
Linear Algebra (Math 2890) Solution to Final Review Problems

1. Let A be the matrix

2 1 1
1 2 1
1 1 2

 .
(a) Prove that det(A− λI) = −(λ− 1)2(λ− 4).

Solution: Compute A− λI =

2− λ 1 1
1 2− λ 1
1 1 2− λ

 and

det(A − λI) = (2 − λ)3 + 1 + 1 − (2 − λ) − (2 − λ) − (2 − λ) =
8−12λ+ 6λ2−λ3 + 2−6 + 3λ = −λ3 + 6λ2−9λ+ 4 = (1−λ)2(4−λ).
(b) Find the eigenvalues and a basis of eigenvectors for A.
Solution: Solving −(λ− 1)2(λ− 4) = 0, we know that the eigenvalues
are 1 ,1 and 4.

When λ = 1, A− (1)I =


1 1 1

1 1 1

1 1 1

̃


1 1 1

0 0 0

0 0 0


x ∈ Null(A− I) if x1 + x2 + x3 = 0. So x1 = −x2 − x3 and

x =

−x2 − x3

x2

x3

 = x2

−1
1
0

 + x3

−1
0
1

. Thus {u1 =

−1
1
0

 , u2 =−1
0
1

} is a basis of eigenvectors when λ = 1.

When λ = 4, A− 4I =


−2 1 1

1 −2 1

1 1 −2

 ˜interchange r1 and r2,


1 −2 1

−2 1 1

1 1 −2


˜−2 r1 + r2,−r1 + r3


1 −2 1

0 −3 3

0 3 −3


1



˜r2 + r3, r2/(−3)


1 −2 1

0 1 −1

0 0 0

 ˜2r2 + r1


1 0 −1

0 1 −1

0 0 0

 x ∈ Null(A −

4I) if x1 − x3 = 0 and x2 − x3 = 0. So x =

x3

x3

x3

 = x3

1
1
1

. Thus

{u3 =

1
1
1

} is an eigenvector when λ = 4.

(c) Diagonalize the matrix A if possible.

Solution: So {u1 =

−1
1
0

 , u2 =

−1
0
1

 , u3 =

1
1
1

} is an basis for

R3 which are eigenvectors corresponding to λ = 1, λ = 1 and λ = 4.
Compute

Finally, we haveA = P

1 0 0
0 1 0
0 0 4

P−1 where P = [v1 v2 v3] =

−1 −1 1
1 0 1
0 1 1

.

(d) Find an expression for Ak.

Solution:Ak = P

1 0 0
0 1 0
0 0 4k

P−1 where P = [v1 v2 v3] =

−1 −1 1
1 0 1
0 1 1

.

Note that 1k = 1.

(e) Find an expression for the matrix exponential eA.

Solution:eA = P

e 0 0
0 e 0
0 0 e4

P−1 where P = [v1 v2 v3] =

−1 −1 1
1 0 1
0 1 1

.

Note that e1 = e.

2. Let B be the matrix

2 1 1
0 2 1
0 0 1

 .
(a) Find the characteristic equation of A.
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Solution: B − λI =

2− λ 1 1
0 2− λ 1
0 0 1− λ

.

So det(B − λI) = (2− λ)2(1− λ). The characteristic equation of A is
(2− λ)2(1− λ) = 0.

(b) Find the eigenvalues and a basis of eigenvectors for B.
Solving (2 − λ)2(1 − λ) = 0, we know that the eigenvalues of B are
λ = 2 and λ = 1.

When λ = 2, we have

B − λI =

2− 2 1 1
0 2− 2 1
0 0 1− 2

 =

0 1 1
0 0 1
0 0 −1


˜r2 := r2 + r3, r1 := r1 + r3 =

0 1 0
0 0 1
0 0 0

.

The solution of (B − 2I)x = 0 is x2 = 0, x3 = 0 and x1 is free. So

Null(B − 2I) = {

x1

0
0

 = x1

1
0
0

}.
The basis for the eigenspace corresponding to eigenvalue 2 is {

1
0
0

}.
When λ = 1, we have

B − λI =

2− 1 1 1
0 2− 1 1
0 0 1− 1

 =

1 1 1
0 1 1
0 0 0


˜r1 := r1 − r2 =

1 0 0
0 1 1
0 0 0

.

The solution of (B − I)x = 0 is x1 = 0 and x2 + x3 = 0 So x1 = 0,

x2 = −x3 and x3 is free. Null(B − I) = {

 0
−x3

x3

 = x3

 0
−1
1

}.
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The basis for the eigenspace corresponding to eigenvalue 1 is {

 0
−1
1

 .
So

1
0
0

 is an eigenvector corresponding to eigenvalue 2 and

 0
−1
1

 is

an eigenvector corresponding to eigenvalue 1

(c) Diagonalize the matrix B if possible.

From (b), we know that B has only two independent eigenvectors and
B is not diagonzalizable.

3. Let A be the matrix

A =


−4 −5 5

−5 −4 −5

5 −5 −4


(a) Prove that det(A − λI) = (9 + λ)2(6 − λ). You may use the fact

that (9 + λ)2(6− λ) = 486 + 27λ− 12λ2 − λ3.

