Linear Algebra (Math 2890) Solution to Final Review Problems

1. Let A be the matrix

.

$$A = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix}.$$

(a) Prove that
$$det(A - \lambda I) = (1 - \lambda)^2 (4 - \lambda)$$
.
Solution: Compute $A - \lambda I = \begin{bmatrix} 2 - \lambda & 1 & 1 \\ 1 & 2 - \lambda & 1 \\ 1 & 1 & 2 - \lambda \end{bmatrix}$ and
 $det(A - \lambda I) = (2 - \lambda)^3 + 1 + 1 - (2 - \lambda) - (2 - \lambda) - (2 - \lambda) =$
 $8 - 12\lambda + 6\lambda^2 - \lambda^3 + 2 - 6 + 3\lambda = -\lambda^3 + 6\lambda^2 - 9\lambda + 4 = (1 - \lambda)^2 (4 - \lambda).$

(b) Orthogonally diagonalizes the matrix A, giving an orthogonal matrix P and a diagonal matrix D such that $A = PDP^t$ Solution: We know that the eigenvalues are 1,1 and 4.

When
$$\lambda = 1, A - (1)I = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

 $x \in Null(A - I)$ if $x_1 + x_2 + x_3 = 0$. So $x_1 = -x_2 - x_3$ and
 $x = \begin{bmatrix} -x_2 - x_3 \\ x_2 \\ x_3 \end{bmatrix} = x_2 \begin{bmatrix} -1 \\ 1 \\ 0 \\ 1 \end{bmatrix} + x_3 \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$. Thus $\{w_1 = \begin{bmatrix} -1 \\ 1 \\ 0 \\ 0 \end{bmatrix}, w_2 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}\}$ is a basis of eigenvectors when $\lambda = -1$.

Now we use Gram-Schmidt process to find an orthogonal basis for Null(A - I).

Let
$$v_1 = w_1 = \begin{bmatrix} -1\\ 1\\ 0\\ 0 \end{bmatrix}$$
 and $v_2 = w_2 - \frac{w_2 \cdot v_1}{v_1 \cdot v_1} v_1$. Compute $w_2 \cdot v_1 = \begin{bmatrix} -1\\ 0\\ 1 \end{bmatrix} \cdot \begin{bmatrix} -1\\ 1\\ 0\\ 0 \end{bmatrix} = 1$ and $v_1 \cdot v_1 = \begin{bmatrix} -1\\ 1\\ 0\\ 0 \end{bmatrix} \cdot \begin{bmatrix} -1\\ 1\\ 0\\ 0 \end{bmatrix} = 2$.
So $v_2 = \begin{bmatrix} -1\\ 0\\ 1\\ 1 \end{bmatrix} - (\frac{1}{2}) \begin{bmatrix} -1\\ 1\\ 0\\ 0 \end{bmatrix} = \begin{bmatrix} -\frac{1}{2}\\ -\frac{1}{2}\\ 1\\ 0 \end{bmatrix}$.

Hence $\{v_1 = \begin{vmatrix} -1 \\ 1 \\ 0 \end{vmatrix}$, $v_2 = \begin{vmatrix} -\frac{1}{2} \\ -\frac{1}{2} \\ 1 \end{vmatrix}$ } is an orthogonal basis for Null(A -I). When $\lambda = 4$, $A - 4I = \begin{bmatrix} -2 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & 1 & 2 \end{bmatrix}$ interchange r_1 and r_2 , $\begin{bmatrix} 1 & 1 & 1 \\ -2 & r_1 + r_2, -r_1 + r_3 \end{bmatrix} \begin{bmatrix} 1 & -2 & 1 \\ 0 & -3 & 3 \\ 0 & 3 & -3 \end{bmatrix}$ $\widetilde{r_2 + r_3, r_2/(-3)} \begin{vmatrix} 1 & -2 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{vmatrix} \widetilde{2r_2 + r_1} \begin{vmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{vmatrix} x \in Null(A - C)$ 4*I*) if $x_1 - x_3 = 0$ and $x_2 - x_3 = 0$. So $x = \begin{bmatrix} x_3 \\ x_3 \\ x_4 \end{bmatrix} = x_3 \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$. Thus $\{v_3 = \begin{bmatrix} 1\\1\\1 \end{bmatrix}\}$ is a basis for Null(A-4I). So $\{v_1 = \begin{bmatrix} -1\\1\\0 \end{bmatrix}, v_2 = \begin{bmatrix} -\frac{1}{2}\\-\frac{1}{2}\\1 \end{bmatrix}, v_3 = \begin{bmatrix} 1\\1\\1 \end{bmatrix}\}$ is an orthogonal basis for R^3 which are eigenvectors corresponding to $\lambda = 1, \lambda = 1$ and $\lambda = 4$. Compute $||v_1|| = \sqrt{2}, ||v_2|| = \sqrt{\frac{1}{4} + \frac{1}{4} + 1} = \sqrt{\frac{6}{4}} = \sqrt{\frac{3}{2}}$ and $||v_3|| = \sqrt{3}$. Thus $\left\{ \frac{v_1}{||v_1||} = \begin{bmatrix} \frac{-1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ 0 \end{bmatrix}, \frac{v_2}{||v_2||} = \begin{bmatrix} -\frac{1}{\sqrt{6}} \\ -\frac{1}{\sqrt{6}} \\ \frac{2}{\sqrt{6}} \end{bmatrix}, \frac{v_3}{||v_3||} = \begin{bmatrix} \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \end{bmatrix} \right\}$ is an or-

thonormal basis for \mathbb{R}^3 which are eigenvectors corresponding to

$$\begin{split} \lambda &= 1, \ \lambda = 1 \ \text{and} \ \lambda = 4. \\ \text{Finally, we have} \ A &= P \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 4 \end{bmatrix} P^T \ \text{where} \ P &= \begin{bmatrix} \frac{v_1}{||v_1||} & \frac{v_2}{||v_2||} & \frac{v_3}{||v_3||} \end{bmatrix} = \\ \begin{bmatrix} \frac{-1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ 0 & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} \end{bmatrix}. \end{split}$$

(c) Write the quadratic form associated with A using variables x_1, x_2 , and x_3 ?

Solution: Recall that the quadratic form in x_1, x_2 and x_3 is $Q_A(x) = x^T A x = 2x_1^2 + 2x_2^2 + 2x_3^2 + 2x_1x_2 + 2x_1x_3 + 2x_2x_3$. (d) Find A^{-1} , A^{10} and e^A

(d) Find
$$A^{-1}$$
, A^{10} and e^{21} .

Solution:Recall that
$$A = PDP^{T}$$
. Then $A^{-1} = PD^{-1}P^{T} = P\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1^{-1} & 0 \\ 0 & 0 & 4^{-1} \end{bmatrix} P^{T} = P\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \frac{1}{4} \end{bmatrix} P^{T}$.
 $A^{10} = P\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 4^{10} \end{bmatrix} P^{T}$ and $e^{A} = P\begin{bmatrix} e & 0 & 0 \\ 0 & e & 0 \\ 0 & 0 & e^{4} \end{bmatrix} P^{T}$
(e) What's $A^{-5}(\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix})$?

Solution: Note that $v_3 = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}$ is an eigenvector with eigenvalue 4. So we have $A(\begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}) = 4\begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}$ and $A^k(\begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}) = 4^k\begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}$. Hence $A^{-5}(\begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}) = 4^{-5}\begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}$.

(f) What is $\lim_{n \to \infty} A^{-n}$? Recall that $A = PDP^T$ and $A^{-n} = PD^{-n}P^T = P\begin{bmatrix} 1 & 0 & 0\\ 0 & 1^{-n} & 0\\ 0 & 0 & 4^{-n} \end{bmatrix} P^T = P\begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 4^{-n} \end{bmatrix} P^T$. Note that $\lim_{n \to \infty} 4^{-n} = PD^{-n}P^T$.

