
Linear Algebra (Math 2890) Solution to Final Review Problems

1. Let A be the matrix

A =

2 1 1
1 2 1
1 1 2

 .
.

(a) Prove that det(A− λI) = (1− λ)2(4− λ).

Solution: Compute A− λI =

2− λ 1 1
1 2− λ 1
1 1 2− λ

 and

det(A − λI) = (2 − λ)3 + 1 + 1 − (2 − λ) − (2 − λ) − (2 − λ) =
8−12λ+6λ2−λ3+2−6+3λ = −λ3+6λ2−9λ+4 = (1−λ)2(4−λ).

(b) Orthogonally diagonalizes the matrix A, giving an orthogonal ma-
trix P and a diagonal matrix D such that A = PDP t

Solution: We know that the eigenvalues are 1 ,1 and 4.

When λ = 1, A− (1)I =


1 1 1

1 1 1

1 1 1

̃


1 1 1

0 0 0

0 0 0


x ∈ Null(A− I) if x1 + x2 + x3 = 0. So x1 = −x2 − x3 and

x =

−x2 − x3

x2

x3

 = x2

−1
1
0

+x3

−1
0
1

. Thus {w1 =

−1
1
0

 , w2 =−1
0
1

} is a basis of eigenvectors when λ = −1.

Now we use Gram-Schmidt process to find an orthogonal basis for
Null(A− I).

Let v1 = w1 =

−1
1
0

 and v2 = w2 − w2·v1

v1·v1
v1. Compute w2 · v1 =−1

0
1

 ·
−1

1
0

 = 1 and v1 · v1 =

−1
1
0

 ·
−1

1
0

 = 2.

So v2 =

−1
0
1

− (1
2
)

−1
1
0

 =

−1
2

−1
2

1

.
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Hence {v1 =

−1
1
0

 , v2 =

−1
2

−1
2

1

}is an orthogonal basis forNull(A−

I).

When λ = 4, A− 4I =


−2 1 1

1 −2 1

1 1 −2

 ˜interchange r1 and r2,


1 −2 1

−2 1 1

1 1 −2


˜−2 r1 + r2,−r1 + r3


1 −2 1

0 −3 3

0 3 −3


˜r2 + r3, r2/(−3)


1 −2 1

0 1 −1

0 0 0

 ˜2r2 + r1


1 0 −1

0 1 −1

0 0 0

 x ∈ Null(A−
4I) if x1 − x3 = 0 and x2 − x3 = 0. So x =

x3

x3

x3

 = x3

1
1
1

. Thus

{v3 =

1
1
1

} is a basis for Null(A− 4I).

So {v1 =

−1
1
0

 , v2 =

−1
2

−1
2

1

 , v3 =

1
1
1

} is an orthogonal basis

for R3 which are eigenvectors corresponding to λ = 1, λ = 1 and

λ = 4. Compute ||v1|| =
√

2, ||v2|| =
√

1
4

+ 1
4

+ 1 =
√

6
4

=
√

3
2

and ||v3|| =
√

3.

Thus { v1

||v1|| =

−1√
2

1√
2

0

 , v2

||v2|| =

−
1√
6

− 1√
6

2√
6

 , v3

||v3|| =


1√
3

1√
3

1√
3

} is an or-

thonormal basis for R3 which are eigenvectors corresponding to
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λ = 1, λ = 1 and λ = 4.

Finally, we haveA = P

1 0 0
0 1 0
0 0 4

P T where P = [ v1

||v1||
v2

||v2||
v3

||v3|| ] =
−1√

2
− 1√

6
1√
3

1√
2
− 1√

6
1√
3

0 2√
6

1√
3

.

(c) Write the quadratic form associated with A using variables x1, x2,
and x3?

Solution: Recall that the quadratic form in x1, x2 and x3 isQA(x) =
xTAx = 2x2

1 + 2x2
2 + 2x2

3 + 2x1x2 + 2x1x3 + 2x2x3.

(d) Find A−1, A10 and eA.

Solution:Recall that A = PDP T . Then A−1 = PD−1P T =

P

1−1 0 0
0 1−1 0
0 0 4−1

P T = P

1 0 0
0 1 0
0 0 1

4

P T .

A10 = P

1 0 0
0 1 0
0 0 410

P T and eA = P

e 0 0
0 e 0
0 0 e4

P T

(e) What’s A−5(

1
1
1

)?

Solution: Note that v3 =

1
1
1

 is an eigenvector with eigenvalue

4. So we have A(

1
1
1

) = 4

1
1
1

 and Ak(

1
1
1

) = 4k

1
1
1

. Hence

A−5(

1
1
1

) = 4−5

1
1
1

.

