ≥ 0 or
n − 1 ≤ −2 or n − 1 = −1. Since λ ∈ sαsβ -chamber, it follows that n ≥ 0. It is clear
that n − 1 ≥ 0, ∀ n except n = 0. We want to avoid such odd cases. The vanishing and
non-vanishing pattern of such λ could be the same as that of any other ‘generic’ λ, but for
computational purposes we omit them.

Now by (2.4) and (κ)we haveH 1(αβ, λ) �= 0,H 2(αβ, λ) �H 1(α, ˜H 1(β, λ)) �= 0, and
Hr(αβ, λ) = 0, ∀ r ≥ 3.

Z(sβsα) : HereH 0(βα, λ) �H 0(β,H 0(α, λ)).By (2.4)H 0(α, λ)has a basisv0, v1, . . . , vn
such that the weight of vi = λ−iα, 0 ≤ i ≤ n. (λ−iα, β) = m+i ≤ −3, 0 ≤ i ≤ n 
⇒
(by (2.4)) H 0(βα, λ) = 0, and H 1(βα, λ) � H 1(β,H 0(α, λ)) �= 0. From (κ), we have
Hr(βα, λ) = 0, ∀ r ≥ 2.

Z(sαsβsα) : We have H 0(αβα, λ) � H 0(α, ˜H 0(βα, λ)) = H 0(α, 0) = 0, and

H 1(αβα, λ) � H 0(α, ˜H 1(βα, λ)). We decompose the Pβ -module H 1(βα, λ) as inde-
composable Bα-modules. Let us write the weight diagram of the Pβ -module H 1(βα, λ);
λ− (m+ 1)β λ− (m+ 2)β ... λ− (m+ n+ 1)β ... λ− (−1)β

λ− α − (m+ 2)β ... λ− α − (m+ n+ 1)β ... λ− α − (−1)β
. .

. .

. .

λ− nα − (m+ n+ 1)β ... λ− nα − (−1)β

We will encounter diagrams of this nature quite often in our computation. So we study
this diagram carefully and pin-point some facts which will be used frequently. The entries
of this diagram are weights of a Bγ -module, γ a simple root (here it is the Pβ -module
H 1(βα, λ)).

Corresponding to each weight there is a unique weight vector of that weight. Let Yα
denote the Chevalley operator for Bα . Recall that if v is a weight vector of weight λ then
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Yαv is either zero or a weight vector of weight λ−α. This suggests that the weight vectors
corresponding to the weights of a particular column is a Bα-module. We term these as
column modules.

The diagram is drawn in such a way that entries of each column are weights of a Bα-
submodule, namely, the column module defined above.

Claim. The column modules are indecomposable Bα-modules.

Proof of the Claim. We consider the following B-isomorphism given by Serre duality.

H 1(β, ˜H 0(α, λ))∗ � H 0(β, ˜H 0(α, λ)∗ ⊗ L−β)).

(We remark that the Serre duality isomorphism in general can have an ambiguity of a twist
by a character (cf. [1], Remark 3.4; [4] §3.9). Since the weights of these two modules are
the same, there cannot be any non-trivial twist by a character.)

Now let us write the weight diagram of this dual module:

−λ+ nα − β · · · −λ+ nα + (m+ n+ 1)β
−λ+ (n− 1)α − β · · · −λ+ (n− 1)α + (m+ n+ 1)β −λ+ (n− 1)α + (m+ n)β

· · · · · ·
· · · · · ·
· · · · · ·

−λ− β · · · −λ+ (m+ n+ 1)β −λ+ (m+ n)β · · · −λ+ (m+ 1)β

Let edenote the evaluation map at the identity:H 0(β, ˜H 0(α, λ)∗ ⊗ L−β)) −→H 0(α, λ)∗⊗
k−β . Since e is a B-map and H 0(α, λ)∗ ⊗ k−β is a cyclic Bα-module, the first column
module of the weight diagram of the dual module which is mapped isomorphically onto
the image is also cyclic Bα-module and hence indecomposable. We have proved that the
left most column module is an indecomposable Bα-module. To prove that the other col-
umn modules are indecomposable we use induction, i.e. we prove that if the ith column
module is indecomposable then the (i + 1)th column module is also indecomposable.