0. So we have
$$\lim_{n\to\infty} A^{-n} = P \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} P^T$$

- 2. Classify the quadratic forms for the following quadratic forms. Make a change of variable x = Py, that transforms the quadratic form into one with no cross term. Also write the new quadratic form.
 - (a) $9x_1^2 8x_1x_2 + 3x_2^2$. Let $Q(x_1, x_2) = 9x_1^2 - 8x_1x_2 + 3x_2^2 = x^T \begin{vmatrix} 9 & -4 \\ -4 & 3 \end{vmatrix} x$ and A = $\begin{vmatrix} 9 & -4 \\ -4 & 3 \end{vmatrix}$. We want to orthogonally diagonalizes A. Compute $A - \lambda I = \begin{bmatrix} 9 - \lambda & -4 \\ -4 & 3 - \lambda \end{bmatrix}$ and $det(A - \lambda I) = (9 - \lambda)(3 - \lambda) - 16 = \lambda^2 - 12\lambda + 27 - 16 = \lambda^2 - 12\lambda + 11 = (\lambda - 1)(\lambda - 11).$ So $\lambda = 1$ or $\lambda = 11$. Since the eigenvalues of A are all positive, we know that the quadratic form is positive definite. Now we diagonalize A. $\lambda = 1: A - 1 \cdot I = \begin{bmatrix} 9 - 1 & -4 \\ -4 & 3 - 1 \end{bmatrix} = \begin{bmatrix} 8 & -4 \\ -4 & 2 \end{bmatrix} \sim \begin{bmatrix} 2 & -1 \\ 0 & 0 \end{bmatrix}.$ So $x \in Null(A-1 \cdot I)$ iff $2x_1 - x_2 = 0$. So $x_2 = 2x_1$ and $x = \begin{vmatrix} x_1 \\ 2x_1 \end{vmatrix} =$ $x_1 \begin{bmatrix} 1 \\ 2 \end{bmatrix}$. So $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ is an eigenvector corresponding to eigenvalue $\lambda =$ $\lambda = 11: A - 11 \cdot I = \begin{bmatrix} 9 - 11 & -4 \\ -4 & 3 - 11 \end{bmatrix} = \begin{bmatrix} -2 & -4 \\ -4 & -8 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix}.$ So $x \in Null(A - 11 \cdot I)$ iff $x_1 + 2x_2 = 0$. So $x_1 = -2x_2$ and $x = \begin{bmatrix} -2x_2 \\ x_2 \end{bmatrix} = x_2 \begin{bmatrix} -2 \\ 1 \end{bmatrix}$. So $\begin{bmatrix} -2 \\ 1 \end{bmatrix}$ is an eigenvector corresponding to eigenvalue λ = Now $\{v_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, v_2 = \begin{bmatrix} -2 \\ 1 \end{bmatrix}\}$ is an orthogonal basis. Compute $||v_1|| = \sqrt{5}$ and $||v_2|| = \sqrt{5}$. Thus $\left\{\frac{v_1}{||v_1||} = \begin{vmatrix} \frac{1}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} \end{vmatrix}, \frac{v_2}{||v_2||} = \begin{vmatrix} \frac{-2}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} \end{vmatrix}\right\}$ is

an orthonormal basis of eigenvectors. So we have $A = P \begin{bmatrix} 1 & 0 \\ 0 & 11 \end{bmatrix} P^T$

where $P = \begin{vmatrix} \frac{1}{\sqrt{5}} & \frac{-2}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \end{vmatrix}$. Now $Q(x) = x^T A x = x^T P \begin{bmatrix} 1 & 0 \\ 0 & 11 \end{bmatrix} P^T x = y^T \begin{bmatrix} 1 & 0 \\ 0 & 11 \end{bmatrix} y = y_1^2 + y_1$ $11y_2^2$ if $y = P^T x$. So $Py = PP^T x$, x = Py and $P = \begin{vmatrix} \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \\ \frac{-2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \end{vmatrix}$. Note that we have used the fact that $PP^T = I$.

(b)
$$-5x_1^2 + 4x_1x_2 - 2x_2^2$$

Let
$$Q(x_1, x_2) = -5x_1^2 + 4x_1x_2 - 2x_2^2 = x^T \begin{bmatrix} -5 & 2\\ 2 & -2 \end{bmatrix} x$$
 and $A = \begin{bmatrix} -5 & 2\\ 2 & -2 \end{bmatrix} x$

 $\begin{bmatrix} -5 & 2 \\ 2 & -2 \end{bmatrix}$. We want to orthogonally diagonalizes A.

Compute $A - \lambda I = \begin{bmatrix} -5 - \lambda & 2\\ 2 & -2 - \lambda \end{bmatrix}$ and $det(A - \lambda I) = (-5 - \lambda)$ $\lambda(-2 - \lambda) - 4 = \lambda^2 + 7\lambda + 10 - 4 = \lambda^2 + 7\lambda + 6 = (\lambda + 1)(\lambda + 6).$ So $\lambda = -1$ or $\lambda = -6$. Since the eigenvalues of A are all negative, we know that the quadratic form is negative definite. Now we diagonalize A.

 $\lambda = -1: A - (-1) \cdot I = \begin{bmatrix} -5 - (-1) & 2 \\ 2 & -2 - (-1) \end{bmatrix} = \begin{bmatrix} -4 & 2 \\ 2 & -1 \end{bmatrix} \sim \begin{bmatrix} 2 & -1 \\ 0 & 0 \end{bmatrix}.$ So $x \in Null(A - 1 \cdot I)$ iff $2x_1 - x_2 = 0$. So $x_2 = 2x_1$ and $x = \begin{bmatrix} x_1 \\ 2x_1 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 2 \end{bmatrix}.$ So $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ is an eigenvector corresponding to eigenvalue $\lambda =$ $\lambda = -6: A - (-6) \cdot I = \begin{bmatrix} -5 - (-6) & 2\\ 2 & (-2) - (-6) \end{bmatrix} = \begin{bmatrix} 1 & 2\\ 2 & 4 \end{bmatrix} \sim \begin{bmatrix} 1 & 2\\ 0 & 0 \end{bmatrix}.$ So $x \in Null(A - 11 \cdot I)$ iff $x_1 + 2x_2 = 0$. So $x_1 = -2x_2$ and $x = \begin{bmatrix} -2x_2\\ x_2 \end{bmatrix} = x_2 \begin{bmatrix} -2\\ 1 \end{bmatrix}.$ So $\begin{bmatrix} -2\\ 1 \end{bmatrix}$ is an eigenvector corresponding Now $\{v_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, v_2 = \begin{bmatrix} -2 \\ 1 \end{bmatrix}\}$ is an orthogonal basis. Compute

 $||v_1|| = \sqrt{5}$ and $||v_2|| = \sqrt{5}$. Thus $\left\{\frac{v_1}{||v_1||} = \begin{vmatrix} \frac{1}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} \end{vmatrix}$, $\frac{v_2}{||v_2||} = \begin{vmatrix} \frac{-2}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} \end{vmatrix}$ } is an orthonormal basis of eigenvectors. So we have $A = P \begin{bmatrix} -1 & 0 \\ 0 & -6 \end{bmatrix} P^T$ where $P = \begin{vmatrix} \frac{1}{\sqrt{5}} & \frac{-2}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \end{vmatrix}$. Now $Q(x) = x^T A x = x^T P \begin{bmatrix} -1 & 0 \\ 0 & -6 \end{bmatrix} P^T x = y^T \begin{bmatrix} -1 & 0 \\ 0 & -6 \end{bmatrix} y = -y_1^2 - 6y_2^2$ if $y = P^T x$. So $Py = PP^T x$, x = Py and $P = \begin{bmatrix} \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \\ \frac{-2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \end{bmatrix}$. (c) $8x_1^2 + 6x_1x_2$. Let $Q(x_1, x_2) = 8x_1^2 + 6x_1x_2 = x^T \begin{vmatrix} 8 & 3 \\ 3 & 0 \end{vmatrix} x$ and $A = \begin{vmatrix} 8 & 3 \\ 3 & 0 \end{vmatrix}$. We want to orthogonally diagonalizes Compute $A - \lambda I = \begin{bmatrix} 8 - \lambda & 3 \\ 3 & 0 - \lambda \end{bmatrix}$ and $det(A - \lambda I) = (8 - \lambda) \cdot$ $(-\lambda) - 9 = \lambda^2 - 8\lambda - 9 = (\lambda + 1)(\lambda - 9)$. So $\lambda = -1$ or $\lambda = 9$. Since A has positive and negative eigenvalues, we know that the quadratic form is indefinite. Now we diagonalize A. $\lambda = -1: A - (-1) \cdot I = \begin{bmatrix} 8 - (-1) & 3 \\ 3 & 0 - (-1) \end{bmatrix} = \begin{bmatrix} 9 & 3 \\ 3 & 1 \end{bmatrix} \sim \begin{bmatrix} 3 & 1 \\ 0 & 0 \end{bmatrix}.$ So $x \in Null(A - 1 \cdot I)$ iff $3x_1 + x_2 = 0$. So $x_2 = -3x_1$ and $x = \begin{bmatrix} x_1 \\ -3x_1 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ -3 \end{bmatrix}$. So $\begin{bmatrix} 1 \\ -3 \end{bmatrix}$ is an eigenvector corresponding to eigenvalue $\lambda =$ $\lambda = 9: A - 9 \cdot I = \begin{bmatrix} 8 - 9 & 3 \\ 3 & 0 - 9 \end{bmatrix} = \begin{bmatrix} -1 & 3 \\ 3 & -9 \end{bmatrix} \sim \begin{bmatrix} 1 & -3 \\ 0 & 0 \end{bmatrix}.$ So $x \in Null(A - 9 \cdot I)$ iff $x_1 - 3x_2 = 0$. So $x_1 = 3x_2$ and $x = \begin{vmatrix} 3x_2 \\ x_2 \end{vmatrix} =$ $x_2 \begin{vmatrix} 3 \\ 1 \end{vmatrix}$. So $\begin{vmatrix} 3 \\ 1 \end{vmatrix}$ is an eigenvector corresponding to eigenvalue $\lambda =$