Solution: Compute A− λI =


−4− λ −5 5

−5 −4− λ −5

5 −5 −4− λ

 and

det(A− λI)
= (−4− λ)3 + (−5)(−5)5 + 5(−5)(−5)
− 5(−4− λ)5− (−5)(−5)(−4− λ)− (−4− λ)(−5)(−5)
= (−4−λ)(16+8λ+λ2)+125+125+100+25λ+100+25λ+100+25λ
= −64− 32λ− 4λ2 − 16λ− 8λ2 − λ3 + 550 + 75λ
= 486 + 27λ− 12λ2 − λ3 = (9 + λ)2(6− λ).

(b) Orthogonally diagonalizes the matrix A, giving an orthogonal ma-
trix P and a diagonal matrix D such that A = PDP t.

Solution: Solving det(A − λI) = (9 + λ)2(6 − λ) = 0, we know
that the eigenvalues are -9 ,-9 and 6.

When λ = −9, A−(−9)I = A+9I =


−4 + 9 −5 5

−5 −4 + 9 −5

5 −5 −4 + 9


4



=


5 −5 5

−5 5 −5

5 −5 5

̃


1 −1 1

−1 1 −1

1 −1 1

̃


1 −1 1

0 0 0

0 0 0


x ∈ Null(A− I) if x1 − x2 + x3 = 0. So x1 = x2 − x3 and

x =

x2 − x3

x2

x3

 = x2

1
1
0

 + x3

−1
0
1

. Thus {u1 =

1
1
0

 , u2 =−1
0
1

} is a basis of eigenvectors when λ = −9.

Now we use Gram-Schmidt process to find an orthogonal basis for
Null(A− (−9)I).

Let v1 = u1 =

1
1
0

 and v2 = u2 − u2·v1

v1·v1
v1.

Compute u2 · v1 =

−1
0
1

 ·
1

1
0

 = −1 and v1 · v1 =

1
1
0

 ·
1

1
0

 = 2.

So v2 =

−1
0
1

− (−1
2

)

1
1
0

 =

−1
0
1

+ (1
2
)

1
1
0

 =

−1
2

1
2

1

.

Now we can replace v2 by 2v2 = 2

−1
2

1
2

1

 =

−1
1
2


Hence {v1 =

1
1
0

 , v2 =

−1
1
2

}is an orthogonal basis of eigenvec-

tors when λ = −9.

When λ = 6, A−6I =


−4− 6 −5 5

−5 −4− 6 −5

5 −5 −4− 6

 ∼

−10 −5 5

−5 −10 −5

5 −5 −10

 ∼

−2 −1 1

−1 −2 −1

1 −1 −2

 ˜interchange r1 and r3,


1 −1 −2

−1 −2 −1

−2 −1 1


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˜r2 := r2 + r1


1 −1 2

0 −3 −3

−2 −1 1


˜r3 := r3 + 2r1


1 −1 2

0 −3 −3

0 −3 −3

 ˜r3 := r3 − r2, r2 := r2/3


1 −1 2

0 1 1

0 0 0

 ˜r1 := r1 + r2


1 0 −1

0 1 1

0 0 0


x ∈ Null(A−6I) if x1−x3 = 0 and x2 +x3 = 0. So x =

 x3

−x3

x3

 =

x3

 1
−1
1

. Thus {v3 =

 1
−1
1

} is an eigenvector when λ = 6.

So {v1 =

1
1
0

 , v2 =

−1
1
2

 , v3 =

 1
−1
1

} is an orthogonal basis

for R3 which are eigenvectors corresponding to λ = −9, λ = −9
and λ = 6. Compute ||v1|| =

√
2, ||v2|| =

√
6 and ||v3|| =

√
3.

Thus { v1

||v1|| =

 1√
2

1√
2

0

 , v2

||v2|| =

−
1√
6

1√
6

2√
6

 , v3

||v3|| =


1√
3

− 1√
3

1√
3

} is an or-

thonormal basis for R3 which are eigenvectors corresponding to
λ = −9, λ = −9 and λ = 6.

Finally, we haveA = P

−9 0 0
0 −9 0
0 0 6

P T where P = [ v1

||v1||
v2

||v2||
v3

||v3|| ] =
1√
2
− 1√

6
1√
3

1√
2

1√
6
− 1√

3

0 2√
6

1√
3

.

(c) Write the quadratic form associated with A using variables x1, x2,
and x3?

Solution: Recall that A =


−4 −5 5

−5 −4 −5

5 −5 −4

 and the quadratic
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form in x1, x2 and x3 is QA(x) = xTAx = −4x2
1 − 4x2

2 − 4x2
3 −

10x1x2 + 10x1x3 − 10x2x3. Note that this quadratic is indefinite
(b/c it’s eigenvalues are −9,−9, 6.)

(d) Find an expression for Ak and eA.

Solution: FromA = P

−9 0 0
0 −9 0
0 0 6

P T where P =


1√
2
− 1√

6
1√
3

1√
2

1√
6
− 1√

3

0 2√
6

1√
3

,

we have

Ak = P

(−9)k 0 0
0 (−9)k 0
0 0 6k

P T and eA = P

e−9 0 0
0 e−9 0
0 0 e6

P T .

