47

PRACTICE PROBLEMS

1. Let
$$A = \begin{bmatrix} 1 & 5 & -2 & 0 \\ -3 & 1 & 9 & -5 \\ 4 & -8 & -1 & 7 \end{bmatrix}$$
, $\mathbf{p} = \begin{bmatrix} 3 \\ -2 \\ 0 \\ -4 \end{bmatrix}$, and $\mathbf{b} = \begin{bmatrix} -7 \\ 9 \\ 0 \end{bmatrix}$. It can be shown that

p is a solution of Ax = b. Use this fact to exhibit b as a specific linear combination of the columns of A.

2. Let
$$A = \begin{bmatrix} 2 & 5 \\ 3 & 1 \end{bmatrix}$$
, $\mathbf{u} = \begin{bmatrix} 4 \\ -1 \end{bmatrix}$, and $\mathbf{v} = \begin{bmatrix} -3 \\ 5 \end{bmatrix}$. Verify Theorem 5(a) in this case by computing $A(\mathbf{u} + \mathbf{v})$ and $A\mathbf{u} + A\mathbf{v}$.

1.4 Exercises

Compute the products in Exercises 1-4 using (a) the definition, as in Example 1, and (b) the row-vector rule for computing Ax. If a product is undefined, explain why.

1.
$$\begin{bmatrix} -4 & 2 \\ 1 & 6 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ -2 \\ 7 \end{bmatrix}$$
 2.
$$\begin{bmatrix} 2 \\ 6 \\ -1 \end{bmatrix} \begin{bmatrix} 5 \\ -1 \end{bmatrix}$$

$$2. \begin{bmatrix} 2 \\ 6 \\ -1 \end{bmatrix} \begin{bmatrix} 5 \\ -1 \end{bmatrix}$$

3.
$$\begin{bmatrix} 6 & 5 \\ -4 & -3 \\ 7 & 6 \end{bmatrix} \begin{bmatrix} 2 \\ -3 \end{bmatrix}$$

3.
$$\begin{bmatrix} 6 & 5 \\ -4 & -3 \\ 7 & 6 \end{bmatrix} \begin{bmatrix} 2 \\ -3 \end{bmatrix}$$
 4.
$$\begin{bmatrix} 8 & 3 & -4 \\ 5 & 1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

In Exercises 5–8, use the definition of Ax to write the matrix equation as a vector equation, or vice versa.

$$\begin{bmatrix} 5 & 1 & -8 & 4 \\ -2 & -7 & 3 & -5 \end{bmatrix} \begin{bmatrix} 5 \\ -1 \\ 3 \\ -2 \end{bmatrix} = \begin{bmatrix} -8 \\ 16 \end{bmatrix}$$

$$\begin{bmatrix} 0.7 & -3 \\ 2 & 1 \\ 9 & -6 \\ -3 & 2 \end{bmatrix} \begin{bmatrix} -2 \\ -5 \end{bmatrix} = \begin{bmatrix} 1 \\ -9 \\ 12 \\ -4 \end{bmatrix}$$

nd

(a)

ted

: no . If

itry. ble,

also

$$\begin{bmatrix} 4 \\ -1 \\ 7 \\ -4 \end{bmatrix} + x_2 \begin{bmatrix} -5 \\ 3 \\ -5 \\ 1 \end{bmatrix} + x_3 \begin{bmatrix} 7 \\ -8 \\ 0 \\ 2 \end{bmatrix} = \begin{bmatrix} 6 \\ -8 \\ 0 \\ -7 \end{bmatrix}$$

8.
$$z_1\begin{bmatrix} 4 \\ -2 \end{bmatrix} + z_2\begin{bmatrix} -4 \\ 5 \end{bmatrix} + z_3\begin{bmatrix} -5 \\ 4 \end{bmatrix} + z_4\begin{bmatrix} 3 \\ 0 \end{bmatrix} = \begin{bmatrix} 4 \\ 13 \end{bmatrix}$$

In Exercises 9 and 10, write the system first as a vector equation and then as a matrix equation.

