Printed NAME

- You have 15 mm to complete your quiz
- Please show all your work neatly and medicate your final answers clearly. If you simply write down the final answer without appropriate intermediate steps, you may not get full credit for that problem
- The quiz is closed book and notes Calculators are not allowed.

GOOD LUCK :)

1. Show that the

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{4}-y^{2}}{x^{4}+y^{2}}
$$

doesn't exist

$$
\lim _{(x, y) \rightarrow-1,-)}^{x^{4}-y^{2}} x^{4}+y^{2}=\frac{0}{0} \quad \text { The frimetin } x^{4} y^{2}
$$

carnet be further sorexpefied. Use Thu path lest to shaw test lew last dent exist
lake $\left.\left.y=k x^{2}, \quad l m, \quad(x, y)-x, y\right) \quad x^{4}-k^{2} x^{4}=x^{4}+k^{2} x^{4}=(x, y)-x, 4\right) \quad 1-k^{2}=-\frac{1-k^{2}}{1+k^{2}}$

2. Compute the first order partial derivatives of

$$
\begin{aligned}
& \partial u=\ln \left(x^{2}+y^{2}\right)+x \ln \left(x^{2}+y^{2}\right) \\
& \therefore x^{2}+y^{2} \\
& \frac{\partial x}{\partial y}=\ln \left(x^{2}+y^{2}\right)+\frac{2 x^{2}}{x^{2}+y^{2}} \\
& \frac{1}{\partial y}=2 y=2 x y \\
& x^{2}+y^{2}
\end{aligned}
$$