Now $\{v_1 = \begin{bmatrix} 1 \\ -3 \end{bmatrix}, v_2 = \begin{bmatrix} 3 \\ 1 \end{bmatrix}\}$ is an orthogonal basis. Compute

$$\begin{aligned} ||v_1|| &= \sqrt{10} \text{ and } ||v_2|| &= \sqrt{10}. \quad \text{Thus } \left\{ \frac{v_1}{||v_1||} &= \begin{bmatrix} \frac{1}{\sqrt{10}} \\ \frac{-3}{\sqrt{10}} \end{bmatrix}, \frac{v_2}{||v_2||} &= \\ \begin{bmatrix} \frac{3}{\sqrt{10}} \\ \frac{1}{\sqrt{10}} \end{bmatrix} \right\} \text{ is an orthonormal basis of eigenvectors. So we have } A = \\ P \begin{bmatrix} -1 & 0 \\ 0 & 9 \end{bmatrix} P^T \text{ where } P = \begin{bmatrix} \frac{1}{\sqrt{10}} & \frac{-3}{\sqrt{10}} \\ \frac{3}{\sqrt{10}} & \frac{1}{\sqrt{10}} \end{bmatrix}. \\ \text{Now } Q(x) &= x^T A x = x^T P \begin{bmatrix} -1 & 0 \\ 0 & 9 \end{bmatrix} P^T x = y^T \begin{bmatrix} -1 & 0 \\ 0 & 9 \end{bmatrix} y = -y_1^2 + \\ 9y_2^2 \text{ if } y = P^T x. \text{ So } Py = PP^T x, x = Py \text{ and } P \begin{bmatrix} \frac{1}{\sqrt{10}} & \frac{-3}{\sqrt{10}} \\ \frac{3}{\sqrt{10}} & \frac{1}{\sqrt{10}} \end{bmatrix}. \end{aligned}$$

3. (a) Find a 3×3 matrix A which is not diagonalizable?

Solution: Let $A = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$. Then $det(A - \lambda I) = -\lambda^3$ and the eigenvalues of A are zero.

$$A - 0 \cdot I = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}.$$
 The eigenvector $x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ satisfies $x_2 = 0$ and $x_3 = 0$. The eigenvector is $x = \begin{bmatrix} x_1 \\ 0 \\ 0 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}.$ So there is only one eigenvector for A and A is not diagonalizable.

(b) Give an example of a 2×2 matrix which is diagonalizable but not orthogonally diagonalizable?

Solution: Let $A = \begin{bmatrix} 1 & 4 \\ 1 & 1 \end{bmatrix}$. Then $det(A - \lambda I) == \begin{bmatrix} 1 - \lambda & 4 \\ 1 & 1 - \lambda \end{bmatrix} = (1 - \lambda)^2 - 4 = (1 - \lambda)^2 - 2^2 = (1 - \lambda - 2)(1 - \lambda + 2) = (-\lambda - 1)(3 - \lambda)$. So A has two distinct eigenvalues and A is diagonalizable. But A is not symmetric. So A is not orthogonally diagonalizable.

4. Let
$$A = \begin{bmatrix} 1 & 2 & 2 \\ 1 & 1 & 0 \\ 0 & 1 & 2 \\ -1 & 0 & -1 \end{bmatrix}$$
.
(a) Find the condition on $b = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{bmatrix}$ such that $Ax = b$ is solvable.
Solution:
Consider the augmented matrix $\begin{bmatrix} A & b \end{bmatrix} = \begin{bmatrix} 1 & 2 & 2 & | & b_1 \\ 1 & 1 & 0 & | & b_2 \\ 0 & 1 & 2 & | & b_3 \\ -1 & 0 & -1 & | & b_4 \end{bmatrix}$
 $a_2 := \widetilde{a_2 + (-1)}a_1 \begin{bmatrix} 1 & 2 & 2 & | & b_1 \\ 0 & -1 & -2 & | & b_1 \\ 0 & -1 & -2 & | & b_2 \\ 0 & 1 & 2 & | & b_3 \\ -1 & 0 & -1 & | & b_4 \end{bmatrix}$
 $a_4 := \widetilde{a_4} + a_1 \begin{bmatrix} 1 & 2 & 2 & | & b_1 \\ 0 & -1 & -2 & | & b_2 \\ 0 & -1 & -2 & | & b_2 \\ 0 & 1 & 2 & | & b_3 \\ 0 & 2 & 1 & | & b_4 + b_1 \end{bmatrix}$
 $a_2 := -a_2 \begin{bmatrix} 1 & 2 & 2 & | & b_1 \\ 0 & 1 & 2 & | & b_3 \\ 0 & 2 & 1 & | & b_4 + b_1 \end{bmatrix}$
 $a_3 := a_3 - \widetilde{a_{2, a_4}} := a_4 - 2a_2 \begin{bmatrix} 1 & 2 & 2 & | & b_1 \\ 0 & 1 & 2 & | & -b_2 + b_1 \\ 0 & 1 & 2 & | & -b_2 + b_1 \\ 0 & 0 & | & b_3 + b_2 - b_1 \\ 0 & 0 & | & b_3 + b_2 - b_1 \\ 0 & 0 & -3 & | & b_4 - b_1 + 2 b_2 \end{bmatrix}$

$$\overbrace{a_3 \leftrightarrow a_4} \begin{bmatrix}
1 & 2 & 2 & b_1 \\
0 & 1 & 2 & -b_2 + b_1 \\
0 & 0 & -3 & b_4 - b_1 + 2 & b_2 \\
0 & 0 & 0 & b_3 + b_2 - b_1
\end{bmatrix}$$

From here, we can see that Ax = b has a solution if $b_3 + b_2 - b_1 = 0$.

(b) What is the column space of A? Solution:

The column space is the subspace spanned by the column vectors. From the computation in (a), we know that the column vectors of $\begin{bmatrix} 1 & 1 & 2 & 2 & 2 \end{bmatrix}$

A are independent. So
$$Col(A) = span \left\{ \begin{bmatrix} 1 \\ 1 \\ 0 \\ -1 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ 0 \\ 2 \\ -1 \end{bmatrix} \right\}.$$

(c) Describe the subspace $col(A)^{\perp}$ and find an basis for $col(A)^{\perp}$. Solution: $col(A)^{\perp} = \{x | x \cdot y = 0 \text{ for all } y \in col(A)\}$

$$= \left\{ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} + \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 1 \\ 0 \\ -1 \end{bmatrix} = 0, \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ 1 \\ 1 \\ 0 \end{bmatrix} = 0, \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \\ 2 \\ -1 \end{bmatrix} = 0 \right\}$$
$$= \left\{ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} | x_1 + x_2 - x_4 = 0, 2x_1 + x_2 + x_3 = 0, 2x_1 + 2x_3 - x_4 = 0 \right\}$$
$$Consider \begin{bmatrix} 1 & 1 & 0 & -1 \\ 2 & 1 & 1 & 0 \\ 2 & 0 & 2 & -1 \end{bmatrix} r_2 := r_2 - 2r_1 \begin{bmatrix} 1 & 1 & 0 & -1 \\ 0 & -1 & 1 & 2 \\ 2 & 0 & 2 & -1 \end{bmatrix}$$
$$r_3 := r_3 - 2r_1 \begin{bmatrix} 1 & 1 & 0 & -1 \\ 0 & -1 & 1 & 2 \\ 0 & -2 & 2 & 1 \end{bmatrix} r_2 := -r_2 \begin{bmatrix} 1 & 1 & 0 & -1 \\ 0 & 1 & -1 & -2 \\ 0 & -2 & 2 & 1 \end{bmatrix}$$

