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Graphs

A simple undirected graph Γ = (V ,E) where V is a set called
the vertices and E ⊆ V 2 is called the edges such that E has
the following properties:

I Antireflexive: (x , x) 6∈ E for all x ∈ V .
I Symmetric: If (x , y) ∈ E then (y , x) ∈ E .

In practice we think of them as pictures:

A B C

D

E

V = {A,B,C,D,E}

E = {(A,B), (A,C), (B,D), (C,D), (C,E),

(D,E), (B,A), (C,A), (D,B), (D,C),

(E ,C), (E ,D)}
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Vertex-Vertex Adjacency Matrix

For a graph Γ = (V ,E) with n vertices we can relabel the
vertices to be V = {1,2, . . . ,n}. An adjacency matrix A for Γ is
defined in the following way:

(A)ij =

{
1 if (i , j) ∈ E
0 if (i , j) 6∈ E

1 2 3

4

5

A =


0 1 1 0 0
1 0 0 1 0
1 0 0 1 1
0 1 1 0 1
0 0 1 1 0


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Multiplication By an Adjacency Matrix

1 0 0

0

0

x0 =


1
0
0
0
0


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0 1 1

0

0
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1
1
0
0
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Multiplication By an Adjacency Matrix

0 1 1

0

0

Ax0 =


0
1
1
0
0



2 0 0

2

1

A2x0 =


2
0
0
2
1





Multiplication By an Adjacency Matrix

2 0 0

2

1

A2x0 =


2
0
0
2
1



0 4 5

1

2

A3x0 =


0
4
5
1
2





Multiplication By an Adjacency Matrix
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5
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9 1 3

11

6

A4x0 =


9
1
3
11
6





Multiplication By an Adjacency Matrix

9 1 3

11

6

A4x0 =


9
1
3
11
6
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4 20 26

10

14

A5x0 =


4
20
26
10
14





Multiplication By an Adjacency Matrix

4 20 26

10

14

A5x0 =


4
20
26
10
14



Things start getting large so lets scale them to add up to 1

.05 .27 .35

.14

.19

A5x0

‖A5x0‖1
≈


0.05
0.27
0.35
0.14
0.19





Multiplication By an Adjacency Matrix

Applying the following procedure repeatedly

xn+1 =
Axn

‖Axn‖1

will sometimes result in a stable value xn+1 → x For this
particular graph and x0 we get the following:

.16 .16 .24

.24

.19

xn → x =


0.16
0.16
0.24
0.24
0.19





Directed Graphs

A directed graph (or digraph) Γ = (V ,E) where V is a set
called the vertices and E ⊆ V 2 is called the edges. We think
of each edge (i , j) as being a directed edge (arrow) based at i
pointing to j .

1

2

3

4

5

Note: A simple undirected graph
Γ = (V ,E) is also a digraph. You can
think of splitting each undirected
edge between i and j into two
directed edges (i , j) and (j , i).

You can also assign each directed edge (i , j) a weight wij > 0.
Then define adjacency matrix

(A)ij =

{
wij if (i , j) ∈ E
0 if (i , j) 6∈ E
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Definitions

1. If real square matrix A has eigenvalues
|λ1| > |λ2| ≥ · · · ≥ |λr | then λ1 is a dominant eigenvalue.

2. matrix A is irreducible if for every two indices i and j there
is a k ∈ N such that (Ak )ij > 0.

3. A graph Γ is strongly connected if for every to vertices i , j
there is a directed path from i to j .

Note: if Γ is strongly
connected iff its adjacency matrix A is irreducible.

4. The gcd of all the lengths of closed directed paths at i is
called the period of index i .

It can be computed by
p(i) = gcd{k | (Ak )ii > 0}. If Γ is strongly connected then
these periods are independent of the base index and are
simply called the period of A.

5. if the period of A is 1 we call A aperiodic.
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The Crucial Theorem
Theorem (The Perron-Frobenius theorem)
[1] Let A be an n × n real valued nonnegative matrix. If A is
irreducible then it has an eigenvalue λ > 0 such that:

1. λ is a simple root of the characteristic polynomial.
2. λ has strictly positive left eigenvector l and right

eigenvector r.
3. The eigenvectors of λ are unique up to a scalar.
4. Any eigenvalue µ of A has |µ| ≤ λ
5. If 0 ≤ B ≤ A and β is an eigenvalue of B then |β| ≤ λ and

equality occurs iff A=B.
6. If A has period p then µ = λe2πki/p are the p eigenvalues

with |µ| = λ

7. If A is aperiodic and lr = 1 then

lim
k→∞

Ak/λk = rl
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The Power Method
Let A be the n × n adjacency matrix of a connected simple
undirected graph Γ.

I A has a dominant eigenvalue λ1 with right and left
eigenvectors r, rT ≥ 0 scaled so that rT r = 1
(Perron-Frobenius)

I A is diagonizable (Spectral Theorem AT = A) so the period
of A is either 1 or 2

I If Γ has a closed path of odd length then A is aperiodic.
I For x0 ∈ Rn

lim
k→∞

Ak/λkx0 = rrT x0 = projr(x0)

I When projr(x0) 6= 0 the power method xn+1 =
Axn

‖Axn‖
converges to

r
‖r‖
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I If Γ has a closed path of odd length then A is aperiodic.
I For x0 ∈ Rn

lim
k→∞

Ak/λkx0 = rrT x0 = projr(x0)

I When projr(x0) 6= 0 the power method xn+1 =
Axn

‖Axn‖
converges to

r
‖r‖



Eigencentrality

Lemma
A connected simple undirected graph Γ with at least one odd
length closed path has an aperiodic irreducible nonnegative
valued adjacency matrix A.

Theorem (Eigencentrality)
A simple undirected connected graph with at least one odd
length closed path has a dominant eigenvector with a
corresponding positive valued eigenvector. Once scaled this
vector is the eigencentrality ( or eigenvector centrality )
ranking for the graph.
Note:Larger coordinate entries represent the corresponding
vertex in the graph being more central.
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Graph theoretic conditions

Theorem
Let Γ be a directed graph with weighted nonnegative adjacency
matrix A and the following:

1. Γ is strongly connected
2. There are two closed paths at a single vertex with relatively

prime length.
Then λ is the Perron-Frobenius eigenvalue with left and right
eigenvectors l and r and for any x0 ∈ Rn:

lim
k→∞

(A/λ)kx0 = ar

with a = 0 iff xT
0 ∈ l⊥



PageRank[2]

Let vertices be webpages.

PageRank graph has two types of directed edges:

1. Hyperlinks weighted (with probability α )
2. Random jump to any other vertex (with probability 1− α )

Where 0 < α < 1 is called the damping

I The adjacency matrix A, for PageRank, is related to the
weighted adjacency matrix of hyperlinks H and the matrix
R with all ones.

A = αH + (1− α)R

I Since every vertex is connected to every other, the graph is
strongly connected and if there are 3 webpages aperiodic.

I The PageRank is the resulting Perron-Frobenius right
eigenvector (Appropriately scaled).
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