LetXα, Yα denote the Chevalley basis. Let vij denote the weight vectors of the respective
weights in the dual weight diagram (we use matrix notation for the weight diagram). Our
claim is that for a fixed j0, theBα-module generated by {vij0 , as i varies} is indecomposable.
For that we prove that Yαvij0 �= 0, for all i, i �= n + 1; note that the vin+1j is the last
weight in any column in our diagram. We have proved that the first column module is
an indecomposable Bα-module. Assume the claim for the column j0. We prove the claim
for the column j0 + 1. Suppose Yαvi(j0+1) = 0. We know that the ‘row-modules’ are
SL(2, β)-modules. Now XβYαvi(j0+1) = YαXβvi(j0+1) = Yαvij0 = 0 which contradicts
our assumption that the j0th column module is indecomposable, if i �= n + 1. Now the
claim follows from the following simple facts: (i) If V is indecomposable, then V ∗ is
indecomposable. (ii) If V � ⊕iVi , then V ∗ � ⊕iV

∗
i .

Now we go back to the weight diagram of H 1(βα, λ). We denote the column modules
corresponding to the first n+ 1 columns by Vi, 1 ≤ i ≤ n+ 1, and the next (−m−n− 2)
column modules by Uj , n+ 2 ≤ j ≤ −m− 1. The highest weight of Vi = λ− (m+ i)β,
and the dimension of Vi = i. The highest weight of Uj = λ− (m+ j)β and its dimension
is n + 1 ∀j . The module Vi, 1 ≤ i ≤ n + 1, and Uj , n + 2 ≤ j ≤ −m − 1 are all
indecomposable Bα-modules.

One knows that in general, the indecomposable Bα-modules are of the form W ⊗ χ ,
where W is an irreducible Lα module and χ is a character (cf. §9.3). Since we are in the
rank 2 case, for our column modules we can write explicitly the χ ’s.
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Let χ = −λ + (m + 1)β, and ψj = (m + j)β, n + 2 ≤ j ≤ −m − 1. Then
Vi⊗χ, 2 ≤ i ≤ n+1 andUj ⊗ψj , n+2 ≤ j ≤ −m−1 are irreducible SL2(α)-module.

H 1(αβα, λ)

� H 0(α, ˜H 1(βα, λ))

= H 0

(
α,

n+1⊕
i=1

Vi ⊕
−m−1⊕
j=n+2

Uj
)

� H 0

(
α,

n+1⊕
i=2

[(Vi ⊗ χ)⊗ −χ ]

)
⊕

−m−1⊕
j=n+2

H 0(α, [(Uj ⊗ ψj )⊗ −ψj ] ⊕ V1)

�
n+1⊕
i=2

{[Vi ⊗ χ ] ⊗H 0(α,−χ)} ⊕
−m−1⊕
j=n+2

{[Uj ⊗ ψj ] ⊗H 0(α,−ψj )} ⊕H 0(α,V1)

(By the generalized tensor identity) ([3], I.4.8).

Now (−χ, α∨) = (λ − (m + 1)β, α) = n + m + 1 ≤ −2, ∀i, 2 ≤ i ≤ n +
1 and (−ψj , α∨) = (−(m + j)β, α) = m + j ≤ −1, ∀j, n + 2 ≤ j ≤ −m − 1.
Note that the weight of −χ is the weight of V1 also. Thus by Proposition 2.4, we have
H 1(αβα, λ) = 0.

From (κ), we have H 2(αβα, λ) � H 1(α, ˜H 1(βα, λ)). As before,

H 2(αβα, λ) �
n+1⊕
i=2

{[Vi ⊗ χ ] ⊗H 1(α,−χ)}

⊕
−m−1⊕
j=n+2

{[Uj ⊗ ψj ] ⊗H 1(α,−ψj )} ⊕H 1(α,V1).

Since (−χ, α∨) ≤ −2, 2 ≤ i ≤ n+ 1 and (−ψj , α∨) ≤ −1, n+ 2 ≤ j ≤ −m− 1,
by Proposition 2.4, H 2(αβα, λ) �= 0.

