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Graphs

A simple undirected graph I' = (V, E) where V is a set called
the vertices and E C V? is called the edges such that £ has
the following properties:

» Antireflexive: (x,x) ¢ E forall x € V.
» Symmetric: If (x,y) € E then (y, x) € E.
In practice we think of them as pictures:

V ={A B,C,D,E)}

E = {(A,B),(A,C),(B,D),(C.D),(C, E),
0@ (D, E), (B, A),(C,A),(D,B), (D, C),
(E,C),(E, D)}
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For a graph I = (V, E) with n vertices we can relabel the
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defined in the following way:

0 if(ij))¢E
01100
10010
O@ A=1[1 00 1 1
0110 1
00110



Multiplication By an Adjacency Matrix

q)Q Xo =

oo o =



Multiplication By an Adjacency Matrix

@%
v

oo oo =

AXO =

o]

oo =+ —=+0



Multiplication By an Adjacency Matrix

v

oo =+ =20

A2X0 =

e

“— NDOoOOoN



Multiplication By an Adjacency Matrix

o
0
@Q Axo = |0
2
1
0
4
@Q Axo = |5
1
2



Multiplication By an Adjacency Matrix

A3X0 =

o]

N =01~ O

—_




Multiplication By an Adjacency Matrix

- O

1
cq A= 3
11
6

1
20
g 2 Aoxo = |26
10
14
1




Multiplication By an Adjacency Matrix
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Things start getting large so lets scale them to add up to 1

0.05
Axg 0.27
ot 10.14

0.19




Multiplication By an Adjacency Matrix

Applying the following procedure repeatedly

x _ Axp
T Al

will sometimes result in a stable value x,.1 — x For this
particular graph and xo we get the following:

0.16
0.16
X, — X= (024
0.24
0.19
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Directed Graphs

A directed graph (or digraph) ' = (V, E) where V is a set
called the vertices and E C V? is called the edges. We think
of each edge (/, /) as being a directed edge (arrow) based at i
pointing to j.
3 Note: A simple undirected graph
SN I = (V,E) is also a digraph. You can
2 4 think of splitting each undirected
\ / edge between i and j into two
1 —5 directed edges (i, j) and (j, /).
You can also assign each directed edge (/,/) a weight w;; > 0.
Then define adjacency matrix

 Jwy i) eE
(A)”{oj if (i,/) ¢ E



Definitions

1. If real square matrix A has eigenvalues
[A1] > [A2] > -+ > |\/| then \; is a dominant eigenvalue.



Definitions

1. If real square matrix A has eigenvalues
[A1] > [A2] > -+ > |\/| then \; is a dominant eigenvalue.
2. matrix A is irreducible if for every two indices i and j there
is a k € N such that (A¥); > 0.



Definitions

1. If real square matrix A has eigenvalues
[A1] > [A2] > -+ > |\/| then \; is a dominant eigenvalue.

2. matrix A is irreducible if for every two indices i and j there
is a k € N such that (A¥); > 0.

3. Agraph T is strongly connected if for every to vertices i, j
there is a directed path from j to j.



Definitions

1. If real square matrix A has eigenvalues
[A1] > [A2] > -+ > |\/| then \; is a dominant eigenvalue.

2. matrix A is irreducible if for every two indices i and j there
is a k € N such that (A¥); > 0.

3. Agraph T is strongly connected if for every to vertices i, j
there is a directed path from j to j. Note: if I' is strongly
connected iff its adjacency matrix A is irreducible.



Definitions

1. If real square matrix A has eigenvalues
[A1] > [A2] > -+ > |\/| then \; is a dominant eigenvalue.
2. matrix A is irreducible if for every two indices i and j there
is a k € N such that (A¥); > 0.

3. Agraph T is strongly connected if for every to vertices i, j
there is a directed path from j to j. Note: if I' is strongly
connected iff its adjacency matrix A is irreducible.

4. The gcd of all the lengths of closed directed paths at i is
called the period of index /. It can be computed by
p(i) = ged{k | (A%); > 0}.