$$\begin{split} & \overbrace{r_3:=r_3+2r_2} \left[\begin{array}{ccccc} 1 & 1 & 0 & -1 \\ 0 & 1 & -1 & -2 \\ 0 & 0 & 0 & -3 \\ \end{array} \right] r_1:=r_1-r_2 \left[\begin{array}{ccccc} 1 & 0 & 1 & 1 \\ 0 & 1 & -1 & -2 \\ 0 & 0 & 0 & -3 \\ \end{array} \right] \\ & \overbrace{r_3:=r_3/(-3)} \left[\begin{array}{cccccc} 1 & 0 & 1 & 1 \\ 0 & 1 & -1 & -2 \\ 0 & 0 & 0 & 1 \\ \end{array} \right] r_1:=r_1-r_3, r_2:=r_2+2r_3 \left[\begin{array}{cccccc} 1 & 0 & 1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 1 \\ \end{array} \right] \\ & \operatorname{So} x_1+x_3=0, x_2-x_3=0 \text{ and } x_4=0, x_3 \text{ is free. This implies that} \\ & x_1=-x_3, x_2=x_3 \ , x_4=0 \text{ and } x=\left[\begin{array}{c} x_1 \\ x_2 \\ x_3 \\ x_4 \\ \end{array} \right] = \left[\begin{array}{c} -x_3 \\ x_3 \\ x_3 \\ 0 \\ \end{array} \right] = x_3 \left[\begin{array}{c} -1 \\ 1 \\ 0 \\ \end{array} \right] . \\ & \operatorname{Hence} \ col(A)^{\perp}=span\{\left[\begin{array}{c} -1 \\ 1 \\ 1 \\ 0 \\ \end{array} \right]\} \text{ and } \{ \left[\begin{array}{c} -1 \\ 1 \\ 1 \\ 0 \\ \end{array} \right] \} \text{ is a basis for } col(A)^{\perp}. \\ & \operatorname{The \ dimension \ of \ col(A)^{\perp} \text{ is } 1. \end{split} \right] \end{split}$$

(d) Use Gram-Schmidt process to find an orthogonal basis for the column of the matrix A. Solution:

Solution:
Let
$$w_1 = \begin{bmatrix} 1\\ 1\\ 0\\ -1 \end{bmatrix}$$
, $w_2 = \begin{bmatrix} 2\\ 1\\ 1\\ 0 \end{bmatrix}$ and $w_3 = \begin{bmatrix} 2\\ 0\\ 2\\ -1 \end{bmatrix}$.
Gram-Schmidt process is
 $v_1 = w_1, v_2 = w_2 - \frac{w_2 \cdot v_1}{v_1 \cdot v_1} v_1$ and $v_3 = w_3 - \frac{w_3 \cdot v_1}{v_1 \cdot v_1} v_1 - \frac{w_3 \cdot v_2}{v_2 \cdot v_2} v_2$.
So $v_1 = \begin{bmatrix} 1\\ 1\\ 0\\ -1 \end{bmatrix}$. Compute $w_2 \cdot v_1 = \begin{bmatrix} 2\\ 1\\ 1\\ 0\\ -1 \end{bmatrix} = 3$, $v_1 \cdot v_1 = \begin{bmatrix} 1\\ 0\\ -1\\ 1\\ 0\\ -1 \end{bmatrix} = 3$ and $v_2 = \begin{bmatrix} 2\\ 1\\ 1\\ 0\\ -1\\ 1 \end{bmatrix} - \frac{3}{3} \begin{bmatrix} 1\\ 1\\ 0\\ -1\\ 1 \end{bmatrix} = \begin{bmatrix} 1\\ 0\\ 1\\ 1\\ 1 \end{bmatrix}$.
Compute $w_3 \cdot v_1 = \begin{bmatrix} 2\\ 0\\ 2\\ -1\\ 1 \end{bmatrix} \cdot \begin{bmatrix} 1\\ 0\\ 2\\ -1\\ 1 \end{bmatrix} + \begin{bmatrix} 1\\ 0\\ 0\\ -1\\ 1 \end{bmatrix} = 3$, $w_3 \cdot v_2 = \begin{bmatrix} 2\\ 0\\ 2\\ -1\\ 1 \end{bmatrix} \cdot \begin{bmatrix} 1\\ 0\\ 1\\ 1\\ 1 \end{bmatrix} = 3$,
 $v_2 \cdot v_2 = \begin{bmatrix} 1\\ 0\\ 1\\ 1\\ 1\\ 1 \end{bmatrix} \cdot \begin{bmatrix} 1\\ 0\\ 1\\ 1\\ 1\\ 1 \end{bmatrix} = 3$ and
 $v_3 = w_3 - \frac{w_3 \cdot v_1}{v_1 \cdot v_1} v_1 - \frac{w_3 \cdot v_2}{v_2 \cdot v_2} v_2 = \begin{bmatrix} 2\\ 0\\ 2\\ -1\\ 1 \end{bmatrix} - \frac{3}{3} \begin{bmatrix} 1\\ 1\\ 0\\ -1\\ 1 \end{bmatrix} - \frac{3}{3} \begin{bmatrix} 1\\ 0\\ 1\\ 1\\ 1 \end{bmatrix}$

$$= \begin{bmatrix} 2^{-1-1} \\ 0^{-1-0} \\ 2^{-0-1} \\ -1+1-1 \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \\ 1 \\ -1 \end{bmatrix}. \text{ Hence } \left\{ \begin{bmatrix} 1 \\ 1 \\ 0 \\ -1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ -1 \\ 1 \\ 1 \end{bmatrix} \right\} \text{ is an orthog-orthogonal basis for } Col(A).$$

(e) Find an orthonormal basis for the column of the matrix A. Solution: Note that $||u|||_{-\infty} = \sqrt{2} ||u|||_{-\infty} = \sqrt{2}$

Note that
$$||v_1|| = \sqrt{v_1 \cdot v_1} = \sqrt{3}$$
, $||v_2|| = \sqrt{v_2 \cdot v_2} = \sqrt{3}$ and
 $||v_3|| = \sqrt{v_3 \cdot v_3} = \sqrt{3}$. Hence $\{\frac{v_1}{||v_1||}, \frac{v_2}{||v_2||}, \frac{v_3}{||v_3||}\} = \{\begin{bmatrix}\frac{1}{\sqrt{3}}\\ \frac{1}{\sqrt{3}}\\ 0\\ -\frac{1}{\sqrt{3}}\end{bmatrix}, \begin{bmatrix}\frac{1}{\sqrt{3}}\\ 0\\ \frac{1}{\sqrt{3}}\\ \frac{1}{\sqrt{3}}\end{bmatrix}, \begin{bmatrix}0\\ -\frac{1}{\sqrt{3}}\\ \frac{1}{\sqrt{3}}\\ -\frac{1}{\sqrt{3}}\end{bmatrix}\}$

is an orthonormal basis for Col(A).

(f) Find the orthogonal projection of $y = \begin{bmatrix} 1 \\ 3 \\ 10 \\ -2 \end{bmatrix}$ onto the column

space of A and write $y = \hat{y} + z$ where $\hat{y} \in col(A)$ and $z \in col(A)^{\perp}$. Also find the shortest distance from y to Col(A).

Solution: Since $\{v_1 = \begin{bmatrix} 1\\ 1\\ 0\\ -1 \end{bmatrix}, v_2 = \begin{bmatrix} 1\\ 0\\ 1\\ 1 \end{bmatrix}, v_3 = \begin{bmatrix} 0\\ -1\\ 1\\ -1 \end{bmatrix}\}$ is an orthogonal basis for $Col(A), y = \hat{y} + z$ where $\hat{y} = \frac{y \cdot v_1}{v_1 \cdot v_1}v_1 + \frac{y \cdot v_2}{v_2 \cdot v_2}v_2 + \frac{y \cdot v_3}{v_3 \cdot v_3}v_3 \in Col(A)$ and $z = y - \hat{y} \in Col(A)^{\perp}$. Compute $y \cdot v_1 = \begin{bmatrix} 7\\ 3\\ 10\\ -2 \end{bmatrix} \cdot \begin{bmatrix} 1\\ 1\\ 0\\ -1 \end{bmatrix} = 7 + 3 + 0 + 2 = 12, v_1 \cdot v_1 = \begin{bmatrix} 1\\ 1\\ 0\\ -1 \end{bmatrix} \cdot \begin{bmatrix} 1\\ 1\\ 0\\ -1 \end{bmatrix} = 1$ $1 + 1 + 1 = 3, y \cdot v_2 = \begin{bmatrix} 7\\ 3\\ 10\\ -2 \end{bmatrix} \cdot \begin{bmatrix} 7\\ 3\\ 10\\ -2 \end{bmatrix} \cdot \begin{bmatrix} 1\\ 0\\ 1\\ 1\\ 1 \end{bmatrix} = 7 + 0 + 10 - 2 = 15,$ $v_2 \cdot v_2 = \begin{bmatrix} 1\\ 0\\ 1\\ 1\\ -1 \end{bmatrix} \cdot \begin{bmatrix} 0\\ -1\\ 1\\ 1\\ -1 \end{bmatrix} = 3,$ $y \cdot v_3 = \begin{bmatrix} 7\\ 3\\ 10\\ -2 \end{bmatrix} \cdot \begin{bmatrix} 0\\ -1\\ 1\\ -1\\ -1 \end{bmatrix} = 0 - 3 + 10 + 2 = 9, v_3 \cdot v_3 = \begin{bmatrix} 0\\ -1\\ 1\\ -1\\ -1\\ -1 \end{bmatrix} \cdot \begin{bmatrix} 0\\ -1\\ 1\\ -1\\ -1\\ -1 \end{bmatrix} = 3.$