Since Hr(βα, λ) = 0, ∀ r ≥ 2 by (κ), we get Hr(αβα, λ) = 0, ∀r, r ≥ 3.

4.2 G2 type

Let α, β be simple roots with (α, β∨) = −1 and (β, α∨) = −3.
Let λ = nωα +mωβ ∈ sα-chamber. Then n ≤ −2 and n+m ≥ −1. We assume that λ

does not lie in the hyperplane n+m = −1.
We examine the cohomology modules for the Schubert variety Z(sαsβsαsβ).

Z(sβ) : Since (λ, β∨) = m ≥ 0, by Proposition 2.4, H 0(β, λ) �= 0 and Hr(β, λ) =
0, ∀r ≥ 1.

Z(sαsβ) : From the short exact sequence (κ), we have H 0(αβ, λ) � H 0(α, ˜H 0(β, λ)).
By Proposition 2.4 the Pβ module H 0(β, λ) has basis v0, v1, . . . , vm and the weight
of vi = λ − iβ, 0 ≤ i ≤ m. If we think of H 0(β, λ) as a Bα-module then H 0(β, λ)

decomposes into one-dimensional Bα-submodules.

H 0(αβ, λ) =
⊕
i

H 0(α, λ− iβ) as Bα-module



Cohomology of line bundles on Schubert varieties 355

(λ− iβ, α∨) = n+ 3i =
{

≤ −2, if 0 ≤ i ≤ −n
3 − 1

≥ 0, if − n
3 ≤ i ≤ m

.

We assume that 3 divides −n. Otherwise 3 must divide either −n − 1 or −n − 2. If 3
divides −n− 1, then we will have

(λ− iβ, α∨) = n+ 3i =




≤ −2, if 0 ≤ i ≤ −n+4
3

= −1, if i = −n−1
3

≥ 0, if −n+2
3 ≤ i ≤ m

.

If 3 divides −n− 2, then we will have

(λ− iβ, α∨) = n+ 3i =
{

≤ −2, if 0 ≤ i ≤ −n+2
3

≥ 0, if −n+1
3 ≤ i ≤ m

.

In any case, H 0(αβ, λ) � H 0(α, ˜H 0(β, λ)) � ⊕m
i=0H

0(α, λ − iβ) ⊃ H 0(α, λ −
mβ) �= 0. Similarly H 1(αβ, λ) � H 1(α, ˜H 0(β, λ)) � ⊕m

i=0H
1(α, λ − iβ) ⊃

H 1(α, λ) �= 0. Thus we have both H 0(sαsβ, λ) and H 1(sαsβ, λ) are non-zero.

Remark. Note that the weights of certain cohomology modules will change depending
on whether 3 divides −n or −n − 1 or −n − 2. But vanishing and non-vanishing of the
cohomology module will not be affected. So we assume that 3 divides −n.

Let M denote the Pα-module H 0(α, λ) = 〈v0, v1, . . . , vn〉, M1 denote the B-
submodule 〈v−n/3, . . . , vm〉 and N denote the quotient module M/M1.

Z(sβsαsβ) : We write the weight diagram of the Pα-module H 1(αβ, λ) :

H 1(αβ, λ) � H 1(α, ˜H 0(β, λ)) �
−n
3 −1⊕
i=0

H 1(α, λ− iβ).

λ− (n+ 1)α λ− (n+ 2)α λ− (n+ 3)α λ− (n+ 4)α · · · λ+ 2α λ+ α

λ− β − (n+ 4)α · · · λ− β + 2α λ− β + α

. .

. .

. .

λ− (−n
3 − 1)β + 2α λ− (−n

3 − 1)β + α

First we prove that the column modules are indecomposable Bβ -modules.

We have H 1(αβ, λ) �H 1(α, ˜H 0(β, λ)) �H 1(α,N ).

Now H 1(α, ˜H 0(β, λ))∗ �H 1(α,N )∗ � H 0(α,N ∗ ⊗ L−α).
Let e denote the evaluation map at the identity:H 0(α,N ∗ ⊗L−α) −→ N∗ ⊗k−α . Note

that e is a B-map andN∗ ⊗ k−α is a cyclic Bα-module. Now the rest of the proof is similar
to that of §4.1.

