MATH3860 - Elementary Differential Equations, Spring 2014
Quiz 4
March, 102014
Printed NAME:

- You have 15 min to complete your quiz.
- Please show all your work neatly and indicate your final answers clearly. If you simply write down the final answer without appropriate intermediate steps, you may not get full credit for that problem.
- The quiz is closed book and notes. Calculators are not allowed.

GOOD LUCK :)

1. (10 points) If the Wronskian of f and g is $3 e^{4 t}$ and $f(t)=e^{2 t}$, determine $g(t)$.

$$
\begin{aligned}
& w=\left|\begin{array}{cc}
e^{2 t} & g \\
2 e^{2 t} & g \\
g^{\prime}
\end{array}\right|=g^{\prime} e^{2 t}-2 e^{2 t} g=3 e^{4 t} \Rightarrow g^{\prime}-2 g=3 e^{2 t} \\
& \text { integrating factor: } e^{-2 t} \\
& e^{-2 t} g^{\prime}-2 e^{-2 t} g=3
\end{aligned} \quad \begin{aligned}
& \frac{d}{d t}\left(e^{-2 t} g\right)=3 \Rightarrow e^{-2 t} g=3 t+c \\
& g=3 t e^{2 t}+c e^{2 t}
\end{aligned}
$$

2. (5 points) Consider the differential equation

$$
y^{\prime \prime}-2 y^{\prime}+5 y=0
$$

(a) Write its characteristic equation.

$$
R^{2}-2 R+5=0
$$

(b) Give a set of fundamental solutions for the ODE.

$$
R^{2}-2 \Omega+5=(\Omega-1)^{2}+4=0 \Rightarrow R=1 \pm 2 i
$$

linearly ide pendent ostuhious:

$$
y_{1}=e^{x} \cos 2 x ; y_{2}=e^{x} \sin 2 x
$$

A set of fensementrel stulitions:

$$
\left\{e^{x} \cos 2 x, e^{x} \sin 2 x y\right.
$$

