An Introduction to Eigencentrality

Nate Iverson

The University of Toledo

Toledo, Ohio

Graphs

A simple undirected graph $\Gamma=(V, E)$ where V is a set called the vertices and $E \subseteq V^{2}$ is called the edges such that E has the following properties:

- Antireflexive: $(x, x) \notin E$ for all $x \in V$.
- Symmetric: If $(x, y) \in E$ then $(y, x) \in E$.

Graphs

A simple undirected graph $\Gamma=(V, E)$ where V is a set called the vertices and $E \subseteq V^{2}$ is called the edges such that E has the following properties:

- Antireflexive: $(x, x) \notin E$ for all $x \in V$.
- Symmetric: If $(x, y) \in E$ then $(y, x) \in E$.

In practice we think of them as pictures:

Graphs

A simple undirected graph $\Gamma=(V, E)$ where V is a set called the vertices and $E \subseteq V^{2}$ is called the edges such that E has the following properties:

- Antireflexive: $(x, x) \notin E$ for all $x \in V$.
- Symmetric: If $(x, y) \in E$ then $(y, x) \in E$.

In practice we think of them as pictures:

Graphs

A simple undirected graph $\Gamma=(V, E)$ where V is a set called the vertices and $E \subseteq V^{2}$ is called the edges such that E has the following properties:

- Antireflexive: $(x, x) \notin E$ for all $x \in V$.
- Symmetric: If $(x, y) \in E$ then $(y, x) \in E$.

In practice we think of them as pictures:

Graphs

A simple undirected graph $\Gamma=(V, E)$ where V is a set called the vertices and $E \subseteq V^{2}$ is called the edges such that E has the following properties:

- Antireflexive: $(x, x) \notin E$ for all $x \in V$.
- Symmetric: If $(x, y) \in E$ then $(y, x) \in E$.

In practice we think of them as pictures:

Vertex-Vertex Adjacency Matrix

For a graph $\Gamma=(V, E)$ with n vertices we can relabel the vertices to be $V=\{1,2, \ldots, n\}$. An adjacency matrix A for Γ is defined in the following way:

$$
(A)_{i j}= \begin{cases}1 & \text { if }(i, j) \in E \\ 0 & \text { if }(i, j) \notin E\end{cases}
$$

Vertex-Vertex Adjacency Matrix

For a graph $\Gamma=(V, E)$ with n vertices we can relabel the vertices to be $V=\{1,2, \ldots, n\}$. An adjacency matrix A for Γ is defined in the following way:

$$
(A)_{i j}= \begin{cases}1 & \text { if }(i, j) \in E \\ 0 & \text { if }(i, j) \notin E\end{cases}
$$

Vertex-Vertex Adjacency Matrix

For a graph $\Gamma=(V, E)$ with n vertices we can relabel the vertices to be $V=\{1,2, \ldots, n\}$. An adjacency matrix A for Γ is defined in the following way:

$$
(A)_{i j}= \begin{cases}1 & \text { if }(i, j) \in E \\ 0 & \text { if }(i, j) \notin E\end{cases}
$$

$$
A=\left[\begin{array}{lllll}
0 & 1 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 0
\end{array}\right]
$$

Multiplication By an Adjacency Matrix

$$
\mathbf{x}_{0}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

Multiplication By an Adjacency Matrix

$$
\mathbf{x}_{0}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

$$
A \mathbf{x}_{0}=\left[\begin{array}{l}
0 \\
1 \\
1 \\
0 \\
0
\end{array}\right]
$$

Multiplication By an Adjacency Matrix

$$
A \mathbf{x}_{0}=\left[\begin{array}{l}
0 \\
1 \\
1 \\
0 \\
0
\end{array}\right]
$$

$$
A^{2} \mathbf{x}_{0}=\left[\begin{array}{l}
2 \\
0 \\
0 \\
2 \\
1
\end{array}\right]
$$