As we explained earlier each column is a Bβ -module. We denote the column modules
by Vi , 1 ≤ i ≤ −n− 1. Let Vi be the associated vector bundle of Vi ,

H 1(βαβ, λ) �
−n−1⊕
i=1

H 1(β,Vi ).
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•
• � • •
• • • • � • •
• • • • • • • � • •
. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

• • • • • • • • • • · · · · · · � • •
• • • • • • • • • • · · · · · · • • • � • •

Figure 4. Pictorial representation of the weights of the B-module H 0(αβ, λ).

Letµi be the highest weight ofVi and di be the dimension ofVi . As we explained earlier,
the cohomologyH 1(β,Vi ) is zero or non-zero depends on whether (µi, β∨)+ 1 − di ≥ 0
or not. (If (µi, β∨)+ 1 − di ≤ −2 then H 2(β,Vi ) �= 0. If (µi, β∨)+ 1 − di = −1 then
Hk(β,Vi ) = 0, ∀ k.)

Now (µ1, β
∨) + 1 − d1 = (λ − (n + 1)α, β∨) + 1 − 1 = m + n + 1 ≥ 0. Therefore

H 1(β,V1) �= 0. Note that(µi, β∨) increases by 1 when i increases but the dimension of
Vi increases either by 0 or by 1, hence (µi, β∨)+ 1 − di ≥ 0, ∀ i.

This implies that the cohomology module H 1(βαβ, λ) �= 0.

Now we examineH 0(βαβ, λ). We haveH 0(βαβ, λ) �H 0(β, ˜H 0(αβ, λ)). We decom-
pose the Pα-moduleH 0(αβ, λ) into indecomposable Bβ -modules. Let us write the weight
diagram of the B-module H 0(αβ, λ). Note that

H 0(αβ, λ) =
m⊕
i=0

H 0(α, λ− iβ) =
m⊕

i=− n
3

H 0(α, λ− iβ).

λ+ n
3β

λ+ ( n3 − 1)β λ+ ( n3 − 1)β − α λ+ ( n3 − 1)β − 2α λ+ ( n3 − 1)β − 3α
. . . .

. . . .

. . . .

λ−mβ λ−mβ − α λ−mβ − 2α λ−mβ − 3α · · · λ−mβ − (n+ 3m)α

To prove that column modules are indecomposableBβ -modules, considerH 0(αβ, λ) =
H 0(α,M1)

e−→ M1. The rest of the proof is the same as that of §4.1.
The pictorial representation of the above weight diagram is as shown in figure 4.
In figure 4, � does not have any special meaning. For the computational purpose we

want to consider the column modules starting with �.
Let Uj , 0 ≤ j ≤ n + 3m denote the column modules and ψj denote their highest

weight. Let dj denote the dimension of Uj . Let Uj be the associated bundle of Uj ,

H 0(βαβ, λ) �
n+3m⊕
j=0

H 0(β,Uj ).

The cohomology module H 0(β,Uj ) is zero or non-zero depending on whether
(ψj , β

∨) + 1 − dj ≥ 0 or not. Now (ψn+3m, β
∨) + 1 − dn+3m = (λ − mβ − (n +
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3m)α, β∨)+ 1 − 1 = m− 2m+ n+ 3m = n+ 2m ≥ 0. Therefore H 0(β,Un+3m) �= 0,
which implies that H 0(βαβ, λ) �= 0.

We want to determine theUj ’s which contribute toH 0, i.e.H 0(β,Uj ) �= 0. It depends on
whether (ψj , β∨)+1−dj ≥ 0 or not. We need this information to computeH 0(αβαβ, λ).

Now (ψ0, β
∨) + 1 − d0 = m + (2n/3) + 1 − (m + (n/3) + 1) = n

3 . Suppose n = −3,
then n/3 = −1. In this case (ψj , β∨)+ 1 − dj ≥ 0, ∀ j > 0, so all the column modules,
except the first one will contribute to H 0. We consider the other case i.e. n � 0.