(e) What’s A5(

 1
−1
1

)?

Solution: Recall that

 1
−1
1

 is an eigenvector ofA =


−4 −5 5

−5 −4 −5

5 −5 −4


with eigenvalue 6, so we have A(

 1
−1
1

) = 6

 1
−1
1

,

A2(

 1
−1
1

) = A(6

 1
−1
1

) = 6A(

 1
−1
1

) = 62

 1
−1
1

. Similarly, we

get Ak(

 1
−1
1

) = 6k

 1
−1
1

 and A5(

 1
−1
1

) = 65

 1
−1
1

.

(f) What is limn→∞A
−n(

 1
−1
1

)?

Solution: We haveA−n(

 1
−1
1

) = 6−n

 1
−1
1

 =

 1
6n

− 1
6n

1
6n

. So limn→∞A
−n(

 1
−1
1

) =

limn→∞

 1
6n

− 1
6n

1
6n

 =

0
0
0

.
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4. Classify the quadratic forms for the following quadratic forms. Make
a change of variable x = Py, that transforms the quadratic form into
one with no cross term. Also write the new quadratic form.

(a) 9x2
1 − 8x1x2 + 3x2

2.

Let Q(x1, x2) = 9x2
1 − 8x1x2 + 3x2

2 = xT

[
9 −4
−4 3

]
x and A =[

9 −4
−4 3

]
. We want to orthogonally diagonalizes A.

Compute A−λI =

[
9− λ −4
−4 3− λ

]
and det(A−λI) = (9−λ)(3−

λ)− 16 = λ2 − 12λ+ 27− 16 = λ2 − 12λ+ 11 = (λ− 1)(λ− 11).
So λ = 1 or λ = 11. Since the eigenvalues of A are all positive,
we know that the quadratic form is positive definite.

Now we diagonalize A.

λ = 1: A − 1 · I =

[
9− 1 −4
−4 3− 1

]
=

[
8 −4
−4 2

]̃ [
2 −1
0 0

]
. So

x ∈ Null(A−1 · I) iff 2x1−x2 = 0. So x2 = 2x1 and x =

[
x1

2x1

]
=

x1

[
1
2

]
. So

[
1
2

]
is an eigenvector corresponding to eigenvalue λ =

1.

λ = 11: A − 11 · I =

[
9− 11 −4
−4 3− 11

]
=

[
−2 −4
−4 −8

]̃ [
1 2
0 0

]
.

So x ∈ Null(A − 11 · I) iff x1 + 2x2 = 0. So x1 = −2x2 and

x =

[
−2x2

x2

]
= x2

[
−2
1

]
. So

[
−2
1

]
is an eigenvector corresponding

to eigenvalue λ = 11.

Now {v1 =

[
1
2

]
, v2 =

[
−2
1

]
} is an orthogonal basis. Compute

||v1|| =
√

5 and ||v2|| =
√

5. Thus { v1

||v1|| =

[
1√
5

2√
5

]
, v2

||v2|| =

[
−2√

5
1√
5

]
} is

an orthonormal basis of eigenvectors. So we haveA = P

[
1 0
0 11

]
P T

where P =

[
1√
5
−2√

5
2√
5

1√
5

]
.
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Now Q(x) = xTAx = xTP

[
1 0
0 11

]
P Tx = yT

[
1 0
0 11

]
y = y2

1 +

11y2
2 if y = P Tx. So Py = PP Tx, x = Py and P =

[
1√
5

2√
5

−2√
5

1√
5

]
.

Note that we have used the fact that PP T = I.

(b) −5x2
1 + 4x1x2 − 2x2

2.

Let Q(x1, x2) = −5x2
1 + 4x1x2 − 2x2

2 = xT

[
−5 2
2 −2

]
x and A =[

−5 2
2 −2

]
. We want to orthogonally diagonalizes A.

Compute A− λI =

[
−5− λ 2

2 −2− λ

]
and det(A− λI) = (−5−

λ)(−2−λ)− 4 = λ2 + 7λ+ 10− 4 = λ2 + 7λ+ 6 = (λ+ 1)(λ+ 6).
So λ = −1 or λ = −6. Since the eigenvalues of A are all negative,
we know that the quadratic form is negative definite.

Now we diagonalize A.

λ = −1: A−(−1)·I =

[
−5− (−1) 2

2 −2− (−1)

]
=

[
−4 2
2 −1

]̃ [
2 −1
0 0

]
.

So x ∈ Null(A − 1 · I) iff 2x1 − x2 = 0. So x2 = 2x1 and

x =

[
x1

2x1

]
= x1

[
1
2

]
. So

[
1
2

]
is an eigenvector corresponding

to eigenvalue λ = −1.

λ = −6: A−(−6)·I =

[
−5− (−6) 2

2 (−2)− (−6)

]
=

[
1 2
2 4

]̃ [
1 2
0 0

]
.

So x ∈ Null(A − 11 · I) iff x1 + 2x2 = 0. So x1 = −2x2 and

x =

[
−2x2

x2

]
= x2

[
−2
1

]
. So

[
−2
1

]
is an eigenvector corresponding

to eigenvalue λ = −6.