Multiplication By an Adjacency Matrix

Multiplication By an Adjacency Matrix

$$
A^{3} \mathbf{x}_{0}=\left[\begin{array}{l}
0 \\
4 \\
5 \\
1 \\
2
\end{array}\right]
$$

Multiplication By an Adjacency Matrix

$$
A^{4} x_{0}=\left[\begin{array}{c}
9 \\
1 \\
3 \\
11 \\
6
\end{array}\right]
$$

Multiplication By an Adjacency Matrix

Things start getting large so lets scale them to add up to 1

$$
\frac{A^{5} \mathbf{x}_{0}}{\left\|A^{5} \mathbf{x}_{0}\right\|_{1}} \approx\left[\begin{array}{l}
0.05 \\
0.27 \\
0.35 \\
0.14 \\
0.19
\end{array}\right]
$$

Multiplication By an Adjacency Matrix

Applying the following procedure repeatedly

$$
\mathbf{x}_{n+1}=\frac{A \mathbf{x}_{n}}{\left\|A \mathbf{x}_{n}\right\|_{1}}
$$

will sometimes result in a stable value $\mathbf{x}_{n+1} \rightarrow \mathbf{x}$ For this particular graph and \mathbf{x}_{0} we get the following:

$$
\mathbf{x}_{n} \rightarrow \mathbf{x}=\left[\begin{array}{l}
0.16 \\
0.16 \\
0.24 \\
0.24 \\
0.19
\end{array}\right]
$$

Directed Graphs

A directed graph (or digraph) $\Gamma=(V, E)$ where V is a set called the vertices and $E \subseteq V^{2}$ is called the edges. We think of each edge (i, j) as being a directed edge (arrow) based at i pointing to j.

Directed Graphs

A directed graph (or digraph) $\Gamma=(V, E)$ where V is a set called the vertices and $E \subseteq V^{2}$ is called the edges. We think of each edge (i, j) as being a directed edge (arrow) based at i pointing to j.

Directed Graphs

A directed graph (or digraph) $\Gamma=(V, E)$ where V is a set called the vertices and $E \subseteq V^{2}$ is called the edges. We think of each edge (i, j) as being a directed edge (arrow) based at i pointing to j.

Note: A simple undirected graph
$\Gamma=(V, E)$ is also a digraph. You can think of splitting each undirected edge between i and j into two directed edges (i, j) and (j, i).

Directed Graphs

A directed graph (or digraph) $\Gamma=(V, E)$ where V is a set called the vertices and $E \subseteq V^{2}$ is called the edges. We think of each edge (i, j) as being a directed edge (arrow) based at i pointing to j.

Note: A simple undirected graph
$\Gamma=(V, E)$ is also a digraph. You can think of splitting each undirected edge between i and j into two directed edges (i, j) and (j, i).
You can also assign each directed edge (i, j) a weight $w_{i j}>0$.

Directed Graphs

A directed graph (or digraph) $\Gamma=(V, E)$ where V is a set called the vertices and $E \subseteq V^{2}$ is called the edges. We think of each edge (i, j) as being a directed edge (arrow) based at i pointing to j.

Note: A simple undirected graph
$\Gamma=(V, E)$ is also a digraph. You can think of splitting each undirected edge between i and j into two directed edges (i, j) and (j, i).
You can also assign each directed edge (i, j) a weight $w_{i j}>0$. Then define adjacency matrix

$$
(A)_{i j}= \begin{cases}w_{i j} & \text { if }(i, j) \in E \\ 0 & \text { if }(i, j) \notin E\end{cases}
$$

Definitions

1. If real square matrix A has eigenvalues $\left|\lambda_{1}\right|>\left|\lambda_{2}\right| \geq \cdots \geq\left|\lambda_{r}\right|$ then λ_{1} is a dominant eigenvalue.

Definitions

1. If real square matrix A has eigenvalues $\left|\lambda_{1}\right|>\left|\lambda_{2}\right| \geq \cdots \geq\left|\lambda_{r}\right|$ then λ_{1} is a dominant eigenvalue.
2. matrix A is irreducible if for every two indices i and j there is a $k \in \mathbb{N}$ such that $\left(A^{k}\right)_{i j}>0$.