(f) What is limn→∞A
−n? Recall thatA = PDP T andA−n = PD−nP T =

P

1−n 0 0
0 1−n 0
0 0 4−n

P T = P

1 0 0
0 1 0
0 0 4−n

P T . Note that limn→∞ 4−n =
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0. So we have limn→∞A
−n = P

1 0 0
0 1 0
0 0 0

P T .

2. Classify the quadratic forms for the following quadratic forms. Make
a change of variable x = Py, that transforms the quadratic form into
one with no cross term. Also write the new quadratic form.

(a) 9x2
1 − 8x1x2 + 3x2

2.

Let Q(x1, x2) = 9x2
1 − 8x1x2 + 3x2

2 = xT

[
9 −4
−4 3

]
x and A =[

9 −4
−4 3

]
. We want to orthogonally diagonalizes A.

Compute A−λI =

[
9− λ −4
−4 3− λ

]
and det(A−λI) = (9−λ)(3−

λ)− 16 = λ2 − 12λ+ 27− 16 = λ2 − 12λ+ 11 = (λ− 1)(λ− 11).
So λ = 1 or λ = 11. Since the eigenvalues of A are all positive,
we know that the quadratic form is positive definite.

Now we diagonalize A.

λ = 1: A − 1 · I =

[
9− 1 −4
−4 3− 1

]
=

[
8 −4
−4 2

]̃ [
2 −1
0 0

]
. So

x ∈ Null(A−1 · I) iff 2x1−x2 = 0. So x2 = 2x1 and x =

[
x1

2x1

]
=

x1

[
1
2

]
. So

[
1
2

]
is an eigenvector corresponding to eigenvalue λ =

1.

λ = 11: A − 11 · I =

[
9− 11 −4
−4 3− 11

]
=

[
−2 −4
−4 −8

]̃ [
1 2
0 0

]
.

So x ∈ Null(A − 11 · I) iff x1 + 2x2 = 0. So x1 = −2x2 and

x =

[
−2x2

x2

]
= x2

[
−2
1

]
. So

[
−2
1

]
is an eigenvector corresponding

to eigenvalue λ = 11.

Now {v1 =

[
1
2

]
, v2 =

[
−2
1

]
} is an orthogonal basis. Compute

||v1|| =
√

5 and ||v2|| =
√

5. Thus { v1

||v1|| =

[
1√
5

2√
5

]
, v2

||v2|| =

[
−2√

5
1√
5

]
} is
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an orthonormal basis of eigenvectors. So we haveA = P

[
1 0
0 11

]
P T

where P =

[
1√
5
−2√

5
2√
5

1√
5

]
.

Now Q(x) = xTAx = xTP

[
1 0
0 11

]
P Tx = yT

[
1 0
0 11

]
y = y2

1 +

11y2
2 if y = P Tx. So Py = PP Tx, x = Py and P =

[
1√
5

2√
5

−2√
5

1√
5

]
.

Note that we have used the fact that PP T = I.

(b) −5x2
1 + 4x1x2 − 2x2

2.

Let Q(x1, x2) = −5x2
1 + 4x1x2 − 2x2

2 = xT

[
−5 2
2 −2

]
x and A =[

−5 2
2 −2

]
. We want to orthogonally diagonalizes A.

Compute A− λI =

[
−5− λ 2

2 −2− λ

]
and det(A− λI) = (−5−

λ)(−2−λ)− 4 = λ2 + 7λ+ 10− 4 = λ2 + 7λ+ 6 = (λ+ 1)(λ+ 6).
So λ = −1 or λ = −6. Since the eigenvalues of A are all negative,
we know that the quadratic form is negative definite.

Now we diagonalize A.

λ = −1: A−(−1)·I =

[
−5− (−1) 2

2 −2− (−1)

]
=

[
−4 2
2 −1

]̃ [
2 −1
0 0

]
.

So x ∈ Null(A − 1 · I) iff 2x1 − x2 = 0. So x2 = 2x1 and

x =

[
x1

2x1

]
= x1

[
1
2

]
. So

[
1
2

]
is an eigenvector corresponding

to eigenvalue λ = −1.

λ = −6: A−(−6)·I =

[
−5− (−6) 2

2 (−2)− (−6)

]
=

[
1 2
2 4

]̃ [
1 2
0 0

]
.

So x ∈ Null(A − 11 · I) iff x1 + 2x2 = 0. So x1 = −2x2 and

x =

[
−2x2

x2

]
= x2

[
−2
1

]
. So

[
−2
1

]
is an eigenvector corresponding

to eigenvalue λ = −6.

