Linear Algebra (Math 1890) Practice Problems 1

Midterm I: Feb 10, 2011, 12:30-1:45 at UH 1000 (Newton Lab).
Topics: 1.1, 1.2, 2.1,2.2, 2.3, 2.4.

1. Determine which of the following augmented matrices are in row echelon from, reduced row-echelon form or neither. Also determine which variables are free if it's in row echelon form or row reduced echelon form. $\left[\begin{array}{lllll}2 & 1 & 2 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1\end{array}\right],\left[\begin{array}{lllll}1 & 1 & 2 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1\end{array}\right],\left[\begin{array}{lllll}2 & 1 & 2 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1\end{array}\right],\left[\begin{array}{ccccc}1 & -2 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1\end{array}\right]$.
2. Determine if the following systems are consistent and if so give all solutions in parametric vector form.
(a)

$$
\begin{array}{rll}
x_{1} & -2 x_{2} & =3 \\
2 x_{1} & -7 x_{2} & =0 \\
-5 x_{1} & +8 x_{2} & =5
\end{array}
$$

(b)

$$
\begin{array}{lllll}
x_{1} & +2 x_{2} & -3 x_{3} & +x_{4}=1 \\
-x_{1} & -2 x_{2} & +4 x_{3} & -x_{4}=6 \\
-2 x_{1} & -4 x_{2} & +7 x_{3} & -x_{4}=1
\end{array}
$$

(c)

$$
\begin{array}{lllll}
x_{1} & +2 x_{2}-3 x_{3} & +x_{4} & =1 \\
-x_{1} & -2 x_{2}+4 x_{3} & -x_{4} & =6 \\
-2 x_{1} & -4 x_{2} & +7 x_{3} & -2 x_{4} & =1
\end{array}
$$

3. Let $A=\left[\begin{array}{cccc}1 & 3 & -4 & 7 \\ 2 & 6 & 5 & 1 \\ 3 & 9 & 4 & 5\end{array}\right]$.
(a) Find all the solutions of the non-homogeneous system $A x=b$, and write them in parametric form, where $b=\left[\begin{array}{l}-1 \\ -2 \\ -3\end{array}\right]$.
(b) Find all the solutions of the homogeneous system $A x=0$, and write them in parametric form.
4. Let $S=\left\{\left[\begin{array}{c}1 \\ -2 \\ 3 \\ 1\end{array}\right],\left[\begin{array}{c}0 \\ 1 \\ 1 \\ -2\end{array}\right],\left[\begin{array}{c}1 \\ -3 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{c}0 \\ 1 \\ 1 \\ -4\end{array}\right]\right\}$.
(a) Is $v=\left[\begin{array}{c}-1 \\ 3 \\ -2 \\ 1\end{array}\right]$ a linear combination of the vectors in $S ?$
(c) Is $w=\left[\begin{array}{c}1 \\ 3 \\ -2 \\ 1\end{array}\right]$ a linear combination of the vectors in S ?
5. Consider a linear system whose augmented matrix is of the form

$$
\left[\begin{array}{ccc|c}
1 & 1 & 1 & 2 \\
1 & 2 & 1 & b \\
-1 & 2 & a & 1
\end{array}\right]
$$

(a) For what values of a will the system have a unique solution? What is the solution? (your answer may involve a and b)
(b) For what values of a and b will the system have infinitely many solutions?
(c) For what values of a and b will the system be inconsistent?
6. (a) Find the inverses of the following matrices if they exist.
$A=\left[\begin{array}{cc}7 & -2 \\ -4 & 1\end{array}\right], B=\left[\begin{array}{ccc}1 & -1 & 1 \\ 1 & 1 & 1 \\ 1 & 0 & 0\end{array}\right]$ and $C=\left[\begin{array}{ccc}2 & 3 & 4 \\ 5 & 6 & 7 \\ 8 & 9 & 10\end{array}\right]$.
(b) What's $\left(B^{T}\right)^{-1}$?
7. Let $A=\left[\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right]$ and $f(x)=x^{2}-2 x+2$. Show that $f(A)=0_{n}$. Here 0_{n} is the $n \times n$ matrix.
8. Let A be an 3×3 matrix. Suppose $A^{3}+2 A^{2}-4 A+I_{3}=0$. Is A invertible? Express A^{-1} in terms of A if possible.
9. Express the following matrices as a product of elementary matrices and a matrix in reduced row-echelon form.
$A=\left[\begin{array}{ccc}1 & -1 & 1 \\ 1 & -1 & 1 \\ -1 & 1 & 1\end{array}\right], B=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right]$.