Definitions

1. If real square matrix A has eigenvalues $\left|\lambda_{1}\right|>\left|\lambda_{2}\right| \geq \cdots \geq\left|\lambda_{r}\right|$ then λ_{1} is a dominant eigenvalue.
2. matrix A is irreducible if for every two indices i and j there is a $k \in \mathbb{N}$ such that $\left(A^{k}\right)_{i j}>0$.
3. A graph Γ is strongly connected if for every to vertices i, j there is a directed path from i to j.

Definitions

1. If real square matrix A has eigenvalues $\left|\lambda_{1}\right|>\left|\lambda_{2}\right| \geq \cdots \geq\left|\lambda_{r}\right|$ then λ_{1} is a dominant eigenvalue.
2. matrix A is irreducible if for every two indices i and j there is a $k \in \mathbb{N}$ such that $\left(A^{k}\right)_{i j}>0$.
3. A graph Γ is strongly connected if for every to vertices i, j there is a directed path from i to j. Note: if Γ is strongly connected iff its adjacency matrix A is irreducible.

Definitions

1. If real square matrix A has eigenvalues
$\left|\lambda_{1}\right|>\left|\lambda_{2}\right| \geq \cdots \geq\left|\lambda_{r}\right|$ then λ_{1} is a dominant eigenvalue.
2. matrix A is irreducible if for every two indices i and j there is a $k \in \mathbb{N}$ such that $\left(A^{k}\right)_{i j}>0$.
3. A graph Γ is strongly connected if for every to vertices i, j there is a directed path from i to j. Note: if Γ is strongly connected iff its adjacency matrix A is irreducible.
4. The gcd of all the lengths of closed directed paths at i is called the period of index i. It can be computed by $p(i)=\operatorname{gcd}\left\{k \mid\left(A^{k}\right)_{i i}>0\right\}$.

Definitions

1. If real square matrix A has eigenvalues
$\left|\lambda_{1}\right|>\left|\lambda_{2}\right| \geq \cdots \geq\left|\lambda_{r}\right|$ then λ_{1} is a dominant eigenvalue.
2. matrix A is irreducible if for every two indices i and j there is a $k \in \mathbb{N}$ such that $\left(A^{k}\right)_{i j}>0$.
3. A graph Γ is strongly connected if for every to vertices i, j there is a directed path from i to j. Note: if Γ is strongly connected iff its adjacency matrix A is irreducible.
4. The gcd of all the lengths of closed directed paths at i is called the period of index i. It can be computed by $p(i)=\operatorname{gcd}\left\{k \mid\left(A^{k}\right)_{i i}>0\right\}$. If Γ is strongly connected then these periods are independent of the base index and are simply called the period of A.

Definitions

1. If real square matrix A has eigenvalues
$\left|\lambda_{1}\right|>\left|\lambda_{2}\right| \geq \cdots \geq\left|\lambda_{r}\right|$ then λ_{1} is a dominant eigenvalue.
2. matrix A is irreducible if for every two indices i and j there is a $k \in \mathbb{N}$ such that $\left(A^{k}\right)_{i j}>0$.
3. A graph Γ is strongly connected if for every to vertices i, j there is a directed path from i to j. Note: if Γ is strongly connected iff its adjacency matrix A is irreducible.
4. The gcd of all the lengths of closed directed paths at i is called the period of index i. It can be computed by $p(i)=\operatorname{gcd}\left\{k \mid\left(A^{k}\right)_{i i}>0\right\}$. If Γ is strongly connected then these periods are independent of the base index and are simply called the period of A.
5. if the period of A is 1 we call A aperiodic.