Now {v1 =

[
1
2

]
, v2 =

[
−2
1

]
} is an orthogonal basis. Compute
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||v1|| =
√

5 and ||v2|| =
√

5. Thus { v1

||v1|| =

[
1√
5

2√
5

]
, v2

||v2|| =

[
−2√

5
1√
5

]
} is

an orthonormal basis of eigenvectors. So we haveA = P

[
−1 0
0 −6

]
P T

where P =

[
1√
5
−2√

5
2√
5

1√
5

]
.

Now Q(x) = xTAx = xTP

[
−1 0
0 −6

]
P Tx = yT

[
−1 0
0 −6

]
y =

−y2
1 − 6y2

2 if y = P Tx. So Py = PP Tx, x = Py and P =[
1√
5

2√
5

−2√
5

1√
5

]
.

(c) 8x2
1 + 6x1x2.

Let Q(x1, x2) = 8x2
1 + 6x1x2 = xT

[
8 3
3 0

]
x and A =

[
8 3
3 0

]
. We

want to orthogonally diagonalizes A.

Compute A − λI =

[
8− λ 3

3 0− λ

]
and det(A − λI) = (8 − λ) ·

(−λ) − 9 = λ2 − 8λ − 9 = (λ + 1)(λ − 9). So λ = −1 or λ = 9.
Since A has positive and negative eigenvalues, we know that the
quadratic form is indefinite.

Now we diagonalize A.

λ = −1: A − (−1) · I =

[
8− (−1) 3

3 0− (−1)

]
=

[
9 3
3 1

]̃ [
3 1
0 0

]
.

So x ∈ Null(A − 1 · I) iff 3x1 + x2 = 0. So x2 = −3x1 and

x =

[
x1

−3x1

]
= x1

[
1
−3

]
. So

[
1
−3

]
is an eigenvector corresponding

to eigenvalue λ = −1.

λ = 9: A − 9 · I =

[
8− 9 3

3 0− 9

]
=

[
−1 3
3 −9

]̃ [
1 −3
0 0

]
. So

x ∈ Null(A−9 · I) iff x1−3x2 = 0. So x1 = 3x2 and x =

[
3x2

x2

]
=

x2

[
3
1

]
. So

[
3
1

]
is an eigenvector corresponding to eigenvalue λ =

9.

Now {v1 =

[
1
−3

]
, v2 =

[
3
1

]
} is an orthogonal basis. Compute
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||v1|| =
√

10 and ||v2|| =
√

10. Thus { v1

||v1|| =

[
1√
10
−3√
10

]
, v2

||v2|| =[
3√
10
1√
10

]
} is an orthonormal basis of eigenvectors. So we have A =

P

[
−1 0
0 9

]
P T where P =

[
1√
10

−3√
10

3√
10

1√
10

]
.

Now Q(x) = xTAx = xTP

[
−1 0
0 9

]
P Tx = yT

[
−1 0
0 9

]
y = −y2

1 +

9y2
2 if y = P Tx. So Py = PP Tx, x = Py and P

[
1√
10

−3√
10

3√
10

1√
10

]
.

3. (a) Find a 3× 3 matrix A which is not diagonalizable?

Solution: Let A =

0 1 1
0 0 1
0 0 0

. Then det(A − λI) = −λ3 and the

eigenvalues of A are zero.

A−0·I =

0 1 1
0 0 1
0 0 0

 ∼
0 1 0

0 0 1
0 0 0

. The eigenvector x =

x1

x2

x3

 satisfies

x2 = 0 and x3 = 0. The eigenvector is x ==

x1

0
0

 = x1

1
0
0

. So there

is only one eigenvector for A and A is not diagonalizable.

(b) Give an example of a 2× 2 matrix which is diagonalizable but not
orthogonally diagonalizable?

Solution: Let A =

[
1 4
1 1

]
. Then det(A − λI) ==

[
1− λ 4

1 1− λ

]
=

(1−λ)2− 4 = (1−λ)2− 22 = (1−λ− 2)(1−λ+ 2) = (−λ− 1)(3−λ).
So A has two distinct eigenvalues and A is diagonalizable. But A is
not symmetric. So A is not orthogonally diagonalizable.
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4. Let A =


1 2 2

1 1 0

0 1 2

−1 0 −1

.

(a) Find the condition on b =


b1
b2
b3
b4

 such that Ax = b is solvable.

Solution:

Consider the augmented matrix [A b] =


1 2 2 b1

1 1 0 b2

0 1 2 b3

−1 0 −1 b4



˜a2 := a2 + (−1)a1


1 2 2 b1

0 −1 −2 b2 − b1

0 1 2 b3

−1 0 −1 b4



˜a4 := a4 + a1


1 2 2 b1

0 −1 −2 b2 − b1

0 1 2 b3

0 2 1 b4 + b1



˜a2 := −a2


1 2 2 b1

0 1 2 −b2 + b1

0 1 2 b3

0 2 1 b4 + b1



˜a3 := a3 − a2, a4 := a4 − 2a2


1 2 2 b1

0 1 2 −b2 + b1

0 0 0 b3 + b2 − b1

0 0 −3 b4 − b1 + 2 b2


8



˜a3 ↔ a4


1 2 2 b1

0 1 2 −b2 + b1

0 0 −3 b4 − b1 + 2 b2

0 0 0 b3 + b2 − b1


From here, we can see that Ax = b has a solution if b3 +b2−b1 = 0.

