1. (6 points) Given the differential equation

$$
\begin{equation*}
y^{\prime \prime}+6 y^{\prime}+9 y=0 \tag{1}
\end{equation*}
$$

(a) (2 points) Determine the characteristic equation and two linearly independent solutions.

$$
\begin{aligned}
& R^{2}+6 r+a_{1}=0 \leftarrow \text { chaveflashic equachin } \\
& (R+3)^{2}=0 \Rightarrow a^{2}=-3 \text { cable } \\
& \text { l. in solutions. } \quad y_{1}=e^{-3 x} ; y_{2}=x e^{-3 x}
\end{aligned}
$$

(b) (3 points) Solve the initial value problem consisting of equation

$$
\begin{aligned}
& \left\{\begin{array}{l}
c_{1}=1 \\
c_{2}=+3(1)+1=4
\end{array} \quad \begin{array}{c}
\text { (1) and initial conditions: } y(0)=1, y^{\prime}(0)=1
\end{array}\right. \\
& y_{c}=e^{-3 x}+4 k e^{-3 x} \quad y_{c} e^{-3 x}+c_{2} \times e^{-3 x}
\end{aligned} \quad y_{c}^{\prime}=-3 c_{1} e^{-3 x}+c_{2}\left(e^{-3 x}-3 x e^{-3 x}\right)
$$

2. (6 points) Determine the real-valued general solution of the following differential equations:

$$
y^{\prime \prime}+4 y^{\prime}+8 y=0
$$

$$
\begin{gathered}
\left.R^{2}+4 R+8=0 \rightarrow 2+2\right)^{2}+4=0 \\
R=-2 \pm 20+c_{2} e^{-2 x} \cos 2 x+2 x 2 x
\end{gathered}
$$

3. (15 points) Consider the differential equation

$$
\begin{equation*}
y^{\prime \prime}-4 y^{\prime}=5 x+3 x e^{4 x}+\cos x \tag{2}
\end{equation*}
$$

(a) (2 points) Write its associated homogeneous differential equation.

$$
y^{\prime \prime}-4 y^{\prime}=0
$$

(b) (3 points) Determine the general solution of the differential equaldion written in (a).

$$
\begin{aligned}
& \text { written in (a). } \\
& y_{c}=c_{1} e^{x^{2}}+c_{2}^{2}
\end{aligned}
$$

(c) (4 points) Using undetermined coefficients method-determinre-a- $\quad y p=-\frac{1}{17} \cos x-\frac{4}{17} \sin x$
solution of

$$
\begin{aligned}
& v^{\prime \prime}-4 y=\cos x \\
& y_{p}^{\prime}=y_{p}=A \cos x+B \sin x+B \cos x, y_{p}^{\prime}=-A \cos x-B \sin x \\
& -A \cos x-B \sin x+4 A \sin x-4 B \cos x=\cos x \Rightarrow 1-A-4 B=1
\end{aligned}
$$

(d) (3 points) Solve the initial value problem $y=\frac{1}{17}-\frac{1}{17} \cos x-\frac{4}{17} \sin x$ (2).

$$
\begin{gathered}
\frac{y=y_{c}+y_{p}}{f_{1}(x)=5 x} \quad \begin{array}{l}
y_{p 1}= \\
\left.=A_{1} x+B_{1}\right) x
\end{array} \quad \text { since there is duplicahin } \\
f_{2}(x)=3 x e^{4 x}+B_{1} x \\
y_{p 2}=x\left(A_{2} x+B_{2}\right) e^{4 x} \quad \text { since there is duplication } \\
y_{p 2}=A_{2} x^{2}+B_{2} x \\
\left.f_{3}(x)=-\frac{1}{17} \cos x-\frac{4}{17} \sin x \quad \text { (computed in } c\right) \text {) } \\
y=c_{1} e^{4 x}+c_{2}+A_{1} x^{2}+B_{1} x+A_{2} x^{2}+B_{2} x-\frac{1}{17} \cos x-\frac{4}{17} \sin x
\end{gathered}
$$

$$
\begin{aligned}
y_{p} & =\frac{1}{2} e^{t} e^{2 t}-\frac{1}{10} e^{5 t} e^{-2 t}=\frac{1}{2} e^{3 t}-\frac{1}{10} e^{3 t} \\
& =\frac{4}{5 t} e^{3 t}
\end{aligned}
$$

4. (6 points) Use variation of parameter method to determine a particular solution for the differential equation $y^{\prime \prime}-4 y=2 e^{3 t}$.