So
$$\widehat{y} = \frac{12}{3} \begin{bmatrix} 1\\1\\0\\-1 \end{bmatrix} + \frac{(15)}{3} \begin{bmatrix} 1\\0\\1\\1\\1 \end{bmatrix} + \frac{9}{3} \begin{bmatrix} 0\\-1\\1\\-1\\-1 \end{bmatrix} = \begin{bmatrix} 4+5+0\\4+0-3\\0+5+3\\-4+5-3 \end{bmatrix} = \begin{bmatrix} 9\\1\\8\\-2 \end{bmatrix}$$
 and
 $z = y - \widehat{y} = \begin{bmatrix} 7\\3\\10\\-2 \end{bmatrix} - \begin{bmatrix} 9\\1\\8\\-2 \end{bmatrix} = \begin{bmatrix} 2\\-2\\2\\0 \end{bmatrix}$. Note that $z \in Col(A)^{\perp} =$
 $span\{\begin{bmatrix} 1\\-1\\1\\0 \end{bmatrix}\}.$
The shortest distance from y to $Col(A) = ||y - \widehat{y}|| = ||z|| =$

The shortest distance from y to $Col(A) = ||y - \hat{y}|| = ||z|| = \sqrt{(2)^2 + (-2)^2 + (2)^2 + (0)^2} = \sqrt{12}.$

- (g) Using previous result to explain why Ax = y has no solution. Solution: Since the orthogonal projection of y to Col(A) is not y, this implies that y is not in Col(A). So Ax = y has no solution.
- (h) Use orthogonal projection to find the least square solution of Ax = y.

Solution: The least square solution of Ax = y is the solution of $Ax = \hat{y} = \begin{bmatrix} 9\\1\\8\\-2 \end{bmatrix}$ where \hat{y} is the orthogonal projection of y onto

the column space of A (from part (f), we know $\hat{y} = \begin{bmatrix} 9\\1\\8\\-2 \end{bmatrix}$.) Consider the augmented matrix

$$\begin{bmatrix} A \ \hat{y} \end{bmatrix} = \begin{bmatrix} 1 & 2 & 2 & | & 9 \\ 1 & 1 & 0 & | & 1 \\ 0 & 1 & 2 & | & 8 \\ -1 & 0 & -1 & | & -2 \end{bmatrix} r_2 := r_2 - \tilde{r_1, r_3} := r_3 + r_1 \begin{bmatrix} 1 & 2 & 2 & | & 9 \\ 0 & -1 & -2 & | & -8 \\ 0 & 1 & 2 & | & 8 \\ 0 & 2 & 1 & | & 7 \end{bmatrix}$$
$$r_3 := r_3 + \tilde{r_2, r_4} := r_4 + r_1 \begin{bmatrix} 1 & 2 & 2 & | & 9 \\ 0 & -1 & -2 & | & -8 \\ 0 & 0 & -1 & -2 & | & -8 \\ 0 & 0 & 0 & | & 0 \\ 0 & 0 & -3 & | & -9 \end{bmatrix}$$

$$r_{2} := -r_{2}, r_{4} := \overline{r_{4}/(-3)}, r_{3} \leftrightarrow r_{4} \begin{bmatrix} 1 & 2 & 2 & | & 9 \\ 0 & 1 & 2 & | & 8 \\ 0 & 0 & 1 & | & 3 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

$$r_{2} := r_{2} - 2r_{3}, r_{1} := r_{1} - 2r_{3} \begin{bmatrix} 1 & 2 & 0 & | & 3 \\ 0 & 1 & 0 & | & 2 \\ 0 & 0 & 1 & | & 3 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

$$r_{1} := r_{1} - 2r_{2} \begin{bmatrix} 1 & 0 & 0 & | & -1 \\ 0 & 1 & 0 & | & 2 \\ 0 & 0 & 1 & | & 3 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

So $x_{1} = -1, x_{2} = 2, x_{3} = 3$ and the least square solution of
 $Ax = y$ is $x = \begin{bmatrix} -1 \\ 2 \\ 3 \end{bmatrix}$.

(i) Use normal equation to find the least square solution of Ax = y. Solution: The normal equation is $A^TAx = A^Ty$. Compute $A^TA =$

$$\begin{bmatrix} 1 & 1 & 0 & -1 \\ 2 & 1 & 1 & 0 \\ 2 & 0 & 2 & -1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 2 \\ 1 & 1 & 0 \\ 0 & 1 & 2 \\ -1 & 0 & -1 \end{bmatrix} = \begin{bmatrix} 3 & 3 & 3 \\ 3 & 6 & 6 \\ 3 & 6 & 9 \end{bmatrix}$$

and $A^{T}y = \begin{bmatrix} 1 & 1 & 0 & -1 \\ 2 & 1 & 1 & 0 \\ 2 & 0 & 2 & -1 \end{bmatrix} \begin{bmatrix} 7 \\ 3 \\ 10 \\ -2 \end{bmatrix} = \begin{bmatrix} 12 \\ 27 \\ 36 \end{bmatrix}.$
So the normal equation $A^{T}Ax = A^{T}y$ is
$$\begin{bmatrix} 3 & 3 & 3 \\ 3 & 6 & 6 \\ 3 & 6 & 9 \end{bmatrix} x = \begin{bmatrix} 12 \\ 27 \\ 36 \end{bmatrix}.$$

Consider the augmented matrix
$$\begin{bmatrix} 3 & 3 & 3 & | 12 \\ 3 & 6 & 6 & | 27 \\ 3 & 6 & 9 & | 36 \end{bmatrix} \sim$$

$$\begin{aligned} r_{2} &:= r_{2} - r_{1}, r_{3} := r_{3} - r_{1} \begin{bmatrix} 3 & 3 & 3 & | 12 \\ 0 & 3 & 3 & | 15 \\ 0 & 3 & 6 & | 24 \end{bmatrix} \\ &\sim r_{3} &:= r_{3} - r_{2} \begin{bmatrix} 3 & 3 & 3 & | 12 \\ 0 & 3 & 3 & | 15 \\ 0 & 0 & 3 & | 9 \end{bmatrix} \sim r_{1} := r_{1}/3, r_{2} := r_{2}/3, r_{3} := r_{3}/3 \begin{bmatrix} 1 & 1 & 1 & | 4 \\ 0 & 1 & 1 & | 5 \\ 0 & 0 & 1 & | 3 \end{bmatrix} \\ &\sim r_{2} := r_{2} - r_{3}, r_{1} := r_{1} - r_{3} \begin{bmatrix} 1 & 1 & 0 & | 1 \\ 0 & 1 & 0 & | 2 \\ 0 & 0 & 1 & | 3 \end{bmatrix} \\ &\sim r_{1} := r_{1} - r_{2}, \begin{bmatrix} 1 & 0 & 0 & | -1 \\ 0 & 1 & 0 & | 2 \\ 0 & 0 & 1 & | 3 \end{bmatrix} \\ &\text{So } x_{1} = -1, x_{2} = 2, x_{3} = 3 \text{ and the least square solution of} \\ &Ax = y \text{ is } x = \begin{bmatrix} -1 \\ 2 \\ 3 \end{bmatrix}. \end{aligned}$$

5. Find the equation y = a + mx of the least square line that best fits the given data points. (0, 1), (1, 1), (3, 2).
Solution: We try to solve the equations 1 = a, 1 = a + m, 2 = a + 3m, that is, a = 1, a + m = 1 and a + 3m = 2. It corresponding to the linear system

$$a = 1, a + m = 1 \text{ and } a + 3m = 2.$$
 It corresponding to the linear
$$\begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} a \\ m \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$$