(b) What is the column space of A?

Solution:
The column space is the subspace spanned by the column vectors.
From the computation in (a), we know that the column vectors of

A are independent. So Col(A) = span{


1

1

0

−1

 ,


2

1

1

0

 ,


2

0

2

−1

}.
(c) Describe the subspace col(A)⊥ and find an basis for col(A)⊥.

Solution: col(A)⊥ = {x|x · y = 0 for all y ∈ col(A)}

= {


x1

x2

x3

x4

 |

x1

x2

x3

x4

 ·


1
1
0
−1

 = 0,


x1

x2

x3

x4

 ·


2
1
1
0

 = 0,


x1

x2

x3

x4




2
0
2
−1

 = 0}

= {


x1

x2

x3

x4

 |x1 + x2− x4 = 0, 2x1 + x2 + x3 = 0, 2x1 + 2x3− x4 = 0}

Consider


1 1 0 −1

2 1 1 0

2 0 2 −1

 ˜r2 := r2 − 2r1


1 1 0 −1

0 −1 1 2

2 0 2 −1


˜r3 := r3 − 2r1


1 1 0 −1

0 −1 1 2

0 −2 2 1

 ˜r2 := −r2


1 1 0 −1

0 1 −1 −2

0 −2 2 1


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˜r3 := r3 + 2r2


1 1 0 −1

0 1 −1 −2

0 0 0 −3

 ˜r1 := r1 − r2


1 0 1 1

0 1 −1 −2

0 0 0 −3


˜r3 := r3/(−3)


1 0 1 1

0 1 −1 −2

0 0 0 1

 ˜r1 := r1 − r3, r2 := r2 + 2r3


1 0 1 0

0 1 −1 0

0 0 0 1


So x1+x3 = 0, x2−x3 = 0 and x4 = 0, x3 is free. This implies that

x1 = −x3, x2 = x3 , x4 = 0 and x =

[
x1
x2
x3
x4

]
=

[
−x3
x3
x3
0

]
= x3

[
−1
1
1
0

]
.

Hence col(A)⊥ = span{
[
−1
1
1
0

]
} and {

[
−1
1
1
0

]
} is a basis for col(A)⊥.

The dimension of col(A)⊥ is 1.

(d) Use Gram-Schmidt process to find an orthogonal basis for the
column of the matrix A.
Solution:

Let w1 =

 1

1

0

−1

, w2 =

 2

1

1

0

 and w3 =

 2

0

2

−1

.

Gram-Schmidt process is
v1 = w1, v2 = w2 − w2·v1

v1·v1
v1 and v3 = w3 − w3·v1

v1·v1
v1 − w3·v2

v2·v2
v2.

So v1 =

 1

1

0

−1

 . Compute w2 · v1 =

 2

1

1

0

 ·
 1

1

0

−1

 = 3, v1 · v1 = 1

1

0

−1

 ·
 1

1

0

−1

 = 3 and v2 =

 2

1

1

0

− 3
3

 1

1

0

−1

 =

 1

0

1

1

 .
Compute w3 · v1 =

 2

0

2

−1

 ·
 1

1

0

−1

 = 3, w3 · v2 =

 2

0

2

−1

 ·
 1

0

1

1

 = 3,

v2 · v2 =

 1

0

1

1

 ·
 1

0

1

1

 = 3 and

v3 = w3 − w3·v1

v1·v1
v1 − w3·v2

v2·v2
v2 =

 2

0

2

−1

− 3
3

 1

1

0

−1

− 3
3

 1

0

1

1


10



=

 2−1−1

0−1−0

2−0−1

−1+1−1

 =

 0

−1

1

−1

. Hence {

 1

1

0

−1

 ,
 1

0

1

1

 ,
 0

−1

1

−1

} is an orthog-

onal basis for Col(A).

(e) Find an orthonormal basis for the column of the matrix A.
Solution:
Note that ||v1|| =

√
v1 · v1 =

√
3, ||v2|| =

√
v2 · v2 =

√
3 and

||v3|| =
√
v3 · v3 =

√
3. Hence { v1

||v1|| ,
v2

||v2|| ,
v3

||v3||} = {


1√
3

1√
3

0

− 1√
3

 ,


1√
3

0

1√
3

1√
3

 ,


0

− 1√
3

1√
3

− 1√
3

}
is an orthonormal basis for Col(A).

