Linear Algebra (Math 2890) Practice Problems 1 Topics for Midterm I:1.1-1.5, 1.7, 1.8

1. Show that
$$A = \begin{bmatrix} 1 & 2 & -2 & 0 & 7 \\ -2 & -3 & 1 & -1 & -5 \\ -3 & -4 & 0 & -2 & -3 \\ 3 & 6 & -6 & 5 & 1 \end{bmatrix}$$
 is row equivalent to $\begin{bmatrix} 1 & 0 & 4 & 0 & -3 \\ 0 & 1 & -3 & 0 & 5 \\ 0 & 0 & 0 & 1 & -4 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$.

Determine if the following systems are consistent and if so give all solutions in parametric vector form.
 (a)

(b)

3. Let
$$A = \begin{bmatrix} 1 & 3 & -4 & 7 \\ 2 & 6 & 5 & 1 \\ 3 & 9 & 4 & 5 \end{bmatrix}$$
.

- (a) Find all the solutions of the non-homogeneous system Ax = b, and write them in parametric form, where $b = \begin{bmatrix} -1 \\ -2 \\ -3 \end{bmatrix}$.
- (b) Find all the solutions of the homogeneous system Ax = 0, and write them in parametric form.
- (c) Are the columns of the matrix A linearly independent? Write down a linear relation between the columns of A if they are dependent.

4. Let
$$S = Span\left\{ \begin{bmatrix} 1\\ -2\\ 3\\ 1 \end{bmatrix}, \begin{bmatrix} 0\\ 1\\ 1\\ -2 \end{bmatrix}, \begin{bmatrix} 1\\ -3\\ 2\\ 3 \end{bmatrix}, \begin{bmatrix} 0\\ 1\\ 1\\ 1\\ -3 \end{bmatrix} \right\}$$
.
(a) Find all the vectors $u = \begin{bmatrix} a\\ b\\ c\\ d \end{bmatrix}$ such that the u is in S . Write these u in parametric form. Justify your answer.
(b) Is $v = \begin{bmatrix} -1\\ 3\\ -2\\ 1 \end{bmatrix}$ in S .
(c) Is $w = \begin{bmatrix} 1\\ 3\\ -2\\ 1 \end{bmatrix}$ in S .

5. Consider a linear system whose augmented matrix is of the form

- (a) For what values of a will the system have a unique solution? What is the solution? (your answer may involve a and b)
- (b) For what values of a and b will the system have infinitely many solutions?
- (c) For what values of a and b will the system be inconsistent?
- 6. Determine if the columns of the matrix form a linearly independent set. Justify your answer.

$$\begin{bmatrix} -2 & 1 \\ 4 & -2 \\ 0 & 0 \\ -6 & 3 \end{bmatrix}, \begin{bmatrix} -2 & 1 \\ 4 & -2 \\ 2 & 2 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 3 \\ 0 & 1 & 2 \\ 1 & -1 & -1 \\ 1 & 0 & 1 \end{bmatrix}, \begin{bmatrix} -4 & -3 & 1 & 5 & 1 \\ 2 & -1 & 4 & -1 & 2 \\ 1 & 2 & 3 & 6 & -3 \\ 5 & 4 & 6 & -3 & 2 \end{bmatrix}.$$

7.
$$M = \begin{bmatrix} 1 & 1 & 2 \\ 1 & a+1 & 3 \\ 1 & a & a+1 \end{bmatrix}$$
.

- (a) Describe the values of a so that the column vectors of M are linearly independent.
- (b) Describe the values of a so that the column vectors of M are linearly dependent.

8. Let
$$e_1 = \begin{bmatrix} 1\\0\\0 \end{bmatrix}$$
, $e_2 = \begin{bmatrix} 0\\1\\0 \end{bmatrix}$ and $e_3 = \begin{bmatrix} 0\\0\\1 \end{bmatrix}$. Suppose $T : R^3 \mapsto R^2$ is a linear transformation such that $T(e_1 + e_2) = \begin{bmatrix} 1\\-1 \end{bmatrix}$, $T(e_1 - e_2) = \begin{bmatrix} 2\\3 \end{bmatrix}$ and $T(e_1 + e_2 + e_3) = \begin{bmatrix} 1\\-2 \end{bmatrix}$. What is $T(\begin{bmatrix} 1\\2\\3 \end{bmatrix})$?