The column modules starting with �, i.e. U3i−2, 1 ≤ i ≤ m + (n/3), have λ +
((n/3)− i)β − (3i − 2)α as their highest weight, and dimensionm+ (n/3)+ 1 − i. Now
(λ+ ((n/3)− i)β − (3i − 2)α, β∨) = m+ (2n/3)− 2i + 3i − 2 = m+ (2n/3)+ i − 2.
Now we do the desired computation (highest weight, β∨)+ 1-dimension = m+ (2n/3)+
i − 2 − (m+ (n/3)− i) = (n/3)− 2 + 2j. Without loss of generality, we may assume 6
divides n. Observe that the computation (highest weight, β∨)+ 1-dimension is the same
for the � column module and the previous column module. Now it is clear that the column
module with highest weight λ+ (n/2)β + (n/2)α onwards (including this) contributes to
H 0, i.e. the modules H 0(β, Uj ) �= 0,∀j, (−n/6) ≤ j ≤ n + 3m. Therefore the weight
diagram of the column modules of H 0(αβ, λ) contributing to H 0(βαβ, λ) is:

λ+ n
2 β + n

2 α

λ+ ( n2 − 1)β + n
2 α λ+ ( n2 − 1)β + ( n2 − 1)α λ+ ( n2 − 1)β + ( n2 − 2)α λ+ ( n2 − 1)β + ( n2 − 3)α

· · · ·
· · · ·
· · · ·
λ−mβ + n

2 α λ−mβ + ( n2 − 1)α λ−mβ + ( n2 − 2)α λ−mβ + ( n2 − 3)α · · · λ−mβ − (n+ 3m)α

The shape of the weight diagram of H 0(βαβ, λ) will be as shown in figure 5 (we omit
the entries except the last one).

The last column module is one-dimensional and its weight is µ = λ − (n + 3m)β −
(n + 3m)α. (λ − (n + 3m)β − (n + 3m)α, α∨) = 2n + 3m ≥ 0, which implies that
H 0(αβαβ, λ) �= 0.

Now we look at the weights of H 1(βαβ, λ). From (κ), we have

0 −→ H 1(β, ˜H 0(αβ, λ)) −→ H 1(βαβ, λ) −→ H 0(β, ˜H 1(αβ, λ)) −→ 0.

Note that the above exact sequence is not a split exact sequence as a B-module exact
sequence. If we think of this as a T -module then it splits. In particular we know all the

Figure 5. The shape of the weight diagram of H 0(βαβ, λ).
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weights of the B-module H 1(βαβ, λ). If we look at its weights carefully, we will have a
columnBα-module consisting of the weight vectorsλ−(n+1)α,λ−(n+2)α,λ−(n+3)α,
. . . , λ− (−1)α. In fact it is an SL2(α)-module. Let us denote it by V . SinceH 0(α,V) �= 0

we have H 0(α, ˜H 1(βαβ, λ)) �= 0 hence H 1(αβαβ, λ) �= 0.
Thus we have proved that for Z(αβαβ) we have both H 0(αβαβ, λ) �= 0, and

H 1(αβαβ, λ) �= 0. Other higher cohomology modules Hr(αβαβ, λ) = 0, ∀r, r ≥ 2 can
be seen from the computation (i.e. by observing all the column modules of H 1(βαβ, λ)

contributes only to H 0(α, )) or from the following result [1].
If λ belongs tow′-chamber and l(w′) = l0, then for anyw ∈ W the cohomology module

Hr(X(w), Lλ) = 0, ∀r, r > l0.

5. Remarks about the computation

For λ ∈ W · X(T ) and w ∈ W , we are interested in knowing whether Hk(w, λ) is
zero or not. This is comparatively easier than actually having the full description of the
cohomology module Hk(w, λ). Here we highlight some points which we used to find out
the vanishing and non-vanishing of cohomology modules.

(1) Suppose w = sαw1 such that l(w) = l(w1)+ 1. We have

0 −→ H 1(α, ˜Hi−1(w1, λ)) −→ Hi(w, λ) −→ H 0(α, ˜Hi(w, λ)) −→ 0.

From the above exact sequence Hi(w, λ) �= 0 if H 1(α, ˜Hi−1(w1, λ)) �= 0, or

H 0(α, ˜Hi(w, λ)) �= 0.
(2) Let w be as in 1 above. We decompose the B-moduleHi(w1, λ) into indecomposable

Bα-submodules, Vi . If H 1(α,Vi ) �= 0, for some i, then Hi+1(w, λ) �= 0. Similarly if,
H 0(α,Vi ) �= 0, for some i, then Hi(w, λ) �= 0.