(f) Find the orthogonal projection of y =

 7

3

10

−2

 onto the column

space of A and write y = ŷ+ z where ŷ ∈ col(A) and z ∈ col(A)⊥.
Also find the shortest distance from y to Col(A).

Solution: Since {v1 =

 1

1

0

−1

 , v2 =

 1

0

1

1

 , v3 =

 0

−1

1

−1

} is an

orthogonal basis for Col(A), y = ŷ + z where ŷ = y·v1

v1·v1
v1 +

y·v2

v2·v2
v2 + y·v3

v3·v3
v3 ∈ Col(A) and z = y − ŷ ∈ Col(A)⊥. Compute

y ·v1 =

 7

3

10

−2

 ·
 1

1

0

−1

 = 7+3+0+2 = 12, v1 ·v1 =

 1

1

0

−1

 ·
 1

1

0

−1

 =

1 + 1 + 1 = 3, y · v2 =

 7

3

10

−2

 ·
 1

0

1

1

 = 7 + 0 + 10 − 2 = 15,

v2 · v2 =

 1

0

1

1

 ·
 1

0

1

1

 = 3,

y·v3 =

 7

3

10

−2

·
 0

−1

1

−1

 = 0−3+10+2 = 9, v3·v3 =

 0

−1

1

−1

·
 0

−1

1

−1

 = 3.

11



So ŷ = 12
3

 1

1

0

−1

 + (15)
3

 1

0

1

1

 + 9
3

 0

−1

1

−1

 =

[
4+5+0
4+0−3
0+5+3
−4+5−3

]
=

[
9
1
8
−2

]
and

z = y − ŷ =

[
7
3
10
−2

]
−
[

9
1
8
−2

]
=

[
2
−2
2
0

]
. Note that z ∈ Col(A)⊥ =

span{
[

1
−1
1
0

]
}.

The shortest distance from y to Col(A) = ||y − ŷ|| = ||z|| =√
(2)2 + (−2)2 + (2)2 + (0)2 =

√
12.

(g) Using previous result to explain why Ax = y has no solution.
Solution: Since the orthogonal projection of y to Col(A) is not y,
this implies that y is not in Col(A). So Ax = y has no solution.

(h) Use orthogonal projection to find the least square solution of Ax =
y.

Solution: The least square solution of Ax = y is the solution of

Ax = ŷ =

[
9
1
8
−2

]
where ŷ is the orthogonal projection of y onto

the column space of A (from part (f), we know ŷ =

[
9
1
8
−2

]
.)

Consider the augmented matrix

[A ŷ] =


1 2 2 9

1 1 0 1

0 1 2 8

−1 0 −1 −2

 ˜r2 := r2 − r1, r3 := r3 + r1


1 2 2 9

0 −1 −2 −8

0 1 2 8

0 2 1 7



˜r3 := r3 + r2, r4 := r4 + r1


1 2 2 9

0 −1 −2 −8

0 0 0 0

0 0 −3 −9



˜r2 := −r2, r4 := r4/(−3), r3 ↔ r4


1 2 2 9

0 1 2 8

0 0 1 3

0 0 0 0



12



˜r2 := r2 − 2r3, r1 := r1 − 2r3


1 2 0 3

0 1 0 2

0 0 1 3

0 0 0 0



˜r1 := r1 − 2r2


1 0 0 −1

0 1 0 2

0 0 1 3

0 0 0 0

.

So x1 = −1, x2 = 2, x3 = 3 and the least square solution of

Ax = y is x =


−1

2

3

 .
(i) Use normal equation to find the least square solution of Ax = y.

Solution: The normal equation is ATAx = ATy. Compute ATA =
1 1 0 −1

2 1 1 0

2 0 2 −1




1 2 2

1 1 0

0 1 2

−1 0 −1

 =


3 3 3

3 6 6

3 6 9



and ATy =


1 1 0 −1

2 1 1 0

2 0 2 −1


 7

3

10

−2

 =


12

27

36

.

So the normal equation ATAx = ATy is
3 3 3

3 6 6

3 6 9

x =


12

27

36

.

Consider the augmented matrix


3 3 3 12

3 6 6 27

3 6 9 36

 ∼

13



r2 := r2 − r1, r3 := r3 − r1


3 3 3 12

0 3 3 15

0 3 6 24


∼ r3 := r3 − r2


3 3 3 12

0 3 3 15

0 0 3 9

 ∼ r1 := r1/3, r2 := r2/3, r3 :=

r3/3


1 1 1 4

0 1 1 5

0 0 1 3


∼ r2 := r2 − r3, r1 := r1 − r3


1 1 0 1

0 1 0 2

0 0 1 3


∼ r1 := r1 − r2,


1 0 0 −1

0 1 0 2

0 0 1 3


So x1 = −1, x2 = 2, x3 = 3 and the least square solution of

Ax = y is x =


−1

2

3

 .