The Crucial Theorem

Theorem (The Perron-Frobenius theorem)
[1] Let A be an $n \times n$ real valued nonnegative matrix. If A is irreducible then it has an eigenvalue $\lambda>0$ such that:

The Crucial Theorem

Theorem (The Perron-Frobenius theorem)
[1] Let A be an $n \times n$ real valued nonnegative matrix. If A is irreducible then it has an eigenvalue $\lambda>0$ such that:

1. λ is a simple root of the characteristic polynomial.

The Crucial Theorem

Theorem (The Perron-Frobenius theorem)
[1] Let A be an $n \times n$ real valued nonnegative matrix. If A is irreducible then it has an eigenvalue $\lambda>0$ such that:

1. λ is a simple root of the characteristic polynomial.
2. λ has strictly positive left eigenvector I and right eigenvector \boldsymbol{r}.

The Crucial Theorem

Theorem (The Perron-Frobenius theorem)
[1] Let A be an $n \times n$ real valued nonnegative matrix. If A is irreducible then it has an eigenvalue $\lambda>0$ such that:

1. λ is a simple root of the characteristic polynomial.
2. λ has strictly positive left eigenvector I and right eigenvector \boldsymbol{r}.
3. The eigenvectors of λ are unique up to a scalar.

The Crucial Theorem

Theorem (The Perron-Frobenius theorem)
[1] Let A be an $n \times n$ real valued nonnegative matrix. If A is irreducible then it has an eigenvalue $\lambda>0$ such that:

1. λ is a simple root of the characteristic polynomial.
2. λ has strictly positive left eigenvector I and right eigenvector \boldsymbol{r}.
3. The eigenvectors of λ are unique up to a scalar.
4. Any eigenvalue μ of A has $|\mu| \leq \lambda$

The Crucial Theorem

Theorem (The Perron-Frobenius theorem)
[1] Let A be an $n \times n$ real valued nonnegative matrix. If A is irreducible then it has an eigenvalue $\lambda>0$ such that:

1. λ is a simple root of the characteristic polynomial.
2. λ has strictly positive left eigenvector I and right eigenvector r.
3. The eigenvectors of λ are unique up to a scalar.
4. Any eigenvalue μ of A has $|\mu| \leq \lambda$
5. If $0 \leq B \leq A$ and β is an eigenvalue of B then $|\beta| \leq \lambda$ and equality occurs iff $A=B$.

The Crucial Theorem

Theorem (The Perron-Frobenius theorem)
[1] Let A be an $n \times n$ real valued nonnegative matrix. If A is irreducible then it has an eigenvalue $\lambda>0$ such that:

1. λ is a simple root of the characteristic polynomial.
2. λ has strictly positive left eigenvector I and right eigenvector r.
3. The eigenvectors of λ are unique up to a scalar.
4. Any eigenvalue μ of A has $|\mu| \leq \lambda$
5. If $0 \leq B \leq A$ and β is an eigenvalue of B then $|\beta| \leq \lambda$ and equality occurs iff $A=B$.
6. If A has period p then $\mu=\lambda e^{2 \pi k i / p}$ are the p eigenvalues with $|\mu|=\lambda$

The Crucial Theorem

Theorem (The Perron-Frobenius theorem)
[1] Let A be an $n \times n$ real valued nonnegative matrix. If A is irreducible then it has an eigenvalue $\lambda>0$ such that:

1. λ is a simple root of the characteristic polynomial.
2. λ has strictly positive left eigenvector I and right eigenvector r.
3. The eigenvectors of λ are unique up to a scalar.
4. Any eigenvalue μ of A has $|\mu| \leq \lambda$
5. If $0 \leq B \leq A$ and β is an eigenvalue of B then $|\beta| \leq \lambda$ and equality occurs iff $A=B$.
6. If A has period p then $\mu=\lambda e^{2 \pi k i / p}$ are the p eigenvalues with $|\mu|=\lambda$
7. If A is aperiodic and $\boldsymbol{I r}=1$ then

$$
\lim _{k \rightarrow \infty} A^{k} / \lambda^{k}=\boldsymbol{r l}
$$

The Power Method

Let A be the $n \times n$ adjacency matrix of a connected simple undirected graph Γ.

