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Motivation

In a finite discrete linear dynamical system

xn+1 = Axn

What are sufficient conditions for xn+1 to converge?

More generally: When does the power method converge?

xn+1 =
Axn

‖Axn‖
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History

Oskar Perron in 1907 proved the following theorem [Per07] :

Theorem (Perron’s Theorem)
Let A be a strictly positive valued n × n matrix. Then A has a
positive eigenvalue λ with λ > |µ| for all other eigenvectors µ
and corresponding right eigenvector v with all positive entries.

I From 1908-1912 Frobenius published 3 papers
generalizing the result to nonnegative matrices in
[Fro09, Fro12].

I His general idea was that if you have a matrix A with Ak

strictly positive for some k then the theorem holds.
I In 1948 Kreı̆n and Rutman proved a Bannach Space

version of the theorem [KR48, KR50].
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Condtions for Ak > 0
I If A ≥ 0 has Ak > 0 (coordinatewise) for some k then A is

primitive.

I A ≥ 0 is primitive then it is both irreducible and
aperiodic.

I A is irreducible if for each i , j indices there is a k such that
(Ak )ij > 0.

I A is aperiodic if for each index i , 1 = gcd{k | (Ak )ii > 0}.
I this quantity p(i) = gcd{k | (Ak )ii > 0} is called the period

of index i . If A is irreducible each index has the same
period p so we would call p the period of A.

I Caution: The use of the words irreducible and period are
overloaded and likely don’t mean the same thing as other
fields.

A =

0 1 0
1 0 1
0 1 0

A2 =

1 0 1
0 2 0
1 0 1

A3 =

0 2 0
2 0 2
0 2 0

A4 =

2 0 2
0 4 0
2 0 2


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Weighted Digraphs

A finite Weighted Directed Graph ( or digraph) Γ = (V ,E ,w)
is a set of vertices V = {1,2, . . . ,n} with edges E ⊂ V 2 and
weight function w : E → (0,∞) defined by w(i , j) = wij for all
(i , j) ∈ E .

We can define adjacency matrix A for digraph Γ in the following
way

(A)ij =

{
wij if (i , j) ∈ E
0 if (i , j) 6∈ E
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Digraphs and Primitivity

I Γ is strongly connected if for any two i , j ∈ V there is a
path i → j and another path j → i .

I Γ is aperiodic if there is no integer k > 1 that divides the
length of every closed path i → i .

I (A)ij > 0 if (i , j) ∈ E
I (Ak )ij > 0 if there is a path of length k from i → j
I The adjacency matrix A for a weighted digraph Γ is

primitive iff Γ is strongly connected and aperiodic.
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For Nonnegative Irreducible Matrices
Theorem (The Perron-Frobenius theorem)
[Kit98] Let A be an n × n real valued nonnegative matrix. If A is
irreducible then it has an eigenvalue λ > 0 such that:

1. λ is a simple root of the characteristic polynomial.
2. λ has strictly positive left eigenvector vT and right

eigenvector w.
3. The eigenvectors of λ are unique up to a scalar.
4. Any eigenvalue µ of A has |µ| ≤ λ
5. If 0 ≤ B ≤ A and β is an eigenvalue of B then |β| ≤ λ and

equality occurs iff A=B.
6. If A has period p then µ = λe2πki/p are the p eigenvalues

with |µ| = λ

7. If A is aperiodic and vT w = 1 then

lim
k→∞

(A/λ)k = wvT
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The Power Method

Let A be the adjacency matrix of a strongly connected aperiodic
digraph Γ. Then A is primitive and:

I λ > 0 is the Perron-Frobenius eigenvalue with left
eigenvector vT > 0 and right eigenvector w > 0 .

I Let x0 ∈ Rn
≥0 nonzero then

lim
k→∞

(A/λ)kx0 = aw

lim
k→∞

xT
0 (A/λ)k = bvT

and a,b 6= 0
I Thus both the left and right power methods converge to vT

and w respectively.



Eigenvector centrality

Lemma
A connected simple undirected graph Γ with at least one odd
length closed path has an aperiodic irreducible nonnegative
valued adjacency matrix A.