(3) In the case of A2 and B2 we do not use any theorem other than the spectral sequence
argument and Proposition 2.4. We can do the same thing forG2 also. But it is tedious.
If we use Demazure trick (given below) half of the work will be reduced. The following
is from Demazure’s work [2].

At this point we would like to mention that Demazure’s work is forG/B only. Note
that G/B = X(w0) and for any simple root α, w0 has a representation w0 = w′sα .
We use Demazure’s trick for X(τ), τ ∈ W , under some special condition, which will
be clear below.

Let τ = wsα , l(τ ) = l(w) + 1. If (λ, α∨) ≥ 0, then Hi(τ, λ) = Hi+1(τ, sα · λ)
and if (λ, α∨) ≤ −2, then Hi(τ, λ) = Hi−1(τ, sα · λ).

6. Observations from the computations

We would like to mention that we have verified the following conjecture for A2 and B2
and certain cases in G2.

(1) Let l(sαw) = l(w)+ 1 and Hi(w, λ) �= 0. We consider this B-module Hi(w, λ) as a
Bα-module and decompose into indecomposable Bα-modules, and then list them one
after another so that the highest weights are in the decreasing order. Let us denote them
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as V1, V2, . . . , Vr . The observation is that there exists an i0, 1 ≤ i0 ≤ r such that
H 1(α,Vi ) �= 0, ∀i, i ≤ i0, andH 0(α,Vi ) �= 0, ∀i, i ≥ i0 +1 or, there exist a j0, 1 ≤
j0 ≤ r such thatH 1(α,Vj ) �= 0, ∀j, j ≤ j0 −1, andH 0(α,Vj ) �= 0, ∀j, j ≥ j0 +1,
and both H 0(α,Vj0) = 0 and H 1(α,Vj0) = 0.

(2) Forw ∈ W and λ ∈ X(T ), we define a positive integer n0 to be an upper bound for the
non-vanishing index of cohomology modules ifHk(w, λ) = 0 for all k > n0. Similarly
we define a lower bound. We explain an algorithm to find (inductively) these bounds.

Let G be any semisimple simply connected algebraic group, not necessarily rank
two. Let w = s1s2 . . . sn, where si = sαi’s are simple reflections (not necessarily
distinct) and l(w) = n. Let µ1 be the highest weight and ψ1 be the lowest weight of
Hr(sn, λ) �= 0 (r = 0 or 1). For the Schubert variety X(sn) we have upper bound
= lower bound = r . For the Schubert variety X(sn−1sn) we compute the bounds as
follows:

We compute the bounds by the following rules. Upper bound forX(sn−1sn)= n2 =
r + 1, if (µ1, α

∨
n−1) ≤ −2, otherwise r.

Lower bound for X(sn−1sn) = m2 = r + 1, if (ψ1, α
∨
n−1) ≤ −2, otherwise r.

Let us decompose the B-module Hn2(sn−1sn, λ) into indecomposable Bαn−2 -
module. Pick the set of highest weights of theseBαn−2 -modules, and denote it by Fn−2.
Let µ2 be the highest weight in Fn−2 and a2 be the dimension of the corresponding
Bαn−2 -module.

Let us decompose the B-module Hm2(sn−1sn, λ) into indecomposable Bαn−2 -
module. Pick the set of highest weights of theseBαn−2 -modules, and denote it by Kn−2.
Let ψ2 be the lowest weight in Kn−2 and b2 be the dimension of the corresponding
Bαn−2 -module.

Upper bound for X(sn−2sn−1sn) = n3 = n2 + 1 if (µ2, αn−2) + 1 − a2 ≤ −2,
otherwise n3 = n2. Lower bound for X(sn−2sn−1sn) = m3 = m2 + 1 if (ψ2, αn−2)+
1 − b2 ≤ −2, otherwise m3 = m2.

Proceeding this way we get the bounds forX(s1s2 . . . sn). There are some theorems
regarding these bounds in [1].