Let $A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 3 \end{bmatrix}$. We solve the normal equation

$$A^{T}A\begin{bmatrix} a\\ m \end{bmatrix} = A^{T}\begin{bmatrix} 1\\ 1\\ 2 \end{bmatrix}.$$
Compute $A^{T}A = \begin{bmatrix} 1 & 1 & 1\\ 0 & 1 & 3 \end{bmatrix} \begin{bmatrix} 1 & 0\\ 1 & 1\\ 1 & 3 \end{bmatrix} = \begin{bmatrix} 3 & 4\\ 4 & 10 \end{bmatrix}$ and
$$A^{T}\begin{bmatrix} 1\\ 1\\ 2 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1\\ 0 & 1 & 3 \end{bmatrix} \begin{bmatrix} 1\\ 1\\ 2 \end{bmatrix} = \begin{bmatrix} 4\\ 7 \end{bmatrix}.$$
Consider the augmented matrix
$$\begin{bmatrix} 3 & 4 & | & 4\\ 4 & 10 & | & 7 \end{bmatrix} \sim r_{2} := r_{2} - \frac{4}{3}r_{1}\begin{bmatrix} 3 & 4 & | & 4\\ 0 & \frac{14}{3} & | & \frac{5}{3} \end{bmatrix}$$

$$\sim r_{2} := \frac{3}{14}r_{2}\begin{bmatrix} 3 & 4 & | & 4\\ 0 & 1 & | & \frac{5}{14} \end{bmatrix} \sim r_{1} := r_{1} - 4r_{2}\begin{bmatrix} 3 & 0 & | & \frac{18}{7}\\ 0 & 1 & | & \frac{5}{14} \end{bmatrix}$$
So the last group colution is a - $\frac{6}{7}$ and $m = \frac{5}{7}$. The

So the least square solution is $a = \frac{6}{7}$ and $m = \frac{5}{14}$. The equation $y = \frac{6}{7} + \frac{5}{14}x$ is the least square line that best fits the given data points. (0, 1), (1, 1), (3, 2).

6. (a) Show that the set of vectors

$$B = \left\{ u_1 = \left(-\frac{3}{5}, \frac{4}{5}, 0 \right), \ u_2 = \left(\frac{4}{5}, \frac{3}{5}, 0 \right), \ u_3 = (0, 0, 1) \right\}$$

is an **orthonormal basis** of \mathbb{R}^3 .

Solution: Compute $u_1 \cdot u_2 = \left(-\frac{3}{5}, \frac{4}{5}, 0\right) \cdot \left(\frac{4}{5}, \frac{3}{5}, 0\right) = \frac{-12}{5} + \frac{12}{5} = 0,$ $u_1 \cdot u_3 = \left(-\frac{3}{5}, \frac{4}{5}, 0\right) \cdot (0, 0, 1) = 0, u_2 \cdot u_3 = \left(\frac{4}{5}, \frac{3}{5}, 0\right) \cdot (0, 0, 1) = 0,$ $u_1 \cdot u_1 = \left(-\frac{3}{5}, \frac{4}{5}, 0\right) \cdot \left(-\frac{3}{5}, \frac{4}{5}, 0\right) = \frac{9}{25} + \frac{16}{25} = 1, u_3 \cdot u_3 = (0, 0, 1) \cdot (0, 0, 1) = 1,$ $u_2 \cdot u_2 = \left(\frac{4}{5}, \frac{3}{5}, 0\right) \cdot \left(\frac{4}{5}, \frac{3}{5}, 0\right) = \frac{16}{25} + \frac{9}{25} = 1$

(b) Find the coordinates of the vector (1, -1, 2) with respect to the basis in (a).

Solution: Let y = (1, -1, 2). So $y = \frac{y \cdot u_1}{u_1 \cdot u_1} u_1 + \frac{y \cdot u_2}{u_2 \cdot u_2} u_2 + \frac{y \cdot u_3}{u_3 \cdot u_3} u_3 = (y \cdot u_1) u_1 + (y \cdot u_2) u_2 + (y \cdot u_3) u_3$. Compute $y \cdot u_1 = (1, -1, 2) \cdot \left(-\frac{3}{5}, \frac{4}{5}, 0\right) =$

$$\begin{array}{l} -\frac{3}{5} - \frac{4}{5} = -\frac{7}{5}, \ y \cdot u_2 = (1, -1, 2) \cdot \left(\frac{4}{5}, \frac{3}{5}, 0\right) = \frac{4}{5} - \frac{3}{5} = \frac{1}{5}, y \cdot u_3 = (1, -1, 2) \cdot (0, 0, 1) = 2. \end{array}$$

So the coordinate of y with respect to the basis in (a) is $\left(-\frac{7}{5}, \frac{1}{5}, 2\right)$.

7. (a) Let $A = \begin{bmatrix} 3 & 6 & 7 \\ 0 & 2 & 1 \\ 2 & 3 & 4 \end{bmatrix}$. Find the inverse matrix of A if possible.

Solution: Consider the augmented matrix $[A I] = \begin{bmatrix} 3 & 6 & 7 & | & 1 & 0 & 0 \\ 0 & 2 & 1 & | & 0 & 1 & 0 \\ 2 & 3 & 4 & | & 0 & 0 & 1 \end{bmatrix}$ $\widetilde{r_{1} := r_{1} - r_{3}} \begin{bmatrix} 1 & 3 & 3 & | & 1 & 0 & -1 \\ 0 & 2 & 1 & | & 0 & 1 & 0 \\ 2 & 3 & 4 & | & 0 & 0 & 1 \end{bmatrix}$ $\widetilde{r_{3} := r_{3} - 2r_{1}} \begin{bmatrix} 1 & 3 & 3 & | & 1 & 0 & -1 \\ 0 & 2 & 1 & | & 0 & 1 & 0 \\ 0 & -3 & -2 & | & -2 & 0 & 3 \end{bmatrix}$
$$\begin{split} & \overbrace{r_2 := r_2 + r_3} \begin{bmatrix} 1 & 3 & 3 & | & 1 & 0 & -1 \\ 0 & -1 & -1 & | & -2 & 1 & 3 \\ 0 & -3 & -2 & | & -2 & 0 & 3 \end{bmatrix} \overbrace{r_2 := -r_2} \begin{bmatrix} 1 & 3 & 3 & | & 1 & 0 & -1 \\ 0 & 1 & 1 & | & 2 & -1 & -3 \\ 0 & -3 & -2 & | & -2 & 0 & 3 \end{bmatrix} \\ & \overbrace{r_3 := r_3 + 3r_2} \begin{bmatrix} 1 & 3 & 3 & | & 1 & 0 & -1 \\ 0 & 1 & 1 & | & 2 & -1 & -3 \\ 0 & 0 & 1 & | & 4 & -3 & -6 \end{bmatrix} \\ & \overbrace{r_4 := r_4 + 3r_5} \begin{bmatrix} 1 & 3 & 3 & | & 1 & 0 & -1 \\ 0 & 1 & 1 & | & 2 & -1 & -3 \\ 0 & 0 & 1 & | & 4 & -3 & -6 \end{bmatrix} \\ & \overbrace{r_5 := r_5 + 3r_5} \begin{bmatrix} 1 & 3 & 3 & | & 1 & 0 & -1 \\ 0 & 1 & 1 & | & 2 & -1 & -3 \\ 0 & 0 & 1 & | & 4 & -3 & -6 \end{bmatrix} \\ & \overbrace{r_5 := r_5 + 3r_5} \begin{bmatrix} 1 & 3 & 3 & | & 1 & 0 & -1 \\ 0 & 1 & 1 & | & 2 & -1 & -3 \\ 0 & 0 & 1 & | & 4 & -3 & -6 \end{bmatrix} \\ & \overbrace{r_5 := r_5 + 3r_5} \begin{bmatrix} 1 & 3 & 3 & | & 1 & 0 & -1 \\ 0 & 1 & 1 & | & 2 & -1 & -3 \\ 0 & 0 & 1 & | & 4 & -3 & -6 \end{bmatrix} \\ & \overbrace{r_5 := r_5 + 3r_5} \begin{bmatrix} 1 & 3 & 3 & | & 1 & 0 & -1 \\ 0 & 1 & 1 & | & 2 & -1 & -3 \\ 0 & 0 & 1 & | & 4 & -3 & -6 \end{bmatrix} \\ & \overbrace{r_5 := r_5 + 3r_5} \begin{bmatrix} 1 & 3 & 3 & | & 1 & 0 & -1 \\ 0 & 1 & 1 & | & 2 & -1 & -3 \\ 0 & 0 & 1 & | & 4 & -3 & -6 \end{bmatrix} \\ & \overbrace{r_5 := r_5 + 3r_5} \begin{bmatrix} 1 & 3 & 3 & | & 1 & 0 & -1 \\ 0 & 1 & 1 & | & 2 & -1 & -3 \\ 0 & 0 & 1 & | & 4 & -3 & -6 \end{bmatrix} \\ & \overbrace{r_5 := r_5 + 3r_5} \begin{bmatrix} 1 & 3 & 3 & | & 1 & 0 & -1 \\ 0 & 1 & 1 & | & 2 & -1 & -3 \\ 0 & 0 & 1 & | & 4 & -3 & -6 \end{bmatrix} \\ & \overbrace{r_5 := r_5 + 3r_5} \begin{bmatrix} 1 & 3 & 3 & | & 1 & 0 & -1 \\ 0 & 1 & 1 & | & 2 & -1 & -3 \\ 0 & 0 & 1 & | & 4 & -3 & -6 \end{bmatrix} \\ & \overbrace{r_5 := r_5 + 3r_5} \begin{bmatrix} 1 & 3 & 3 & | & 1 & 0 & -1 \\ 0 & 1 & 1 & | & 2 & -1 & -3 \\ 0 & 0 & 1 & | & 4 & -3 & -6 \end{bmatrix} \\ & \overbrace{r_5 := r_5 + 3r_5} \begin{bmatrix} 1 & 3 & 3 & | & 1 & 0 & -1 \\ 0 & 1 & 1 & 1 & -1 & -1 \\ 0 & 1 & 1 & 1 & -1 & -1 \\ 0 & 1 & 1 & 1 & -1 & -1 \\ 0 & 1 & 1 & 1 & -1 & -1 \\ 0 & 1 & 1 & 1 & -1 & -1 \\ 0 & 1 & 1 & 1 & -1 & -1 \\ 0 & 1 & 1 & 1 & -1 & -1 \\ 0 & 1 & 1 & 1 & -1 & -1 \\ 0 & 1 & 1 & 1 & -1 & -1 \\ 0 & 1 & 1 & 1 & -1 & -1 \\ 0 & 1 & 1 & 1 & -1 & -1 \\ 0 & 1 & 1 & 1 & -1 & -1 \\ 0 & 1 & 1 & 1 & -1 & -1 \\ 0 & 1 & 1 & 1 & -1 & -1 \\ 0 & 1 & 1 & 1 & -1 & -1 \\ 0 & 1 & 1 & 1 & -1 & -1 \\ 0 & 1 & 1 & 1 & -1 & -1 \\ 0 & 1 & 1 & 1 & -1 & -1 \\ 0 & 1 & 1 & 1 & -1 &$$
 $r_{2} := r_{2} - \widetilde{r_{3}, r_{1}} := r_{1} - 3r_{3} \begin{bmatrix} 1 & 3 & 0 & | & -11 & 9 & 17 \\ 0 & 1 & 0 & | & -2 & 2 & 3 \\ 0 & 0 & 1 & | & 4 & -3 & -6 \end{bmatrix}$ $r_{1} := \widetilde{r_{1} - 3r_{2}} \begin{bmatrix} 1 & 0 & 0 & | & -5 & 3 & 8 \\ 0 & 1 & 0 & | & -2 & 2 & 3 \\ 0 & 0 & 1 & | & 4 & -3 & -6 \end{bmatrix}.$