Definitions

1. If real square matrix A has eigenvalues
[A1] > [A2] > -+ > |\/| then \; is a dominant eigenvalue.

2. matrix A is irreducible if for every two indices i and j there
is a k € N such that (A¥); > 0.

3. Agraph T is strongly connected if for every to vertices i, j
there is a directed path from j to j. Note: if I' is strongly
connected iff its adjacency matrix A is irreducible.

4. The gcd of all the lengths of closed directed paths at i is
called the period of index /. It can be computed by
p(i) = ged{k | (A¥); > O}. If Iis strongly connected then
these periods are independent of the base index and are
simply called the period of A.



Definitions

1.

2.

If real square matrix A has eigenvalues
[A1] > [A2] > -+ > |\/| then \; is a dominant eigenvalue.

matrix A is irreducible if for every two indices i and j there
is a k € N such that (A¥); > 0.

A graph I is strongly connected if for every to vertices i,
there is a directed path from j to j. Note: if I' is strongly
connected iff its adjacency matrix A is irreducible.

The gcd of all the lengths of closed directed paths at i is
called the period of index /. It can be computed by

p(i) = ged{k | (A¥); > O}. If Iis strongly connected then
these periods are independent of the base index and are
simply called the period of A.

if the period of Ais 1 we call A aperiodic.
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The Crucial Theorem

Theorem (The Perron-Frobenius theorem)

[1] Let A be an n x n real valued nonnegative matrix. If A is
irreducible then it has an eigenvalue \ > 0 such that:

1.
2.

A is a simple root of the characteristic polynomial.

A has strictly positive left eigenvector I and right
eigenvector r.

The eigenvectors of \ are unique up to a scalar.
Any eigenvalue . of A has |u| < A

If0 < B < A and 3 is an eigenvalue of B then |5| < X and
equality occurs iff A=B.

If A has period p then i = \e*™X/P are the p eigenvalues
with |1 = A

If A is aperiodic and Ir = 1 then

lim A%/\K = n
k—o0
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The Power Method

Let A be the n x n adjacency matrix of a connected simple
undirected graph T.

» A has a dominant eigenvalue \¢ with right and left
eigenvectors r,r’ > 0 scaled so that r’r = 1
(Perron-Frobenius)

» Ais diagonizable (Spectral Theorem AT = A) so the period
of Ais either 1 or 2

» If I has a closed path of odd length then A is aperiodic.
» For xg € R”

lim AK/\*xq = rr"xo = proj,(xo)

k—o0

. AXp

» When pIrOJr(Xo) # 0 the power method X, 1 = 1A%
n

converges to —-
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Eigencentrality

Lemma

A connected simple undirected graph I with at least one odd
length closed path has an aperiodic irreducible nonnegative
valued adjacency matrix A.

Theorem (Eigencentrality)

A simple undirected connected graph with at least one odd
length closed path has a dominant eigenvector with a
corresponding positive valued eigenvector. Once scaled this
vector is the eigencentrality ( or eigenvector centrality )
ranking for the graph.

Note:Larger coordinate entries represent the corresponding
vertex in the graph being more central.



Graph theoretic conditions

Theorem
LetT be a directed graph with weighted nonnegative adjacency
matrix A and the following:

1. T is strongly connected

2. There are two closed paths at a single vertex with relatively
prime length.

Then X is the Perron-Frobenius eigenvalue with left and right
eigenvectors I and r and for any X € R":

lim (A/\)*xo = ar
k—o0

with a = 0 iff x| € I
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PageRank[2]

Let vertices be webpages.
PageRank graph has two types of directed edges:

1. Hyperlinks weighted (with probability «)

2. Random jump to any other vertex (with probability 1 — « )
Where 0 < a < 1 is called the damping

» The adjacency matrix A, for PageRank, is related to the

weighted adjacency matrix of hyperlinks H and the matrix
R with all ones.

A=aH+(1-o)R

» Since every vertex is connected to every other, the graph is
strongly connected and if there are 3 webpages aperiodic.

» The PageRank is the resulting Perron-Frobenius right
eigenvector (Appropriately scaled).
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