Now {v1 =

[
1
2

]
, v2 =

[
−2
1

]
} is an orthogonal basis. Compute

||v1|| =
√

5 and ||v2|| =
√

5. Thus { v1

||v1|| =

[
1√
5

2√
5

]
, v2

||v2|| =

[
−2√

5
1√
5

]
} is

an orthonormal basis of eigenvectors. So we haveA = P

[
−1 0
0 −6

]
P T
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where P =

[
1√
5
−2√

5
2√
5

1√
5

]
.

Now Q(x) = xTAx = xTP

[
−1 0
0 −6

]
P Tx = yT

[
−1 0
0 −6

]
y =

−y2
1 − 6y2

2 if y = P Tx. So Py = PP Tx, x = Py and P =[
1√
5

2√
5

−2√
5

1√
5

]
.

(c) 8x2
1 + 6x1x2.

Let Q(x1, x2) = 8x2
1 + 6x1x2 = xT

[
8 3
3 0

]
x and A =

[
8 3
3 0

]
. We

want to orthogonally diagonalizes A.

Compute A − λI =

[
8− λ 3

3 0− λ

]
and det(A − λI) = (8 − λ) ·

(−λ) − 9 = λ2 − 8λ − 9 = (λ + 1)(λ − 9). So λ = −1 or λ = 9.
Since A has positive and negative eigenvalues, we know that the
quadratic form is indefinite.

Now we diagonalize A.

λ = −1: A − (−1) · I =

[
8− (−1) 3

3 0− (−1)

]
=

[
9 3
3 1

]̃ [
3 1
0 0

]
.

So x ∈ Null(A − 1 · I) iff 3x1 + x2 = 0. So x2 = −3x1 and

x =

[
x1

−3x1

]
= x1

[
1
−3

]
. So

[
1
−3

]
is an eigenvector corresponding

to eigenvalue λ = −1.

λ = 9: A − 9 · I =

[
8− 9 3

3 0− 9

]
=

[
−1 3
3 −9

]̃ [
1 −3
0 0

]
. So

x ∈ Null(A−9 · I) iff x1−3x2 = 0. So x1 = 3x2 and x =

[
3x2

x2

]
=

x2

[
3
1

]
. So

[
3
1

]
is an eigenvector corresponding to eigenvalue λ =

9.

Now {v1 =

[
1
−3

]
, v2 =

[
3
1

]
} is an orthogonal basis. Compute

||v1|| =
√

10 and ||v2|| =
√

10. Thus { v1

||v1|| =

[
1√
10
−3√
10

]
, v2

||v2|| =

10



[
3√
10
1√
10

]
} is an orthonormal basis of eigenvectors. So we have A =

P

[
−1 0
0 9

]
P T where P =

[
1√
10

−3√
10

3√
10

1√
10

]
.

Now Q(x) = xTAx = xTP

[
−1 0
0 9

]
P Tx = yT

[
−1 0
0 9

]
y = −y2

1 +

9y2
2 if y = P Tx. So Py = PP Tx, x = Py and P

[
1√
10

−3√
10

3√
10

1√
10

]
.

5. (a) Find a 3× 3 matrix A which is not diagonalizable?

Solution: Let A =

0 1 1
0 0 1
0 0 0

. Then det(A − λI) = −λ3 and the

eigenvalues of A are zero.

A−0·I =

0 1 1
0 0 1
0 0 0

 ∼
0 1 0

0 0 1
0 0 0

. The eigenvector x =

x1

x2

x3

 satisfies

x2 = 0 and x3 = 0. The eigenvector is x =

x1

0
0

 = x1

1
0
0

. So there is

only one eigenvector for A and A is not diagonalizable.

(b) Give an example of a 2× 2 matrix which is diagonalizable but not
orthogonally diagonalizable?

Solution: Let A =

[
1 4
1 1

]
. Then det(A − λI) ==

[
1− λ 4

1 1− λ

]
=

(1−λ)2− 4 = (1−λ)2− 22 = (1−λ− 2)(1−λ+ 2) = (−λ− 1)(3−λ).
So A has two distinct eigenvalues and A is diagonalizable. But A is
not symmetric. So A is not orthogonally diagonalizable.

6. Let A =


1 2 2

1 1 0

0 1 2

−1 0 −1

.
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(a) Find the condition on b =


b1
b2
b3
b4

 such that Ax = b is solvable.

Solution:

Consider the augmented matrix [A b] =


1 2 2 b1

1 1 0 b2

0 1 2 b3

−1 0 −1 b4



˜a2 := a2 + (−1)a1


1 2 2 b1

0 −1 −2 b2 − b1

0 1 2 b3

−1 0 −1 b4



˜a4 := a4 + a1


1 2 2 b1

0 −1 −2 b2 − b1

0 1 2 b3

0 2 1 b4 + b1



˜a2 := −a2


1 2 2 b1

0 1 2 −b2 + b1

0 1 2 b3

0 2 1 b4 + b1



˜a3 := a3 − a2, a4 := a4 − 2a2


1 2 2 b1

0 1 2 −b2 + b1

0 0 0 b3 + b2 − b1

0 0 −3 b4 − b1 + 2 b2



˜a3 ↔ a4


1 2 2 b1

0 1 2 −b2 + b1

0 0 −3 b4 − b1 + 2 b2

0 0 0 b3 + b2 − b1


From here, we can see that Ax = b has a solution if b3 +b2−b1 = 0.
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(b) What is the column space of A?