Theorem (Eigencentrality)
A simple undirected connected graph with at least one odd
length closed path has a dominant eigenvector with a
corresponding positive valued eigenvector. Once scaled this
vector is the eigencentrality ( or eigenvector centrality )
ranking for the graph.
Note:Larger coordinate entries represent the corresponding
vertex in the graph being more central.
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PageRank[PBMW99]

Let vertices be webpages.

PageRank graph has two types of directed edges:

1. Hyperlinks weighted (with probability α )
2. Random jump to any other vertex (with probability 1− α )

Where 0 < α < 1 is called the damping

I The adjacency matrix A, for PageRank, is related to the
weighted adjacency matrix of hyperlinks H and the matrix
R with all ones.

A = αH + (1− α)R

I Since every vertex is connected to every other, the graph is
strongly connected and if there are 3 webpages aperiodic.

I The PageRank is the resulting Perron-Frobenius right
eigenvector (Appropriately scaled).
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Leslie Matrices
A transitional matrix as follows is called a Leslie Matrix
[Les45]: 

f1 f2 f3 · · · fn−1 fn
s1 0 0 · · · 0 0
0 s2 0 · · · 0 0
0 0 s3 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · sn−2 sn



I The |si | < 1 are survival rates and fi ≥ 0 are fecundity
rates.

I si > 0 for all i and fn > 0 guarantee the underlying state
graph is strongly connected and aperiodic.

I The Perron-Frobenius eigenvalue λ tells you if the
population is stable, growing or going extinct.

I The appropriate eigenvector gives the asymptotic
distribution of the cohorts.



Leslie Matrices
A transitional matrix as follows is called a Leslie Matrix
[Les45]: 

f1 f2 f3 · · · fn−1 fn
s1 0 0 · · · 0 0
0 s2 0 · · · 0 0
0 0 s3 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · sn−2 sn


I The |si | < 1 are survival rates and fi ≥ 0 are fecundity

rates.

I si > 0 for all i and fn > 0 guarantee the underlying state
graph is strongly connected and aperiodic.

I The Perron-Frobenius eigenvalue λ tells you if the
population is stable, growing or going extinct.

I The appropriate eigenvector gives the asymptotic
distribution of the cohorts.



Leslie Matrices
A transitional matrix as follows is called a Leslie Matrix
[Les45]: 

f1 f2 f3 · · · fn−1 fn
s1 0 0 · · · 0 0
0 s2 0 · · · 0 0
0 0 s3 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · sn−2 sn


I The |si | < 1 are survival rates and fi ≥ 0 are fecundity

rates.
I si > 0 for all i and fn > 0 guarantee the underlying state

graph is strongly connected and aperiodic.

I The Perron-Frobenius eigenvalue λ tells you if the
population is stable, growing or going extinct.

I The appropriate eigenvector gives the asymptotic
distribution of the cohorts.



Leslie Matrices
A transitional matrix as follows is called a Leslie Matrix
[Les45]: 

f1 f2 f3 · · · fn−1 fn
s1 0 0 · · · 0 0
0 s2 0 · · · 0 0
0 0 s3 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · sn−2 sn


I The |si | < 1 are survival rates and fi ≥ 0 are fecundity

rates.
I si > 0 for all i and fn > 0 guarantee the underlying state

graph is strongly connected and aperiodic.
I The Perron-Frobenius eigenvalue λ tells you if the

population is stable, growing or going extinct.

I The appropriate eigenvector gives the asymptotic
distribution of the cohorts.
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Markov Chains Example
0 < wij < 1 and each row (column) adds to 1.

Stagnant
market

Bull
market

Bear
market

0.25

0.025

0.075

0.05

0.15

0.25

0.5

0.9 0.8

[Jon13]



The Kreı̆n-Rutman Theorem

The following is copied from [PD94]:

Theorem (The Kreı̆n-Rutman Theorem)
Let X be a Banach Space and K ⊂ X a convex cone intK 6= ∅
and A ∈ L(X ,X ) a linear bounded operator. If A(intK ) ⊂ intK
then there is a nonzero functional f ∗ ∈ K ∗ such that A∗f ∗ = λf ∗,
λ > 0.
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Vũ Ngo. c Phát and Trinh Cong Dieu.
On the Kreı̆n-Rutman theorem and its applications to
controllability.
Proc. Amer. Math. Soc., 120(2):495–500, 1994.

Oskar Perron.
Zur Theorie der Matrices.
Math. Ann., 64(2):248–263, 1907.