5. Find the equation y = a+mx of the least square line that best fits the
given data points. (0, 1), (1, 1), (3, 2).

Solution: We try to solve the equations 1 = a, 1 = a+m, 2 = a+ 3m,
that is,
a = 1, a+m = 1 and a+3m = 2. It corresponding to the linear system 1 0

1 1
1 3

[ a
m

]
=

 1
1
2


Let A =

 1 0
1 1
1 3

. We solve the normal equation
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ATA

[
a
m

]
= AT

 1
1
2

.

Compute ATA =

[
1 1 1

0 1 3

] 1 0
1 1
1 3

 =

[
3 4

4 10

]
and

AT

 1
1
2

 =

[
1 1 1

0 1 3

] 1
1
2

 =

[
4

7

]
.

Consider the augmented matrix[
3 4 4

4 10 7

]
∼ r2 := r2 − 4

3
r1

[
3 4 4

0 14
3

5
3

]

∼ r2 := 3
14
r2

[
3 4 4

0 1 5
14

]
∼ r1 := r1 − 4r2

[
3 0 18

7

0 1 5
14

]

∼ r1 := r1/3

[
1 0 6

7

0 1 5
14

]
So the least square solution is a = 6

7
and m = 5

14
. The equation

y = 6
7

+ 5
14
x is the least square line that best fits the given data points.

(0, 1), (1, 1), (3, 2).

6. (a) Show that the set of vectors

B =

{
u1 =

(
−3

5
,
4

5
, 0

)
, u2 =

(
4

5
,
3

5
, 0

)
, u3 = (0, 0, 1)

}
is an orthonormal basis of R3.

Solution: Compute u1 · u2 =
(
−3

5
, 4

5
, 0
)
·
(

4
5
, 3

5
, 0
)

= −12
5

+ 12
5

= 0,
u1 · u3 =

(
−3

5
, 4

5
, 0
)
· (0, 0, 1) = 0, u2 · u3 =

(
4
5
, 3

5
, 0
)
· (0, 0, 1) = 0,

u1 ·u1 =
(
−3

5
, 4

5
, 0
)
·
(
−3

5
, 4

5
, 0
)

= 9
25

+ 16
25

= 1, u3 ·u3 = (0, 0, 1)·(0, 0, 1) =
1, u2 · u2 =

(
4
5
, 3

5
, 0
)
·
(

4
5
, 3

5
, 0
)

= 16
25

+ 9
25

= 1

(b) Find the coordinates of the vector (1,−1, 2) with respect to the
basis in (a).

Solution: Let y = (1,−1, 2). So y = y·u1

u1·u1
u1 + y·u2

u2·u2
u2 + y·u3

u3·u3
u3 =

(y ·u1)u1+(y ·u2)u2+(y ·u3)u3. Compute y ·u1 = (1,−1, 2)·
(
−3

5
, 4

5
, 0
)

=

15



−3
5
− 4

5
= −7

5
, y · u2 = (1,−1, 2) ·

(
4
5
, 3

5
, 0
)

= 4
5
− 3

5
= 1

5
, y · u3 =

(1,−1, 2) · (0, 0, 1) = 2.

So the coordinate of y with respect to the basis in (a) is (−7
5
, 1

5
, 2).

7. (a) Let A =

3 6 7
0 2 1
2 3 4

 . Find the inverse matrix of A if possible.

Solution: Consider the augmented matrix [A I] =


3 6 7 1 0 0

0 2 1 0 1 0

2 3 4 0 0 1


˜r1 := r1 − r3


1 3 3 1 0 −1

0 2 1 0 1 0

2 3 4 0 0 1


˜r3 := r3 − 2r1


1 3 3 1 0 −1

0 2 1 0 1 0

0 −3 −2 −2 0 3


˜r2 := r2 + r3


1 3 3 1 0 −1

0 −1 −1 −2 1 3

0 −3 −2 −2 0 3

 ˜r2 := −r2


1 3 3 1 0 −1

0 1 1 2 −1 −3

0 −3 −2 −2 0 3


˜r3 := r3 + 3r2


1 3 3 1 0 −1

0 1 1 2 −1 −3

0 0 1 4 −3 −6


˜r2 := r2 − r3, r1 := r1 − 3r3


1 3 0 −11 9 17

0 1 0 −2 2 3

0 0 1 4 −3 −6


˜r1 := r1 − 3r2


1 0 0 −5 3 8

0 1 0 −2 2 3

0 0 1 4 −3 −6

.
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So A−1 =


−5 3 8

−2 2 3

4 −3 −6

.