9.
$$3x_1 + x_2 - 5x_3 = 9$$

 $x_2 + 4x_3 = 0$

10.
$$8x_1 - x_2 = 4$$

$$5x_1 + 4x_2 = 1$$

$$x_1 - 3x_2 = 2$$

Given A and b in Exercises 11 and 12, write the augmented matrix for the linear system that corresponds to the matrix equation Ax = b. Then solve the system and write the solution as a vector.

11.
$$A = \begin{bmatrix} 1 & 2 & 4 \\ 0 & 1 & 5 \\ -2 & -4 & -3 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} -2 \\ 2 \\ 9 \end{bmatrix}$$

12.
$$A = \begin{bmatrix} 1 & 2 & 1 \\ -3 & -1 & 2 \\ 0 & 5 & 3 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}$$

13. Let
$$\mathbf{n} = \begin{bmatrix} 0 \\ 4 \\ 4 \end{bmatrix}$$
 and $A = \begin{bmatrix} 3 & -5 \\ -2 & 6 \\ 1 & 1 \end{bmatrix}$. Is \mathbf{n} in the plane \mathbb{R}^3

spanned by the columns of A? (See the figure.) Why or why not?

Where is u?

Linear Equations in Linear Algebra CHAPTER 1 48

14. Let
$$\mathbf{u} = \begin{bmatrix} 2 \\ -3 \\ 2 \end{bmatrix}$$
 and $A = \begin{bmatrix} 5 & 8 & 7 \\ 0 & 1 & -1 \\ 1 & 3 & 0 \end{bmatrix}$. Is \mathbf{u} in the subset

of \mathbb{R}^3 spanned by the columns of A? Why or why not?

of
$$\mathbb{R}^3$$
 spanned by the columns of A ? Why b and A 15. Let $A = \begin{bmatrix} 2 & -1 \\ -6 & 3 \end{bmatrix}$ and $b = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$. Show that the equation

Ax = b does not have a solution for all possible b, and describe the set of all b for which Ax = b does have a solution.

scribe the set of all b for which
$$Aa$$
 = $\begin{bmatrix} 1 & -3 & -4 \\ -3 & 2 & 6 \\ 5 & -1 & -8 \end{bmatrix}$, $b = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$.

Exercises 17-20 refer to the matrices A and B below. Make appropriate calculations that justify your answers and mention an appropriate theorem.

appropriate theorem.
$$A = \begin{bmatrix} 1 & 3 & 0 & 3 \\ -1 & -1 & -1 & 1 \\ 0 & -4 & 2 & -8 \\ 2 & 0 & 3 & -1 \end{bmatrix} \qquad B = \begin{bmatrix} 1 & 3 & -2 & 2 \\ 0 & 1 & 1 & -5 \\ 1 & 2 & -3 & 7 \\ -2 & -8 & 2 & -1 \end{bmatrix}$$

- 17. How many rows of A contain a pivot position? Does the equation Ax = b have a solution for each b in \mathbb{R}^4 ?
- 18. Do the columns of B span \mathbb{R}^4 ? Does the equation Bx = yhave a solution for each y in \mathbb{R}^4 ?
- 19. Can each vector in \mathbb{R}^4 be written as a linear combination of the columns of the matrix A above? Do the columns of Aspan ℝ⁴?
- 20. Can every vector in \mathbb{R}^4 be written as a linear combination of the columns of the matrix B above? Do the columns of Bspan R³?

21. Let
$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ -1 \\ 0 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} 0 \\ -1 \\ 0 \\ 1 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ -1 \end{bmatrix}$.

Does $\{v_1, v_2, v_3\}$ span \mathbb{R}^4 ? Why or why not?

