2．Extra Credit（7 points）
Determine three numbers whose sum is 9 and whose sum of squares is minimum．
（oustacuin $x+y+z=c_{1} \Rightarrow g(x, y, t)=x+y+z-q=0$ Obechve funchom $\quad x^{2}+y^{2}+z^{2}=f(x, y, z)$
solve constant fun z（for example）

$$
z=9-x-y
$$

plus int $f(x, y, z)=x^{2}+y^{2}+(9-x-y)^{2}$

$$
\begin{aligned}
& f_{x}=2 x+2(9-x-y)(-1)=-18+4 x+2 y \\
& f_{y}=2 y+2(9-x-y)(-1)=-18+4 y+2 x
\end{aligned}
$$

site $\quad f_{x}=0=f y$

$$
\left\{\begin{array}{l}
-18+4 x+2 y=0(i \\
-18+4 y+2 x=0(i) \\
-18+4 x+2 y=0 \\
18-6 x=0
\end{array}\left\{\begin{array}{l}
-1 \\
x=3
\end{array}\right\}^{y=3}\right.
$$

mulholy（i by－2 and sum it to（ii）
$x=y=3$ ，then frow（u）we get $z=3$
point $(x, y, z)=(3,3,3)$ only exicul pint since f, f_{x}, f_{y} conhucions劫 $\mathrm{CSS} \mathbb{R}$
Znd Demvalive lest

$$
\begin{aligned}
f_{x x} & =2, f_{y y}=2 \\
\text { Hesinan} & =f_{x x} f_{y y}-f_{x y}=2 \\
f_{x y} & =4-2>0
\end{aligned}
$$

$$
\begin{aligned}
& f_{x x}>0 \text { and Hessian }>0 \Rightarrow \quad f(3,3,3) \text { is } a \\
& \text { numwimum }
\end{aligned}
$$ ииルルiレum

$f(3,3,3)=27$ is the nomen；the numbers ave $: x=y=z=3$
－You could use also Lavgrange method！！！

MATH2850 - Elementary Multivariable Calculus, Spring 2014
 Quiz 6
 March 11, 2014

Printed NAME:

- You have 15 min to complete your quiz.
- Please show all your work neatly and indicate your final answers clearly. If you simply write down the final answer without appropriate intermediate steps, you may not get full credit for that problem.
- The quiz is closed book and notes. Calculators are not allowed.

GOOD LUCK :)

1. (10 points) Using the Lagrange multipliers method determine the maxmum value of the function

$$
f(x, y)=x-y+z
$$

subject to

$$
\begin{equation*}
x^{2}+y^{2}+z^{2}=1 \text { and } z+x+y=1 \tag{2}
\end{equation*}
$$

Let $g(x, y, t)=x^{2}+y^{2}+z^{2}-1=0 \quad h(x, y, z)=z+x+y-1=0$
$\nabla f=\langle 1,-1,1\rangle, \nabla g=\langle 2 x, 2 y, 2 z\rangle, \nabla h=\langle 1,1,1\rangle$ Lacjamge mulhfoliens sahsfy. $\nabla f=\lambda_{1} \nabla g+\lambda_{2} \nabla h$

$$
\Rightarrow\left\{\begin{array}{ll}
1=2 \lambda_{1} x+\lambda_{2} & \text { (i) } \\
-1=2 \lambda_{1} y+\lambda_{2} & \text { (ii) } \\
1=2 \lambda_{1} z+\lambda_{2} & \text { iii, frow here follows that }
\end{array} \quad|x=z|(4)\right.
$$

substitute (I, w) (I) avid (E) Condo:

$$
\begin{aligned}
& \left\{\begin{array}{l}
2 x^{2}+y^{2}=1 \\
2 x+y_{2}=1
\end{array}\left|\begin{array}{l}
2=1-2 x
\end{array}\right| \begin{array}{l}
2 x^{2}+(1-2 x)^{2}=1 \\
y=1-4 x+4 x^{2}=y \\
y=1-2 x
\end{array}\right. \\
& \begin{cases}3 \\
6 x^{2}-4 x=0 & \text { on } \\
x=\frac{2}{3} \\
y=1 & y=-1 / 3\end{cases} \\
& x=z \\
& P_{1}(0,1,0) \text { and } P_{2}\left(\frac{2}{3},-\frac{1}{3}, \frac{2}{3}\right) \\
& f\left(p_{1}\right)=-1 \quad\left[f\left(p_{2}\right)=\frac{2}{3}+\frac{1}{3}+\frac{2}{3}=\frac{5}{3}\right] \text { maximum }
\end{aligned}
$$