$$3r_2 \begin{bmatrix} 0 & 1 & 0 & | & -2 & 2 & 3 \\ 0 & 0 & 1 & | & 4 & -3 & -6 \end{bmatrix}$$

So $A^{-1} = \begin{bmatrix} -5 & 3 & 8 \\ -2 & 2 & 3 \\ 4 & -3 & -6 \end{bmatrix}$.

(b) Find the coordinates of the vector (1, -1, 2) with respect to the basis *B* obtained from the column vectors of *A*. Solution: The coordinate is $x = A^{-1} \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix} = \begin{bmatrix} -5 & 3 & 8 \\ -2 & 2 & 3 \\ 4 & -3 & -6 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix} = \begin{bmatrix} 8 \\ 2 \end{bmatrix}$.

$$\begin{bmatrix} 2\\ -5 \end{bmatrix}$$
.

8. Let $H = \left\{ \begin{bmatrix} a+2b-c\\a-b-4c\\a+b-2c \end{bmatrix} : a, b, cany real numbers \right\}.$ a. Explain why H is a subspace of R^3 . $\begin{bmatrix} a+2b-c \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 2 \end{bmatrix} \begin{bmatrix} -1 \end{bmatrix}$

Solution:
$$\begin{bmatrix} a + 2b & c \\ a - b - 4c \\ a + b - 2c \end{bmatrix} = a \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} + b \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix} + c \begin{bmatrix} -4 \\ -2 \end{bmatrix}$$

So $H = Span\{\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ -4 \\ -2 \end{bmatrix}\}$ and H is a subspace.
b. Find a set of vectors that spans H .
$$\begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 2 \\ -1 \end{bmatrix} \begin{bmatrix} -1 \end{bmatrix}$$

Solution: $\left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \end{bmatrix}, \begin{bmatrix} -4 \\ -2 \end{bmatrix} \right\}$ spans the space H. c. Find a basis for H.

Solution: Consider the matrix
$$A = \begin{bmatrix} 1 & 2 & -1 \\ 1 & -1 & -4 \\ 1 & 1 & -2 \end{bmatrix}$$

 $r_2 := r_2 - \widetilde{r_1, r_3} := r_3 - r_1 \begin{bmatrix} 1 & 2 & -1 \\ 0 & -3 & -3 \\ 0 & -1 & -1 \end{bmatrix}$

$$\widetilde{r_2} := \widetilde{r_2/(-3)} \begin{bmatrix} 1 & 2 & -1 \\ 0 & 1 & 1 \\ 0 & -1 & -1 \end{bmatrix} \widetilde{r_3} := \widetilde{r_3} + r_2 \begin{bmatrix} 1 & 2 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}.$$

So the first two vectors are pivot vectors and $\left\{ \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix} \right\}$ is a basis.
The dimension of the subspace is 2.

d. What is the dimension of the subspace? Solution: The dimension of the subspace is 2. e. Find an orthogonal basis for H.

Solution: Let
$$u_1 = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}$$
 and $u_2 = \begin{bmatrix} 2\\-1\\1 \end{bmatrix}$

Then $v_1 = u_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ and $v_2 = u_2 - \frac{u_2 \cdot v_1}{v_1 \cdot v_1} v_1$. Compute $u_2 \cdot v_1 = u_2 \cdot v_1$ $\begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = 2 - 1 + 1 = 2 \text{ and } v_1 \cdot v_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = 1 + 1 + 1 = 3.$ $v_{2} = \begin{bmatrix} 2\\ -1\\ 1 \end{bmatrix} - \frac{2}{3} \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix} = \begin{bmatrix} \frac{4}{3}\\ -\frac{5}{3}\\ \frac{1}{3} \end{bmatrix}. \text{ Thus } \{v_{1} = \begin{bmatrix} 1\\ 1\\ 1\\ 1 \end{bmatrix}, v_{2} = \begin{bmatrix} \frac{4}{3}\\ -\frac{5}{3}\\ \frac{1}{3} \end{bmatrix}\} \text{ ia an}$ orthogonal basis for H. We can verify that $v_1 \cdot v_2 = 0$.

9. Determine if the following systems are consistent and if so give all solutions in parametric vector form. (a)

Solution: The augmented matrix is $\begin{bmatrix} 1 & -2 & 3 \\ 2 & -7 & 0 \\ -5 & 8 & 5 \end{bmatrix} \sim (r_2 := r_2 - 2r_1)$

$$\begin{bmatrix} 1 & -2 & 3 \\ 0 & -3 & -6 \\ -5 & 8 & 5 \end{bmatrix} \sim (r_3 := r_3 + 5r_1) \begin{bmatrix} 1 & -2 & 3 \\ 0 & -3 & -6 \\ 0 & -2 & 20 \end{bmatrix}$$

$$\sim (r_2 := r_2/-3, r_3 := r_3/-2) \begin{bmatrix} 1 & -2 & 3 \\ 0 & 1 & 2 \\ 0 & 1 & -10 \end{bmatrix} \sim (r_3 := r_3 - 2)$$

$$\begin{bmatrix} 1 & -2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & -12 \end{bmatrix}$$
The last row implies that $0 = -12$ which is impossible. So this system is inconsistent.
(b)
$$\begin{array}{c} x_1 & +2x_2 & -3x_3 & +x_4 = 1 \\ -x_1 & -2x_2 & +4x_3 & -x_4 = 6 \\ -2x_1 & -4x_2 & +7x_3 & -x_4 = 1 \end{bmatrix}$$
The augmented matrix is
$$\begin{bmatrix} 1 & 2 & -3 & 1 & 1 \\ -1 & -2 & 4 & -1 & 6 \\ -2 & -4 & 7 & -1 & 1 \end{bmatrix} \sim (r_2 := r_2 + r_1)$$

$$\begin{bmatrix} 1 & 2 & -3 & 1 & 1 \\ 0 & 0 & 1 & 0 & 7 \\ -2 & -4 & 7 & -1 & 1 \end{bmatrix} \sim (r_3 := r_3 + 2r_1) \begin{bmatrix} 1 & 2 & -3 & 1 & 1 \\ 0 & 0 & 1 & 0 & 7 \\ 0 & 0 & 1 & 1 & 3 \end{bmatrix}$$