Does
$$\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$$
 span \mathbb{R}^2 ? Why of why had 22. Let $\mathbf{v}_1 = \begin{bmatrix} 0 \\ 0 \\ -2 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} 0 \\ -3 \\ 8 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} 4 \\ -1 \\ -5 \end{bmatrix}$.

Does $\{v_1, v_2, v_3\}$ span \mathbb{R}^3 ? Why or why not?

In Exercises 23 and 24, mark each statement True or False. Justify each answer.

- 23. a. The equation Ax = b is referred to as a vector equation.
 - b. A vector \mathbf{b} is a linear combination of the columns of a matrix A if and only if the equation $Ax = \mathbf{b}$ has at least one solution.

- c. The equation Ax = b is consistent if the augmented matrix [A b] has a pivot position in every row.
- d. The first entry in the product Ax is a sum of products.
- e. If the columns of an $m \times n$ matrix A span \mathbb{R}^m , then the equation Ax = b is consistent for each b in \mathbb{R}^m .
- f. If A is an $m \times n$ matrix and if the equation Ax = b is inconsistent for some b in \mathbb{R}^m , then A cannot have a pivot position in every row.
- 24. a. Every matrix equation Ax = b corresponds to a vector equation with the same solution set.
 - b. Any linear combination of vectors can always be written in the form Ax for a suitable matrix A and vector x.
 - c. The solution set of a linear system whose augmented matrix is $[a_1 \ a_2 \ a_3 \ b]$ is the same as the solution set of Ax = b, if $A = [a_1 \ a_2 \ a_3]$.
 - d. If the equation Ax = b is inconsistent, then b is not in the set spanned by the columns of A.
 - e. If the augmented matrix $[A \ b]$ has a pivot position in every row, then the equation Ax = b is inconsistent.
 - f. If A is an $m \times n$ matrix whose columns do not span \mathbb{R}^m , then the equation $A\mathbf{x} = \mathbf{b}$ is inconsistent for some $\hat{\mathbf{b}}$ in \mathbb{R}^m .

25. Note that
$$\begin{bmatrix} 4 & -3 & 1 \\ 5 & -2 & 5 \\ -6 & 2 & -3 \end{bmatrix} \begin{bmatrix} -3 \\ -1 \\ 2 \end{bmatrix} = \begin{bmatrix} -7 \\ -3 \\ 10 \end{bmatrix}$$
. Use this fact

(and no row operations) to find scalars c_1 , c_2 , c_3 such that

$$\begin{bmatrix} -7 \\ -3 \\ 10 \end{bmatrix} = c_1 \begin{bmatrix} 4 \\ 5 \\ -6 \end{bmatrix} + c_2 \begin{bmatrix} -3 \\ -2 \\ 2 \end{bmatrix} + c_3 \begin{bmatrix} 1 \\ 5 \\ -3 \end{bmatrix}.$$

26. Let
$$\mathbf{u} = \begin{bmatrix} 7 \\ 2 \\ 5 \end{bmatrix}$$
, $\mathbf{v} = \begin{bmatrix} 3 \\ 1 \\ 3 \end{bmatrix}$, and $\mathbf{w} = \begin{bmatrix} 6 \\ 1 \\ 0 \end{bmatrix}$.

It can be shown that 3u - 5v - w = 0. Use this fact (and no row operations) to find x_1 and x_2 that satisfy the equation

$$\begin{bmatrix} 7 & 3 \\ 2 & 1 \\ 5 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 6 \\ 1 \\ 0 \end{bmatrix}.$$

27. Let q_1 , q_2 , q_3 , and v represent vectors in \mathbb{R}^5 , and let x_1 , x_2 , and x₃ denote scalars. Write the following vector equation as a matrix equation. Identify any symbols you choose to use.

$$x_1\mathbf{q}_1 + x_2\mathbf{q}_2 + x_3\mathbf{q}_3 = \mathbf{v}$$

28. Rewrite the (numerical) matrix equation below in symbolic form as a vector equation, using symbols v_1, v_2, \ldots for the