Solution:
The column space is the subspace spanned by the column vectors.
From the computation in (a), we know that the column vectors of

A are independent. So Col(A) = span{


1

1

0

−1

 ,


2

1

1

0

 ,


2

0

2

−1

}.
(c) Describe the subspace col(A)⊥ and find an basis for col(A)⊥.

Solution: col(A)⊥ = {x|x · y = 0 for all y ∈ col(A)}

= {


x1

x2

x3

x4

 |

x1

x2

x3

x4

 ·


1
1
0
−1

 = 0,


x1

x2

x3

x4

 ·


2
1
1
0

 = 0,


x1

x2

x3

x4




2
0
2
−1

 = 0}

= {


x1

x2

x3

x4

 |x1 + x2− x4 = 0, 2x1 + x2 + x3 = 0, 2x1 + 2x3− x4 = 0}

Consider


1 1 0 −1

2 1 1 0

2 0 2 −1

 ˜r2 := r2 − 2r1


1 1 0 −1

0 −1 1 2

2 0 2 −1


˜r3 := r3 − 2r1


1 1 0 −1

0 −1 1 2

0 −2 2 1

 ˜r2 := −r2


1 1 0 −1

0 1 −1 −2

0 −2 2 1


˜r3 := r3 + 2r2


1 1 0 −1

0 1 −1 −2

0 0 0 −3

 ˜r1 := r1 − r2


1 0 1 1

0 1 −1 −2

0 0 0 −3


˜r3 := r3/(−3)


1 0 1 1

0 1 −1 −2

0 0 0 1

 ˜r1 := r1 − r3, r2 := r2 + 2r3


1 0 1 0

0 1 −1 0

0 0 0 1


So x1+x3 = 0, x2−x3 = 0 and x4 = 0, x3 is free. This implies that
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x1 = −x3, x2 = x3 , x4 = 0 and x =

[
x1
x2
x3
x4

]
=

[
−x3
x3
x3
0

]
= x3

[
−1
1
1
0

]
.

Hence col(A)⊥ = span{
[
−1
1
1
0

]
} and {

[
−1
1
1
0

]
} is a basis for col(A)⊥.

The dimension of col(A)⊥ is 1.

(d) Use Gram-Schmidt process to find an orthogonal basis for the
column of the matrix A.
Solution:

Let w1 =

 1

1

0

−1

, w2 =

 2

1

1

0

 and w3 =

 2

0

2

−1

.

Gram-Schmidt process is
v1 = w1, v2 = w2 − w2·v1

v1·v1
v1 and v3 = w3 − w3·v1

v1·v1
v1 − w3·v2

v2·v2
v2.

So v1 =

 1

1

0

−1

 . Compute w2 · v1 =

 2

1

1

0

 ·
 1

1

0

−1

 = 3, v1 · v1 = 1

1

0

−1

 ·
 1

1

0

−1

 = 3 and v2 =

 2

1

1

0

− 3
3

 1

1

0

−1

 =

 1

0

1

1

 .
Compute w3 · v1 =

 2

0

2

−1

 ·
 1

1

0

−1

 = 3, w3 · v2 =

 2

0

2

−1

 ·
 1

0

1

1

 = 3,

v2 · v2 =

 1

0

1

1

 ·
 1

0

1

1

 = 3 and

v3 = w3 − w3·v1

v1·v1
v1 − w3·v2

v2·v2
v2 =

 2

0

2

−1

− 3
3

 1

1

0

−1

− 3
3

 1

0

1

1


=

 2−1−1

0−1−0

2−0−1

−1+1−1

 =

 0

−1

1

−1

. Hence {

 1

1

0

−1

 ,
 1

0

1

1

 ,
 0

−1

1

−1

} is an orthog-

onal basis for Col(A).

(e) Find an orthonormal basis for the column of the matrix A.
Solution:
Note that ||v1|| =

√
v1 · v1 =

√
3, ||v2|| =

√
v2 · v2 =

√
3 and
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||v3|| =
√
v3 · v3 =

√
3. Hence { v1

||v1|| ,
v2

||v2|| ,
v3

||v3||} = {


1√
3

1√
3

0

− 1√
3

 ,


1√
3

0

1√
3

1√
3

 ,


0

− 1√
3

1√
3

− 1√
3

}
is an orthonormal basis for Col(A).

(f) Find the orthogonal projection of y =

 7

3

10

−2

 onto the column

space of A and write y = ŷ+ z where ŷ ∈ col(A) and z ∈ col(A)⊥.
Also find the shortest distance from y to Col(A).