(b) Find the coordinates of the vector (1,−1, 2) with respect to the
basis B obtained from the column vectors of A.

Solution: The coordinate is x = A−1


1

−1

2

 =


−5 3 8

−2 2 3

4 −3 −6




1

−1

2

 =


8

2

−5

.

8. Let H =
{a+ 2b− c

a− b− 4c
a+ b− 2c

 : a, b, cany real numbers
}

.

a. Explain why H is a a subspace of R3.

Solution:

a+ 2b− c
a− b− 4c
a+ b− 2c

 = a

1
1
1

+ b

 2
−1
1

+ c

−1
−4
−2


So H = Span{

1
1
1

 ,
 2
−1
1

 ,
−1
−4
−2

} and H is a subspace.

b. Find a set of vectors that spans H.

Solution:{

1
1
1

 ,
 2
−1
1

 ,
−1
−4
−2

} spans the space H.

c. Find a basis for H.

Solution: Consider the matrix A =

1 2 −1
1 −1 −4
1 1 −2


˜r2 := r2 − r1, r3 := r3 − r1

1 2 −1
0 −3 −3
0 −1 −1


17



˜r2 := r2/(−3)

1 2 −1
0 1 1
0 −1 −1

 ˜r3 := r3 + r2

1 2 −1
0 1 1
0 0 0

.

So the first two vectors are pivot vectors and {

1
1
1

 ,
 2
−1
1

} is a basis.

The dimension of the subspace is 2.

d. What is the dimension of the subspace?
Solution:The dimension of the subspace is 2.
e. Find an orthogonal basis for H.

Solution: Let u1 =

1
1
1

 and u2 =

 2
−1
1

.

Then v1 = u1 =

1
1
1

 and v2 = u2 − u2·v1

v1·v1
v1. Compute u2 · v1 = 2

−1
1

 ·
1

1
1

 = 2− 1 + 1 = 2 and v1 · v1 =

1
1
1

 ·
1

1
1

 = 1 + 1 + 1 = 3.

v2 =

 2
−1
1

 − 2
3

1
1
1

 =

 4
3

−5
3

1
3

. Thus {v1 =

1
1
1

 , v2 =

 4
3

−5
3

1
3

} ia an

orthogonal basis for H. We can verify that v1 · v2 = 0.

9. Determine if the following systems are consistent and if so give all
solutions in parametric vector form.
(a)

x1 −2x2 = 3

2x1 −7x2 = 0

−5x1 +8x2 = 5

Solution: The augmented matrix is


1 −2 3

2 −7 0

−5 8 5

 ∼ (r2 := r2−2r1)
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
1 −2 3

0 −3 −6

−5 8 5

 ∼ (r3 := r3 + 5r1)


1 −2 3

0 −3 −6

0 −2 20


∼ (r2 := r2/ − 3, r3 := r3/ − 2)


1 −2 3

0 1 2

0 1 −10

 ∼ (r3 := r3 −

r2)


1 −2 3

0 1 2

0 0 −12

. The last row implies that 0 = −12 which is

impossible. So this system is inconsistent.
(b)

x1 +2x2 −3x3 +x4 = 1
−x1 −2x2 +4x3 −x4 = 6
−2x1 −4x2 +7x3 −x4 = 1

The augmented matrix is


1 2 −3 1 1

−1 −2 4 −1 6

−2 −4 7 −1 1

 ∼ (r2 := r2 + r1)


1 2 −3 1 1

0 0 1 0 7

−2 −4 7 −1 1

 ∼ (r3 := r3 + 2r1)


1 2 −3 1 1

0 0 1 0 7

0 0 1 1 3


∼ (r3 := r3−r2)


1 2 −3 1 1

0 0 1 0 7

0 0 0 1 −4

∼ (r1 := r1−r3)


1 −2 3

0 1 2

0 0 −12


∼ (r1 := r1−r3)


1 2 −3 0 5

0 0 1 0 7

0 0 0 1 −4

∼ (r1 := r1+3r2)


1 2 0 0 26

0 0 1 0 7

0 0 0 1 −4

.

So x2 is free. The solution is x1 = 26 − 2x2, x3 = 7, x4 = −47. Its
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parametric vector form is


x1

x2

x4

x4

 =


26− 2x2

x2

7
−4

 =


26
0
7
−4

+ x2


−2
1
0
0

.

10. LetA =


1 −3 4 −2 5

2 −6 9 −1 8

2 −6 9 −1 9

−1 3 −4 2 −5

 which is row reduced to


1 −3 −2 −20 −3
0 0 1 3 3
0 0 1 3 4
0 0 0 0 0


(a) Find a basis for the column space of A
(b) Find a basis for the nullspace of A
(c) Find the rank of the matrix A
(d) Find the dimension of the nullspace of A.