7. Pictures of vanishing and non-vanishing of cohomology

We give explicitly the vanishing and non-vanishing of Schubert cohomology modules
Hi(X(w), Lλ) for all the rank two groups, and for all non-singular weights which are not
forbidden. We give the complete results in the form of pictures (figures 6–8). Note that
there are three types (Dynkin classification) of rank two groups, namely,A2, B2, andG2.
For each type, we have d pictures (or matrices), named H 0, H 1, . . . , Hd , of size r × r

consisting of dark and light boxes, where d = dim(G/B) and r = #W , and columns and
rows are indexed by identity, α, β, αβ, βα, αβα, βαβ, αβαβ, βαβα, αβαβα, βαβαβ,
αβαβαβ. In columns they stand for identity, sα , sβ , sαsβ , sβsα , sαsβsα , sβsαsβ , sαsβsαsβ ,
sβsαsβsα , sαsβsαsβsα , sβsαsβsαsβ , sαsβsαsβsαsβ . In rows they stand for a point, X(α),
X(β), X(αβ), X(βα), X(αβα), X(βαβ), X(αβαβ), X(βαβα), X(αβαβα), X(βαβαβ),
X(αβαβαβ).

Now we explain how to read the pictures. Let w, w′ ∈ W and λ ∈ w′-chamber (but
not in the forbidden hyperplanes as we have mentioned in §3), i.e. w′ · λ ∈ X(T )+. If we
want to know whether Hi(X(w), Lλ) is zero or not, we look at the (w,w′)th entry, i.e.
the intersection of wth row and the w′th column in the Hi th picture, if the entry is a dark
box, then it is non-zero, otherwise it is zero.
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Figure 6. The vanishing and non-vanishing of cohomology of Schubert varieties
in A2.

Figure 7. The vanishing and non-vanishing of cohomology of Schubert varieties
in B2.

7.1 Remark

In the thesis [4], we have computed vanishing and non-vanishing of cohomology modules
for singular weights for A2 and B2. There we have also shown that the conjecture 9.3 is
not true for singular weights.

8. Observations from the pictures

We define matrices corresponding to the pictures. Let T kij denote the (i, j)th entry of the kth

matrix, i.e. the matrix corresponding to the Hkth cohomology picture. We assign values
to T kij ’s as follows: T kij = 1, if (i, j)th box is dark, otherwise zero.

Then we can observe the following:

(1) The pictures H 0, Hd−1 and Hd are symmetric, where d is the dimension of G/B.
(2) Continuity of non-zeroness of the Schubert cohomology modules. Suppose m ≤ n,

Hm(X(w), λ) �= 0 and Hn(X(w), λ) �= 0, then Hi(X(w), λ) �= 0, ∀i, m ≤ i ≤ n.
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Figure 8. The vanishing and non-vanishing of cohomology of Schubert varieties
in G2.

(3) For 0 ≤ k ≤ dim(G/B),
∑
i T

k
ij depends only on l(j) = length of j (note that j

corresponds to a Weyl group element). We are saying if l(j1) = l(j2), then
∑
i T

k
ij1

=∑
i T

k
ij2

. Similarly
∑
j T

k
ij depends only on l(i).

(4)
∑
i,k T

k
i1 = ∑

j,k T
k
1j = ∑

i,k T
k
i|W | = ∑

j,k T
k
|W |j = |W |. This reflects the Borel–

Weil–Bott theorem and the fact that if λ ∈ w0-chamber (recall that w0 is the longest
element of W), then only one cohomology survives for each Schubert variety, more
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precisely if λ ∈ w0-chamber then Hk(X(w), λ) �= 0 only for k = l(w) = the dimen-
sion of X(w).

8.1 Remark

The pictures have more nice structures which are yet to be formulated. For example the
diagonal of H 0 in B2 and G2 have a nice pattern.

9. Conjectures

LetG be semisimple, simply connected algebraic group over an algebraically closed field.
Here we are not assuming rank of G to be two.

9.1 Chain condition or continuity of non-zeroness of Schubert cohomology modules

If m ≤ n, Hm(X(w), λ) �= 0 and Hn(X(w), λ) �= 0 then Hi(X(w), λ) �= 0, ∀i, m ≤
i ≤ n.