Solution: Since {v1 =

 1

1

0

−1

 , v2 =

 1

0

1

1

 , v3 =

 0

−1

1

−1

} is an

orthogonal basis for Col(A), y = ŷ + z where ŷ = y·v1

v1·v1
v1 +

y·v2

v2·v2
v2 + y·v3

v3·v3
v3 ∈ Col(A) and z = y − ŷ ∈ Col(A)⊥. Compute

y ·v1 =

 7

3

10

−2

 ·
 1

1

0

−1

 = 7+3+0+2 = 12, v1 ·v1 =

 1

1

0

−1

 ·
 1

1

0

−1

 =

1 + 1 + 1 = 3, y · v2 =

 7

3

10

−2

 ·
 1

0

1

1

 = 7 + 0 + 10 − 2 = 15,

v2 · v2 =

 1

0

1

1

 ·
 1

0

1

1

 = 3,

y·v3 =

 7

3

10

−2

·
 0

−1

1

−1

 = 0−3+10+2 = 9, v3·v3 =

 0

−1

1

−1

·
 0

−1

1

−1

 = 3.

So ŷ = 12
3

 1

1

0

−1

 + (15)
3

 1

0

1

1

 + 9
3

 0

−1

1

−1

 =

[
4+5+0
4+0−3
0+5+3
−4+5−3

]
=

[
9
1
8
−2

]
and

z = y − ŷ =

[
7
3
10
−2

]
−
[

9
1
8
−2

]
=

[
2
−2
2
0

]
. Note that z ∈ Col(A)⊥ =

span{
[

1
−1
1
0

]
}.

The shortest distance from y to Col(A) = ||y − ŷ|| = ||z|| =
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√
(2)2 + (−2)2 + (2)2 + (0)2 =

√
12.

(g) Using previous result to explain why Ax = y has no solution.
Solution: Since the orthogonal projection of y to Col(A) is not y,
this implies that y is not in Col(A). So Ax = y has no solution.

(h) Use orthogonal projection to find the least square solution of Ax =
y.

Solution: The least square solution of Ax = y is the solution of

Ax = ŷ =

[
9
1
8
−2

]
where ŷ is the orthogonal projection of y onto

the column space of A (from part (f), we know ŷ =

[
9
1
8
−2

]
.)

Consider the augmented matrix

[A ŷ] =


1 2 2 9

1 1 0 1

0 1 2 8

−1 0 −1 −2

 ˜r2 := r2 − r1, r3 := r3 + r1


1 2 2 9

0 −1 −2 −8

0 1 2 8

0 2 1 7



˜r3 := r3 + r2, r4 := r4 + r1


1 2 2 9

0 −1 −2 −8

0 0 0 0

0 0 −3 −9



˜r2 := −r2, r4 := r4/(−3), r3 ↔ r4


1 2 2 9

0 1 2 8

0 0 1 3

0 0 0 0



˜r2 := r2 − 2r3, r1 := r1 − 2r3


1 2 0 3

0 1 0 2

0 0 1 3

0 0 0 0


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˜r1 := r1 − 2r2


1 0 0 −1

0 1 0 2

0 0 1 3

0 0 0 0

.

So x1 = −1, x2 = 2, x3 = 3 and the least square solution of

Ax = y is x =


−1

2

3

 .
(i) Use normal equation to find the least square solution of Ax = y.

Solution: The normal equation is ATAx = ATy. Compute ATA =
1 1 0 −1

2 1 1 0

2 0 2 −1




1 2 2

1 1 0

0 1 2

−1 0 −1

 =


3 3 3

3 6 6

3 6 9



and ATy =


1 1 0 −1

2 1 1 0

2 0 2 −1


 7

3

10

−2

 =


12

27

36

.

So the normal equation ATAx = ATy is
3 3 3

3 6 6

3 6 9

x =


12

27

36

.

Consider the augmented matrix


3 3 3 12

3 6 6 27

3 6 9 36

 ∼

r2 := r2 − r1, r3 := r3 − r1


3 3 3 12

0 3 3 15

0 3 6 24


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∼ r3 := r3 − r2


3 3 3 12

0 3 3 15

0 0 3 9

 ∼ r1 := r1/3, r2 := r2/3, r3 :=

r3/3


1 1 1 4

0 1 1 5

0 0 1 3


∼ r2 := r2 − r3, r1 := r1 − r3


1 1 0 1

0 1 0 2

0 0 1 3


∼ r1 := r1 − r2,


1 0 0 −1

0 1 0 2

0 0 1 3


So x1 = −1, x2 = 2, x3 = 3 and the least square solution of

Ax = y is x =


−1

2

3

 .

7. Find the equation y = a+mx of the least square line that best fits the
given data points. (0, 1), (1, 1), (3, 2).

Solution: We try to solve the equations 1 = a, 1 = a+m, 2 = a+ 3m,
that is,
a = 1, a+m = 1 and a+3m = 2. It corresponding to the linear system 1 0

1 1
1 3

[ a
m

]
=

 1
1
2


Let A =

 1 0
1 1
1 3

. We solve the normal equation

ATA

[
a
m

]
= AT

 1
1
2

.
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Compute ATA =

[
1 1 1

0 1 3

] 1 0
1 1
1 3

 =

[
3 4

4 10

]
and

AT

 1
1
2

 =

[
1 1 1

0 1 3

] 1
1
2

 =

[
4

7

]
.