(e) Is


1
4
3
1

 in the range of A?

(e) Does Ax =


0
3
2
0

 have any solution? Find a solution if it’s solvable.

Solution: Consider the augmented matrix


1 −3 4 −2 5 1 0

2 −6 9 −1 8 4 3

2 −6 9 −1 9 3 2

−1 3 −4 2 −5 1 0



˜−2r1 + r2,−2r1 + r3, r1 + r4


1 −3 4 −2 5 1 0

0 0 1 3 −2 2 3

0 0 1 3 −1 1 2

0 0 0 0 0 2 0


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˜−r2 + r3


1 −3 4 −2 5 1 0

0 0 1 3 −2 2 3

0 0 0 0 1 −1 −1

0 0 0 0 0 2 0



˜2r3 + r2,−5r3 + r1


1 −3 4 −2 0 6 5

0 0 1 3 0 0 1

0 0 0 0 1 −1 −1

0 0 0 0 0 2 0



˜−4r2 + r1


1 −3 0 −14 0 6 1

0 0 1 3 0 0 1

0 0 0 0 1 −1 −1

0 0 0 0 0 2 0

.

So the first, third and fifth vector forms a basis for Col(A), i.e {


1

2

2

−1

 ,


4

9

9

−4

 ,


5

8

9

−5

}
is a basis for Col(A). The rank of A is 3 and the dimension of the null
space is 5− 3 = 2.
x ∈ Null(A) if x1 − 3x2 − 14x4 = 0, x3 + 3x4 = 0 and x5 = 0. So

x =


3x2 + 14x4

x2

−x4

x4

0

 = x2


3
1
0
0
0

 + x4


14
0
−1
1
0

. Thus{


3
1
0
0
0

 ,


14
0
−1
1
0

 is a basis

for NULL(A).

From the result of row reduction, we can see that Ax =


1
4
3
1

 is incon-
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sistent (not solvable) and


1
4
3
1

 is not in the range of A.

From the result of row reduction, we can see that Ax =


0
3
2
0

 is solvable.

11. Determine if the columns of the matrix form a linearly independent set.
Justify your answer.

[
1 1
1 2

]
,

 1 −2
−2 4
3 6

 ,

−4 −3 0
0 −1 4
1 0 3
5 4 6

 ,


−4 −3 1 5 1
2 −1 4 −1 2
1 2 3 6 −3
5 4 6 −3 2

.

Solution: det

[
1 1
1 2

]
= 2 − 1 = 1 6= 0. So the columns of the matrix

form a linearly independent set. 1 −2
−2 4
3 6

. The second column vector is a multiple of the first column

vector. So the columns of the matrix form a linearly dependent set.


−4 −3 0
0 −1 4
1 0 3
5 4 6

 ˜interchange first and third row


1 0 3
0 −1 4
−4 −3 0
5 4 6


˜r3 + 4r1, r4 + (−5)r1


1 0 3
0 −1 4
0 −3 12
0 4 −9

 (̃−1)r2


1 0 3
0 1 −4
0 −3 12
0 4 −9


˜r3 + 3r2, r4 + (−4)r2


1 0 3
0 1 −4
0 0 0
0 0 7

 ˜
interchange 3rd and 4th row,

1

7
r4


1 0 3
0 1 −4
0 0 1
0 0 0


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This matrix has three pivot vectors. So the columns of the matrix form
a linearly independent set.

The column vectors of 
−4 −3 1 5 1
2 −1 4 −1 2
1 2 3 6 −3
5 4 6 −3 2


form a dependent set since we have five column vectors in R4.

12. Let A be a 12×5 matrix. You may assume that Nul(ATA) = Nul(A).
(This relation holds form any matrix A.)
a. What is the size of ATA?
b. Use the Rank Theorem to obtain an equation involving rankA.
Find another equation involving rank(ATA). What is the connection
between these two ranks?
c. Suppose the columns of A are linearly independent. Explain why
ATA is invertible.

Solution: a. Note that Nul(A) is the dimension of the null space of A.
Since AT is a 5× 12 matrix and A is a 12× 5, we know that ATA is a
5× 5 matrix.
b. rank(A)+Nul(A) = 5 and rank(ATA)+Nul(ATA) = 5. Using the
fact that Nul(ATA) = Nul(A), we know that rank(A) = rank(ATA).
c. The columns of A are linearly independent implies that rank(A) = 5.
So rank(ATA) = 5. Recall that ATA is a 5 × 5 matrix. This implies
that ATA is a invertible matrix.
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