9.2 Cohomological non-triviality of Schubert cohomology modules

The following conjecture is stated in [1]. Let w ∈ W be an element of the Weyl group
and let α ∈ � be a simple root such that l(sαw) = l(w) + 1. Let λ be any generic
weight. If the cohomology module Hi(w, λ) is non-zero then it is cohomologically non-
trivial when considered as aBα-module. More precisely, ifHi(w, λ) is non-zero then both

H 0(α, ˜Hi(w, λ)) and H 1(α, ˜Hi(w, λ)) cannot simultaneously vanish.

9.3 Conjecture 3

Let l(sαw) = l(w)+ 1. Let Hi(w, λ) �= 0. As we have done in the rank 2 cases we think
of this B-module as a Bα-module and decompose it into indecomposable Bα-modules.
Let us denote these indecomposable Bα-modules by Vi, 1 ≤ i ≤ n. We can make these
modules as SL2(α)-modules by tensoring with a suitable one-dimensional module −ψi .
The conjecture is that (ψi, α∨) �= −1, ∀i.

In connection with the above conjecture, we recall the following results [1, 5] for the
convenience of the reader.

Lemma. IfV is a finite dimensionalBα-module thenV is a direct sum of cyclicBα-modules
each of them generated by weight vectors.

COROLLARY

Let V be an indecomposable Bα-module. Then, there exists a character χ : Bα −→ Gm

such that V � W ⊗ χ , with W an irreducible Lα-module.

9.4 Remarks

(1) It is easy to see that the cohomological non-triviality conjecture and Conjecture 3 are
equivalent.
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(2) For the rank two cases the Conjecture 9.1 can be verified from the pictures of vanishing
and non-vanishing of cohomology modules. Conjecture 9.2 can not be seen from
the picture (reason can be seen in the next remark). But we remark that the second
conjecture is verified in all chambers in A2 and B2 and verified in some cases in G2.

(3) Immediately we cannot say whether the first two conjectures are equivalent or one is
stronger than the other. The conjecture (cohomological non-triviality) implies that if
Hi(w, λ) �= 0 and l(sαw) = l(w) + 1 then Hi(sαw, λ) �= 0, or Hi+1(sαw, λ) �= 0.
Now let w = s1s2s3, where si’s are simple reflections and l(w) = 3. The following

could happen.H 1(s3, λ) �= 0 andH 0(s2,
˜H 1(s3, λ)) �= 0 andH 1(s2,

˜H 1(s3, λ)) �= 0.
Then we will have H 1(s2s3, λ) �= 0 and H 2(s2s3, λ) �= 0. For the sake of argu-

ment we assume that H 1(s1,
˜H 2(s2s3, λ)) �= 0 and H 0(s1,

˜H 2(s2s3, λ)) = 0. Also

assume that H 0(s1,
˜H 1(s2s3, λ)) �= 0 and H 1(s1,

˜H 1(s2s3, λ)) = 0. Then we will
have H 3(s1s2s3, λ) �= 0 and H 1(s1s2s3, λ) �= 0 but H 2(s1s2s3, λ) = 0. This implies
that the cohomological non-triviality conjecture need not imply the continuity of coho-
mology conjecture.

Similarly, the conjecture ‘continuity of non-zeroness of Schubert cohomology modules’
need not imply cohomological non-triviality conjecture.

0−→H 1(α, ˜Hi−2(w, λ))−→Hi−1(sαw, λ)−→H 0(α, ˜Hi−1(w, λ))−→0.

0−→H 1(α, ˜Hi−1(w, λ))−→Hi(sαw, λ)−→H 0(α, ˜Hi(w, λ))−→0.

0−→H 1(α, ˜Hi(w, λ))−→Hi+1(sαw, λ)−→H 0(α, ˜Hi+1(w, λ))−→0.

From the above exact sequences we can see that H 0(α, ˜Hi(w, λ)) = 0 and

H 1(sα,
˜Hi(w, λ)) = 0 will not create any problem to haveHi+1(sαw, λ) �= 0, H i(sαw, λ)

�= 0, H i+1(sαw, λ) �= 0 simultaneously.
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