Consider the augmented matrix[
3 4 4

4 10 7

]
∼ r2 := r2 − 4

3
r1

[
3 4 4

0 14
3

5
3

]

∼ r2 := 3
14
r2

[
3 4 4

0 1 5
14

]
∼ r1 := r1 − 4r2

[
3 0 18

7

0 1 5
14

]

∼ r1 := r1/3

[
1 0 6

7

0 1 5
14

]
So the least square solution is a = 6

7
and m = 5

14
. The equation

y = 6
7

+ 5
14
x is the least square line that best fits the given data points.

(0, 1), (1, 1), (3, 2).

8. (a) Let A =

3 6 7
0 2 1
2 3 4

 . Find the inverse matrix of A if possible.

Solution: Consider the augmented matrix [A I] =


3 6 7 1 0 0

0 2 1 0 1 0

2 3 4 0 0 1


˜r1 := r1 − r3


1 3 3 1 0 −1

0 2 1 0 1 0

2 3 4 0 0 1


˜r3 := r3 − 2r1


1 3 3 1 0 −1

0 2 1 0 1 0

0 −3 −2 −2 0 3


˜r2 := r2 + r3


1 3 3 1 0 −1

0 −1 −1 −2 1 3

0 −3 −2 −2 0 3

 ˜r2 := −r2


1 3 3 1 0 −1

0 1 1 2 −1 −3

0 −3 −2 −2 0 3


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˜r3 := r3 + 3r2


1 3 3 1 0 −1

0 1 1 2 −1 −3

0 0 1 4 −3 −6


˜r2 := r2 − r3, r1 := r1 − 3r3


1 3 0 −11 9 17

0 1 0 −2 2 3

0 0 1 4 −3 −6


˜r1 := r1 − 3r2


1 0 0 −5 3 8

0 1 0 −2 2 3

0 0 1 4 −3 −6

.

So A−1 =


−5 3 8

−2 2 3

4 −3 −6

.

(b) Find the coordinates of the vector (1,−1, 2) with respect to the
basis B obtained from the column vectors of A.

Solution: The coordinate is x = A−1


1

−1

2

 =


−5 3 8

−2 2 3

4 −3 −6




1

−1

2

 =


8

2

−5

.

9. Let H =
{a+ 2b− c

a− b− 4c
a+ b− 2c

 : a, b, cany real numbers
}

.

a. Explain why H is a a subspace of R3.

Solution:

a+ 2b− c
a− b− 4c
a+ b− 2c

 = a

1
1
1

+ b

 2
−1
1

+ c

−1
−4
−2


So H = Span{

1
1
1

 ,
 2
−1
1

 ,
−1
−4
−2

} and H is a subspace.
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b. Find a set of vectors that spans H.

Solution:{

1
1
1

 ,
 2
−1
1

 ,
−1
−4
−2

} spans the space H.

c. Find a basis for H.

Solution: Consider the matrix A =

1 2 −1
1 −1 −4
1 1 −2


˜r2 := r2 − r1, r3 := r3 − r1

1 2 −1
0 −3 −3
0 −1 −1


˜r2 := r2/(−3)

1 2 −1
0 1 1
0 −1 −1

 ˜r3 := r3 + r2

1 2 −1
0 1 1
0 0 0

.

So the first two vectors are pivot vectors and {

1
1
1

 ,
 2
−1
1

} is a basis.

The dimension of the subspace is 2.

d. What is the dimension of the subspace?
Solution:The dimension of the subspace is 2.
e. Find an orthogonal basis for H.

Solution: Let u1 =

1
1
1

 and u2 =

 2
−1
1

.

Then v1 = u1 =

1
1
1

 and v2 = u2 − u2·v1

v1·v1
v1. Compute u2 · v1 = 2

−1
1

 ·
1

1
1

 = 2− 1 + 1 = 2 and v1 · v1 =

1
1
1

 ·
1

1
1

 = 1 + 1 + 1 = 3.

v2 =

 2
−1
1

 − 2
3

1
1
1

 =

 4
3

−5
3

1
3

. Thus {v1 =

1
1
1

 , v2 =

 4
3

−5
3

1
3

} ia an

orthogonal basis for H. We can verify that v1 · v2 = 0.

10. Determine if the following systems are consistent and if so give all
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solutions in parametric vector form.
(a)

x1 −2x2 = 3

2x1 −7x2 = 0

−5x1 +8x2 = 5

Solution: The augmented matrix is


1 −2 3

2 −7 0

−5 8 5

 ∼ (r2 := r2−2r1)


1 −2 3

0 −3 −6

−5 8 5

 ∼ (r3 := r3 + 5r1)


1 −2 3

0 −3 −6

0 −2 20


∼ (r2 := r2/ − 3, r3 := r3/ − 2)


1 −2 3

0 1 2

0 1 −10

 ∼ (r3 := r3 −

r2)


1 −2 3

0 1 2

0 0 −12

. The last row implies that 0 = −12 which is

impossible. So this system is inconsistent.
(b)

x1 +2x2 −3x3 +x4 = 1
−x1 −2x2 +4x3 −x4 = 6
−2x1 −4x2 +7x3 −x4 = 1

The augmented matrix is


1 2 −3 1 1

−1 −2 4 −1 6

−2 −4 7 −1 1

 ∼ (r2 := r2 + r1)