The Power Method

Let A be the $n \times n$ adjacency matrix of a connected simple undirected graph Γ.

- A has a dominant eigenvalue λ_{1} with right and left eigenvectors $\mathbf{r}, \mathbf{r}^{T} \geq \mathbf{0}$ scaled so that $\mathbf{r}^{T} \mathbf{r}=1$ (Perron-Frobenius)

The Power Method

Let A be the $n \times n$ adjacency matrix of a connected simple undirected graph Γ.

- A has a dominant eigenvalue λ_{1} with right and left eigenvectors $\mathbf{r}, \mathbf{r}^{T} \geq \mathbf{0}$ scaled so that $\mathbf{r}^{T} \mathbf{r}=1$ (Perron-Frobenius)
- A is diagonizable (Spectral Theorem $A^{T}=A$) so the period of A is either 1 or 2

The Power Method

Let A be the $n \times n$ adjacency matrix of a connected simple undirected graph Γ.

- A has a dominant eigenvalue λ_{1} with right and left eigenvectors $\mathbf{r}, \mathbf{r}^{T} \geq \mathbf{0}$ scaled so that $\mathbf{r}^{T} \mathbf{r}=1$ (Perron-Frobenius)
- A is diagonizable (Spectral Theorem $A^{T}=A$) so the period of A is either 1 or 2
- If Γ has a closed path of odd length then A is aperiodic.

The Power Method

Let A be the $n \times n$ adjacency matrix of a connected simple undirected graph Γ.

- A has a dominant eigenvalue λ_{1} with right and left eigenvectors $\mathbf{r}, \mathbf{r}^{T} \geq \mathbf{0}$ scaled so that $\mathbf{r}^{T} \mathbf{r}=1$ (Perron-Frobenius)
- A is diagonizable (Spectral Theorem $A^{T}=A$) so the period of A is either 1 or 2
- If Γ has a closed path of odd length then A is aperiodic.
- For $x_{0} \in \mathbb{R}^{n}$

$$
\lim _{k \rightarrow \infty} A^{k} / \lambda^{k} \mathbf{x}_{0}=\mathbf{r r}^{T} \mathbf{x}_{0}=\operatorname{proj}_{\mathbf{r}}\left(\mathbf{x}_{0}\right)
$$

The Power Method

Let A be the $n \times n$ adjacency matrix of a connected simple undirected graph Γ.

- A has a dominant eigenvalue λ_{1} with right and left eigenvectors $\mathbf{r}, \mathbf{r}^{T} \geq \mathbf{0}$ scaled so that $\mathbf{r}^{T} \mathbf{r}=1$ (Perron-Frobenius)
- A is diagonizable (Spectral Theorem $A^{T}=A$) so the period of A is either 1 or 2
- If Γ has a closed path of odd length then A is aperiodic.
- For $x_{0} \in \mathbb{R}^{n}$

$$
\lim _{k \rightarrow \infty} A^{k} / \lambda^{k} \mathbf{x}_{0}=\mathbf{r r}^{T} \mathbf{x}_{0}=\operatorname{proj}_{\mathbf{r}}\left(\mathbf{x}_{0}\right)
$$

- When $\operatorname{proj}_{\mathbf{r}}\left(\mathbf{x}_{0}\right) \neq \mathbf{0}$ the power method $\mathbf{x}_{n+1}=\frac{A \mathbf{x}_{n}}{\left\|A \mathbf{x}_{n}\right\|}$ converges to $\frac{\mathbf{r}}{\|\mathbf{r}\|}$

Eigencentrality

Lemma

A connected simple undirected graph Γ with at least one odd length closed path has an aperiodic irreducible nonnegative valued adjacency matrix A.

Eigencentrality

Lemma
A connected simple undirected graph Γ with at least one odd length closed path has an aperiodic irreducible nonnegative valued adjacency matrix A.

