MATH2850 - Elementary Multivariable Calculus, Spring 2014
Quiz 2-Joluhous
Jan 23, 2014
Printed NAME.

- You have 10 mm to complete your quiz.
- Please show all your work neatly and medicate your final answers clearly If you simply write down the final answer without appropriate intermediate steps, you may not get full credit for that problem
- The quiz is closed book and notes Calculators are not allowed

GOOD LUCK :)

1. Compute the point on the curve $r(t)=(12 \sin t) \mathbf{i}-(12 \cos t) \mathbf{j}+5 t \mathbf{k}$ at a distance 13π units along the curve from the point $(0,-12,0)$ in the direction of increasing arc length

$$
\begin{aligned}
& s(t)=13 \pi=\int_{a}^{t}\left|r^{\prime}(u)\right| d u \\
& \text { a can be computed farmedatu }(0,-12,0) \text { is } \Omega(t) \\
& n(t)=12 \text { hurt } i-12 \cos t j+s t x \Rightarrow\left\{\begin{array}{l}
x=\sin t, y=-12 \cos t \\
z=5 t
\end{array}\right. \\
& \text { now using }(0,-12,0) \text { we get }\left\{\begin{aligned}
0 & =\sin a \\
-12 & =-12 \cos a \Rightarrow a=0 \\
0 & =\operatorname{sa}
\end{aligned}\right. \\
& \begin{array}{l}
\Omega^{\prime}(t)=12 \cos t i+12 \sin t^{\prime}+5 k \\
\left|R^{\prime}(t)\right|=\sqrt{144 \cos ^{2} t+144 \cos ^{2} t+25}-\sqrt{141\left(\cos ^{2} t+\sin ^{2} t\right)+25}
\end{array} \\
& =\sqrt{144+25}=13 \\
& \text { plus the in far duration } \\
& \text { (1) us blain. } \\
& 13 \pi=\int_{0}^{t} 13 d u \Rightarrow 1 \% \pi=\left.1 \% u\right|_{0} ^{t} \Rightarrow t=\pi \\
& t=\pi \text { and (2) leads 10 } \\
& x=\sin \pi \\
& \Rightarrow(x, y, z)=(0,12,5 \pi) \\
& y=-12 \cos \pi \\
& z=5 \pi
\end{aligned}
$$