1 2 −3 1 1

0 0 1 0 7

−2 −4 7 −1 1

 ∼ (r3 := r3 + 2r1)


1 2 −3 1 1

0 0 1 0 7

0 0 1 1 3


22



∼ (r3 := r3−r2)


1 2 −3 1 1

0 0 1 0 7

0 0 0 1 −4

∼ (r1 := r1−r3)


1 −2 3

0 1 2

0 0 −12


∼ (r1 := r1−r3)


1 2 −3 0 5

0 0 1 0 7

0 0 0 1 −4

∼ (r1 := r1+3r2)


1 2 0 0 26

0 0 1 0 7

0 0 0 1 −4

.

So x2 is free. The solution is x1 = 26 − 2x2, x3 = 7, x4 = −47. Its

parametric vector form is


x1

x2

x4

x4

 =


26− 2x2

x2

7
−4

 =


26
0
7
−4

+ x2


−2
1
0
0

.

11. LetA =


1 −3 4 −2 5

2 −6 9 −1 8

2 −6 9 −1 9

−1 3 −4 2 −5

 which is row reduced to


1 −3 −2 −20 −3
0 0 1 3 3
0 0 1 3 4
0 0 0 0 0


(a) Find a basis for the column space of A
(b) Find a basis for the nullspace of A
(c) Find the rank of the matrix A
(d) Find the dimension of the nullspace of A.

(e) Is


1
4
3
1

 in the range of A?

(e) Does Ax =


0
3
2
0

 have any solution? Find a solution if it’s solvable.

Solution: Consider the augmented matrix


1 −3 4 −2 5 1 0

2 −6 9 −1 8 4 3

2 −6 9 −1 9 3 2

−1 3 −4 2 −5 1 0


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˜−2r1 + r2,−2r1 + r3, r1 + r4


1 −3 4 −2 5 1 0

0 0 1 3 −2 2 3

0 0 1 3 −1 1 2

0 0 0 0 0 2 0



˜−r2 + r3


1 −3 4 −2 5 1 0

0 0 1 3 −2 2 3

0 0 0 0 1 −1 −1

0 0 0 0 0 2 0



˜2r3 + r2,−5r3 + r1


1 −3 4 −2 0 6 5

0 0 1 3 0 0 1

0 0 0 0 1 −1 −1

0 0 0 0 0 2 0



˜−4r2 + r1


1 −3 0 −14 0 6 1

0 0 1 3 0 0 1

0 0 0 0 1 −1 −1

0 0 0 0 0 2 0

.

So the first, third and fifth vector forms a basis for Col(A), i.e {


1

2

2

−1

 ,


4

9

9

−4

 ,


5

8

9

−5

}
is a basis for Col(A). The rank of A is 3 and the dimension of the null
space is 5− 3 = 2.
x ∈ Null(A) if x1 − 3x2 − 14x4 = 0, x3 + 3x4 = 0 and x5 = 0. So

x =


3x2 + 14x4

x2

−x4

x4

0

 = x2


3
1
0
0
0

 + x4


14
0
−1
1
0

. Thus{


3
1
0
0
0

 ,


14
0
−1
1
0

 is a basis

for NULL(A).
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From the result of row reduction, we can see that Ax =


1
4
3
1

 is incon-

sistent (not solvable) and


1
4
3
1

 is not in the range of A.

From the result of row reduction, we can see that Ax =


0
3
2
0

 is solvable.

12. Determine if the columns of the matrix form a linearly independent set.
Justify your answer.

[
1 1
1 2

]
,

 1 −2
−2 4
3 6

 ,

−4 −3 0
0 −1 4
1 0 3
5 4 6

 ,


−4 −3 1 5 1
2 −1 4 −1 2
1 2 3 6 −3
5 4 6 −3 2

.

Solution: det

[
1 1
1 2

]
= 2 − 1 = 1 6= 0. So the columns of the matrix

form a linearly independent set. 1 −2
−2 4
3 6

. The second column vector is a multiple of the first column

vector. So the columns of the matrix form a linearly dependent set.
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
−4 −3 0
0 −1 4
1 0 3
5 4 6

 ˜interchange first and third row


1 0 3
0 −1 4
−4 −3 0
5 4 6


˜r3 + 4r1, r4 + (−5)r1


1 0 3
0 −1 4
0 −3 12
0 4 −9

 (̃−1)r2


1 0 3
0 1 −4
0 −3 12
0 4 −9


˜r3 + 3r2, r4 + (−4)r2


1 0 3
0 1 −4
0 0 0
0 0 7

 ˜
interchange 3rd and 4th row,

1

7
r4


1 0 3
0 1 −4
0 0 1
0 0 0


This matrix has three pivot vectors. So the columns of the matrix form
a linearly independent set.

The column vectors of 
−4 −3 1 5 1
2 −1 4 −1 2
1 2 3 6 −3
5 4 6 −3 2


form a dependent set since we have five column vectors in R4.
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