Theorem (Eigencentrality)

A simple undirected connected graph with at least one odd length closed path has a dominant eigenvector with a corresponding positive valued eigenvector. Once scaled this vector is the eigencentrality (or eigenvector centrality) ranking for the graph.

Eigencentrality

Lemma
A connected simple undirected graph Γ with at least one odd length closed path has an aperiodic irreducible nonnegative valued adjacency matrix A.

Theorem (Eigencentrality)

A simple undirected connected graph with at least one odd length closed path has a dominant eigenvector with a corresponding positive valued eigenvector. Once scaled this vector is the eigencentrality (or eigenvector centrality) ranking for the graph.
Note:Larger coordinate entries represent the corresponding vertex in the graph being more central.

Graph theoretic conditions

Theorem

Let Γ be a directed graph with weighted nonnegative adjacency matrix A and the following:

1. 「 is strongly connected
2. There are two closed paths at a single vertex with relatively prime length.
Then λ is the Perron-Frobenius eigenvalue with left and right eigenvectors I and \boldsymbol{r} and for any $\boldsymbol{x}_{0} \in \mathbb{R}^{n}$:

$$
\lim _{k \rightarrow \infty}(A / \lambda)^{k} \boldsymbol{x}_{0}=a r
$$

with $a=0$ iff $\boldsymbol{x}_{0}^{T} \in \boldsymbol{I}^{\perp}$

PageRank[2]

Let vertices be webpages.

PageRank[2]

Let vertices be webpages.
PageRank graph has two types of directed edges:

PageRank[2]

Let vertices be webpages.
PageRank graph has two types of directed edges:

1. Hyperlinks weighted (with probability α)

Where $0<\alpha<1$ is called the damping

PageRank[2]

Let vertices be webpages.
PageRank graph has two types of directed edges:

1. Hyperlinks weighted (with probability α)
2. Random jump to any other vertex (with probability $1-\alpha$) Where $0<\alpha<1$ is called the damping

PageRank[2]

Let vertices be webpages.
PageRank graph has two types of directed edges:

1. Hyperlinks weighted (with probability α)
2. Random jump to any other vertex (with probability $1-\alpha$) Where $0<\alpha<1$ is called the damping

- The adjacency matrix A, for PageRank, is related to the weighted adjacency matrix of hyperlinks H and the matrix R with all ones.

$$
A=\alpha H+(1-\alpha) R
$$

PageRank[2]

Let vertices be webpages.
PageRank graph has two types of directed edges:

1. Hyperlinks weighted (with probability α)
2. Random jump to any other vertex (with probability $1-\alpha$) Where $0<\alpha<1$ is called the damping

- The adjacency matrix A, for PageRank, is related to the weighted adjacency matrix of hyperlinks H and the matrix R with all ones.

$$
A=\alpha H+(1-\alpha) R
$$

- Since every vertex is connected to every other, the graph is strongly connected and if there are 3 webpages aperiodic.

PageRank[2]

Let vertices be webpages.
PageRank graph has two types of directed edges:

1. Hyperlinks weighted (with probability α)
2. Random jump to any other vertex (with probability $1-\alpha$) Where $0<\alpha<1$ is called the damping

- The adjacency matrix A, for PageRank, is related to the weighted adjacency matrix of hyperlinks H and the matrix R with all ones.

$$
A=\alpha H+(1-\alpha) R
$$

- Since every vertex is connected to every other, the graph is strongly connected and if there are 3 webpages aperiodic.
- The PageRank is the resulting Perron-Frobenius right eigenvector (Appropriately scaled).

Sources

圊 Bruce P. Kitchens.
Symbolic dynamics.
Universitext. Springer-Verlag, Berlin, 1998.
One-sided, two-sided and countable state Markov shifts.
固 Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd.
The pagerank citation ranking: Bringing order to the web. Technical Report 1999-66, Stanford InfoLab, November 1999.

Previous number = SIDL-WP-1999-0120.