$$
y_{p}=u_{1} e^{2+}+u_{2} e^{-2}=u_{1} y_{1}+u_{2} y_{2}
$$

$$
\left\{\begin{array}{l}
u_{1}^{\prime} e^{2 t}+u_{2}^{\prime} e^{-2 t}== \\
u_{1}^{\prime} 2 e^{2 t}-2 u_{2}^{\prime} e^{-2 t}=
\end{array}\right.
$$

$$
\begin{aligned}
& u_{1}^{\prime} 6^{2 t}-2 u_{2}^{\prime} e^{-2 t}=2 e^{3 t} \\
& u_{1}^{\prime} 2 e^{2 t}-2 u_{2}
\end{aligned}
$$

$$
\begin{aligned}
& u_{1}=\int_{\substack{t_{0}(5 \text { points) Use the definition of Laplace transform to compute } F(s) \\
\text { where }}}^{t} \frac{1}{2} e^{2} d t=2 e^{3 t} \\
& u_{0}^{\prime} 2 e^{2 t}-2 u_{2}^{\prime} e^{-2 t} e^{t}+c_{1} ; u_{2}=-\frac{1}{2} e^{5 t} d \sigma=-\frac{1}{10} e^{5 t}+c_{2} \\
& e^{5 t}
\end{aligned}
$$

$$
\infty\{f(t)\}=\frac{e}{s}^{-s} \quad s>0
$$

6. (6 points) Compute the Laplace transforms of each of the following

Z] $\mid f(t))$ (a) (3 points) $2 t^{2}-t^{2} e^{t}+2-e^{-t}+2 \cos (3 t)+\sin (6 t)=f(t)$

$$
\text { by liveanty } \quad=2 \frac{21}{53}-\frac{2!}{(s-1)^{3}}+\frac{2}{s}-\frac{1}{s+1}+2 \frac{s}{s^{2}+9}+\frac{6}{s^{2}+36}
$$

(b) (3 points) $2 e^{3 t} t$, using s-translation property.

$$
\begin{aligned}
& \left.\left.\mathscr{L}\right|_{2} e^{3 t} t\right\}=2 \mathcal{L}\left\{e^{3 t} t\right\}=\left.2 \mathcal{L}\{t\}\right|_{s=s-3} \\
& =\left.2 \frac{1}{s^{2}}\right|_{s=s-3}=\frac{2}{(s-3)^{2}}
\end{aligned}
$$

7. (10 points) Compute the inverse Laplace transform of each of the following:
If you need to use partial fraction decomposition, compute the inverse without determining the values of the coefficients

$$
\begin{aligned}
& \text { (a) (5 points) } \frac{2 s+1}{s^{2}(s-1)}=\frac{A}{S^{2}}+\frac{B}{S}+\frac{C}{S-1}
\end{aligned}
$$

$$
\begin{aligned}
& y^{-1} \sum_{\frac{23+1}{5 t(t-1)}}=A t+B+C e^{+t} \\
& \mathscr{L}^{-1}\left\{\frac{5 s+2}{s^{2}-2 s t s}\right\} \\
& \begin{array}{l}
=\mathcal{L}^{-1}\left\{\frac{5(s-1+1)+2}{(s-1)^{2}+4} \left\lvert\,=5 \mathcal{L}^{-1}\left\{\frac{s-1}{(s-1)^{2}+4} \left\lvert\,+5 \mathcal{Z}^{-1}\left\{\frac{1}{(s-1)^{2}+4}\right\}=5 e^{t} \cos 2 t+\frac{7}{2} e^{t} \sin 2 t\right.\right.\right.\right.
\end{array}
\end{aligned}
$$

8. (8 points) Solve the following initial value problem

$$
\begin{aligned}
& y^{\prime}-\int_{0}^{t} y(\tau) d \tau=1, \quad y(0)=-1 \\
& \left.\left.\left.\mathcal{L}\left\{y^{\prime}\right\}-\mathcal{Z}\right\} y(t) \times 1\right\}=x h 1\right\} \\
& s y(s)-y^{\prime \prime}(0)-y(s) \frac{1}{s}=\frac{1}{s} \quad s \neq 0 \\
& y(s)\left(s-\frac{1}{s}\right)=\frac{1}{s}-1 \\
& y(s)=\left(\frac{s^{2}-1}{s}\right)=\frac{1-s}{s} \\
& \begin{array}{l}
y(s)=\frac{1-s}{s^{2}-1}=\frac{1-s}{(s-1)(s+1)}=-\frac{1}{s+1} \\
x^{-1}\left\{y(s) s=-\mathcal{R}^{-1}\left\{\frac{1}{s+1}\right\}=-e^{-t}\right.
\end{array}
\end{aligned}
$$