$$\sim (r_1 := r_1 - r_3) \begin{bmatrix} 1 & 2 & -3 & 1 & 1 \\ 0 & 0 & 1 & 0 & 7 \\ 0 & 0 & 1 & -4 \end{bmatrix} \sim (r_1 := r_1 - r_3) \begin{bmatrix} 1 & -2 & 3 \\ 0 & 1 & 0 & 7 \\ 0 & 0 & 1 & -4 \end{bmatrix}$$

$$\sim (r_1 := r_1 - r_3) \begin{bmatrix} 1 & 2 & -3 & 1 & 1 \\ 0 & 0 & 1 & 0 & 7 \\ 0 & 0 & 1 & -4 \end{bmatrix} \sim (r_1 := r_1 + 3r_2) \begin{bmatrix} 1 & 2 & 0 & 0 & 26 \\ 0 & 0 & 1 & 0 & 7 \\ 0 & 0 & 0 & 1 & -4 \end{bmatrix}$$
So x_2 is free. The solution is $x_1 = 26 - 2x_2$, $x_3 = 7$, $x_4 = -47$. Its

$$\begin{aligned} \text{parametric vector form is} \begin{bmatrix} x_1 \\ x_2 \\ x_4 \\ x_4 \end{bmatrix} = \begin{bmatrix} 26 - 2x_2 \\ 7 \\ -4 \end{bmatrix} = \begin{bmatrix} 26 \\ 0 \\ 7 \\ -4 \end{bmatrix} + x_2 \begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \end{bmatrix}. \end{aligned}$$
10. Let $A = \begin{bmatrix} 1 & -3 & 4 & -2 & 5 \\ 2 & -6 & 9 & -1 & 8 \\ 2 & -6 & 9 & -1 & 9 \\ -1 & 3 & -4 & 2 & -5 \end{bmatrix}$ which is row reduced to $\begin{bmatrix} 1 & -3 & -2 & -20 & -3 \\ 0 & 0 & 1 & 3 & 4 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$
(a) Find a basis for the column space of A
(b) Find a basis for the nullspace of A
(c) Find the rank of the matrix A
(d) Find the dimension of the nullspace of A .
(e) Is $\begin{bmatrix} 1 \\ 4 \\ 1 \\ 1 \end{bmatrix}$ in the range of A ?
(e) Does $Ax = \begin{bmatrix} 0 \\ 3 \\ 2 \\ 0 \end{bmatrix}$ have any solution? Find a solution if it's solvable.
Solution: Consider the augmented matrix $\begin{bmatrix} 1 & -3 & 4 & -2 & 5 & | & 1 & | & 0 \\ 2 & -6 & 9 & -1 & 8 & | & 4 & | & 3 \\ 2 & -6 & 9 & -1 & 9 & | & 3 & | & 2 \\ -1 & 3 & -4 & 2 & -5 & | & 1 & | & 0 \end{bmatrix}$
 $-2r_1 + r_2, -2r_1 + r_3, r_1 + r_4 \begin{bmatrix} 1 & -3 & 4 & -2 & 5 & | & 1 & | & 0 \\ 0 & 0 & 1 & 3 & -2 & | & 2 & | & 3 \\ 0 & 0 & 1 & 3 & -1 & | & 1 & | & 2 \\ 0 & 0 & 1 & 3 & -1 & | & 1 & | & 2 \\ 0 & 0 & 1 & 3 & -1 & | & 1 & | & 2 \\ 0 & 0 & 0 & 0 & 0 & | & 2 & | & 0 \end{bmatrix}$

So the first, third and fifth vector forms a basis for Col(A), i.e $\left\{ \begin{bmatrix} 1 \\ 2 \\ 2 \\ -1 \end{bmatrix}, \begin{bmatrix} 4 \\ 9 \\ 9 \\ -4 \end{bmatrix}, \begin{bmatrix} 5 \\ 8 \\ 9 \\ -5 \end{bmatrix} \right\}$

is a basis for Col(A). The rank of A is 3 and the dimension of the null space is 5-3=2.

$$x \in Null(A) \text{ if } x_1 - 3x_2 - 14x_4 = 0, \ x_3 + 3x_4 = 0 \text{ and } x_5 = 0. \text{ So}$$

$$x = \begin{bmatrix} 3x_2 + 14x_4 \\ x_2 \\ -x_4 \\ x_4 \\ 0 \end{bmatrix} = x_2 \begin{bmatrix} 3 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} 14 \\ 0 \\ -1 \\ 1 \\ 0 \end{bmatrix}. \text{ Thus} \begin{bmatrix} 3 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 14 \\ 0 \\ -1 \\ 1 \\ 0 \end{bmatrix} \text{ is a basis}$$
for $NULL(A).$

$$\begin{bmatrix} 1 \end{bmatrix}$$

From the result of row reduction, we can see that $Ax = \begin{bmatrix} 1\\4\\3\\1 \end{bmatrix}$ is incon-

sistent (not solvable) and
$$\begin{bmatrix} 1\\4\\3\\1 \end{bmatrix}$$
 is not in the range of A .
From the result of row reduction, we can see that $Ax = \begin{bmatrix} 0\\3\\2\\0 \end{bmatrix}$ is solvable.

11. Determine if the columns of the matrix form a linearly independent set. Justify your answer.

$$\begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}, \begin{bmatrix} 1 & -2 \\ -2 & 4 \\ 3 & 6 \end{bmatrix}, \begin{bmatrix} -4 & -3 & 0 \\ 0 & -1 & 4 \\ 1 & 0 & 3 \\ 5 & 4 & 6 \end{bmatrix}, \begin{bmatrix} -4 & -3 & 1 & 5 & 1 \\ 2 & -1 & 4 & -1 & 2 \\ 1 & 2 & 3 & 6 & -3 \\ 5 & 4 & 6 & -3 & 2 \end{bmatrix}.$$

Solution: $det \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix} = 2 - 1 = 1 \neq 0$. So the columns of the matrix form a linearly independent set.

 $\begin{bmatrix} 1 & -2 \\ -2 & 4 \\ 3 & 6 \end{bmatrix}$. The second column vector is a multiple of the first column vector. So the columns of the matrix form a linearly dependent set.

$$\begin{bmatrix} -4 & -3 & 0 \\ 0 & -1 & 4 \\ 1 & 0 & 3 \\ 5 & 4 & 6 \end{bmatrix} \quad interchange \ \widetilde{first} \ and \ third \ row \begin{bmatrix} 1 & 0 & 3 \\ 0 & -1 & 4 \\ -4 & -3 & 0 \\ 5 & 4 & 6 \end{bmatrix}$$

$$\widetilde{r_3 + 4r_1, r_4 + (-5)r_1} \begin{bmatrix} 1 & 0 & 3 \\ 0 & -1 & 4 \\ 0 & -3 & 12 \\ 0 & 4 & -9 \end{bmatrix} \qquad \widetilde{(-1)r_2} \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & -4 \\ 0 & -3 & 12 \\ 0 & 4 & -9 \end{bmatrix}$$

$$\widetilde{r_3 + 3r_2, r_4 + (-4)r_2} \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & -4 \\ 0 & 0 & 0 \\ 0 & 0 & 7 \end{bmatrix} \quad interchange \ 3rd \ and \ 4th \ row, \frac{1}{7}r_4 \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & -4 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

This matrix has three pivot vectors. So the columns of the matrix form a linearly independent set.

The column vectors of

$\left\lceil -4 \right\rceil$	-3	1	5	1]
2	-1	4	-1	2
1	2	3	6	-3
5	4	6	-3	2

form a dependent set since we have five column vectors in \mathbb{R}^4 .

12. Let A be a 12×5 matrix. You may assume that $Nul(A^TA) = Nul(A)$. (This relation holds form any matrix A.)

a. What is the size of $A^T A$?

b. Use the Rank Theorem to obtain an equation involving rankA. Find another equation involving $rank(A^TA)$. What is the connection between these two ranks?

c. Suppose the columns of A are linearly independent. Explain why $A^T A$ is invertible.

Solution: a. Note that Nul(A) is the dimension of the null space of A. Since A^T is a 5×12 matrix and A is a 12×5 , we know that $A^T A$ is a 5×5 matrix.

b. rank(A) + Nul(A) = 5 and $rank(A^TA) + Nul(A^TA) = 5$. Using the fact that $Nul(A^TA) = Nul(A)$, we know that $rank(A) = rank(A^TA)$. c. The columns of A are linearly independent implies that rank(A) = 5. So $rank(A^TA) = 5$. Recall that A^TA is a 5×5 matrix. This implies that A^TA is a invertible matrix.