Solutions for Review Problems

1. Find the arc-length of the curve $r(t)=\left\langle\sqrt{2} t, e^{t}, e^{-t}\right\rangle$ when $0 \leq t \leq \ln (2)$.

Solution. Given $r(t)=\left\langle\sqrt{2} t, e^{t}, e^{-t}\right\rangle$, we have $r^{\prime}(t)=\left\langle\sqrt{2}, e^{t},-e^{-t}\right\rangle$ and $\left|r^{\prime}(t)\right|=$ $\sqrt{2+e^{-2 t}+e^{2 t}}==\sqrt{\left(e^{-t}+e^{t}\right)^{2}}=e^{-t}+e^{t}$. Hence the arc-length of the curve $r(t)=\left\langle\sqrt{2} t, e^{t}, e^{-t}\right\rangle$ between $0 \leq t \leq \ln (2)$ is $\int_{0}^{\ln (2)}\left|r^{\prime}(t)\right| d t=\int_{0}^{\ln (2)}\left(e^{-t}+\right.$ $\left.e^{t}\right) d t=-e^{-t}+\left.e^{t}\right|_{0} ^{\ln (2)}=-e^{-\ln (2)}+e^{\ln (2)}-(-1+1)=-\frac{1}{2}+2=\frac{3}{2}$. Note that $e^{-\ln (2)}=\frac{1}{e^{\ln (2)}}=\frac{1}{2}$.
2. Find parametric equations for the tangent line to the curve $r(t)=\left\langle t^{3}, t, t^{3}\right\rangle$ at the point $(-1,1,-1)$.

Solution. Note that $r(t)=\left\langle t^{3}, t, t^{3}\right\rangle$. We have $r(-1)=\langle-1,1,-1\rangle$. Taking the derivative of $r(t)$, we get $r^{\prime}(t)=\left\langle 3 t^{2}, 1,3 t^{3}\right\rangle$. Thus the tangent vector at $t=-1$ is $r^{\prime}(-1)=\langle 3,1,3\rangle$. Therefore parametric equations for the tangent line is $x=-1+3 t, y=1+t$ and $z=-1+3 t$.
3. Find the linear approximation of the function $f(x, y, z)=\sqrt{x^{2}+y^{2}+z^{2}}$ at $(1,2,2)$ and use it to estimate $\sqrt{(1.1)^{2}+(2.1)^{2}+(1.9)^{2}}$.

Solution. The partial derivatives are $f_{x}(x, y, z)=\frac{x}{\sqrt{x^{2}+y^{2}+z^{2}}}, f_{y}(x, y, z)=\frac{y}{\sqrt{x^{2}+y^{2}+z^{2}}}$, $f_{y}(x, y, z)=\frac{z}{\sqrt{x^{2}+y^{2}+z^{2}}}, f_{x}(1,2,2)=\frac{1}{3}$ and $f_{y}(1,2,2)=\frac{2}{3}$ and $f_{z}(1,2,2)=\frac{2}{3}$.
The linear approximation of $f(x, y, z)$ at $(1,2,2)$ is

$$
\begin{aligned}
L(x, y, z) & =f(1,2,2)+f_{x}(1,2,2)(x-1)+f_{y}(1,2,2)(y-2)+f_{z}(1,2,2)(z-2) \\
& =3+\frac{1}{3}(x-1)+\frac{2}{3}(y-2)+\frac{2}{3}(z-2) .
\end{aligned}
$$

Thus $L(1.1,2.1,1.9)=3+\frac{1}{3}(1.1-1)+\frac{2}{3}(2.1-2)+\frac{2}{3}(1.9-2)=3+\frac{.1+.2-.2}{3}=$ $3+\frac{1}{3} \approx 3.033$. Hence $\sqrt{(1.1)^{2}+(2.1)^{2}+(1.9)^{2}}$ is about 3.033.
4. (a) Find the equation for the plane tangent to the surface $z=3 x^{2}-y^{2}+2 x$ at $(1,-2,1)$.
(b) Find the equation for the plane tangent to the surface $x^{2}+x y^{2}+x y z=4$ at $(1,1,2)$.

Solution. (a) Let $f(x, y)=3 x^{2}-y^{2}+2 x$. We have $f_{x}=6 x+2, f_{y}=-2 y$, $f_{x}(1,-2)=8$ and $f_{y}(1,-2)=4$. The equation of the tangent plane through
the point $(1,-2,1)$ is

$$
\begin{aligned}
z & =f(1,-2)+f_{x}(1,-2)(x-1)+f_{y}(1,-2)(y+2) \\
& =1+8(x-1)+4(y+2)=8 x+4 y+1
\end{aligned}
$$

(b) In general, the normal vector for the tangent plane to the level surface of $F(x, y, z)=k$ at the point (a, b, c) is $\nabla F(a, b, c)$.

The surface $x^{2}+x y^{2}+x y z=4$ can be rewritten as $F(x, y, z)=x^{2}+x y^{2}+x y z=$ $4, \nabla F(x, y, z)=\left\langle 2 x+y^{2}+y z, 2 x y+x z, x y\right\rangle$ and
$\nabla F(1,1,2)=\langle 5,4,1\rangle$ Thus the equation of the tangent plane to the surface $x^{2}+x y^{2}+x y z=4$ at the point $(1,1,2)$ is
$\langle 5,4,1\rangle \cdot\langle x-1, y-1, z-2\rangle=0$ which yields
$5 x-5+4 y-4+z-2=0$. It can be simplified as $5 x+4 y+z-11=0$.
5. Suppose that over a certain region of plane the electrical potential is given by $V(x, y)=x^{2}-x y+y^{2}$.
(a) Find the direction of the greatest decrease in the electrical potential at the point $(1,1)$. What is the magnitude of the greatest decrease?
(b) Find the rate of change of V at $(1,1)$ in the direction $\langle 3,-4\rangle$.

Solution. (a) We have
$\nabla V(x, y)=\left\langle V_{x}(x, y), V_{y}(x, y)\right\rangle=\left\langle\left(x^{2}-x y+y^{2}\right)_{x},\left(x^{2}-x y+y^{2}\right)_{y}\right\rangle=\langle 2 x-y,-x+2 y\rangle$
Since

$$
\nabla V(x, y)=\langle 2 x-y,-x+2 y\rangle
$$

the direction of the greatest decrease in electrical potential is

$$
-\nabla V(1,1)=-\langle 1,1\rangle
$$

and the magnitude is $-\|\nabla V(1,1)\|=-\sqrt{2}$.
(b) The unit vector in the direction $\langle 3,-4\rangle$ is $\vec{u}=\frac{1}{5}\langle 3,-4\rangle$. Thus the rate of change of V at $(1,1)$ in the direction $\langle 3,-4\rangle$ is

$$
\nabla V(1,1) \cdot \vec{u}=\langle 1,1\rangle \cdot \frac{1}{5}\langle 3,-4\rangle=-\frac{1}{5}
$$

6. Find the local maxima, local minima and saddle points of the following functions. Decide if the local maxima or minima is global maxima or minima. Explain.
(a) $f(x, y)=3 x^{2} y+y^{3}-3 x^{2}-3 y^{2}$
(b) $f(x, y)=x^{2}+y^{3}-3 x y$

Solution. (a) To find critical points, set $f_{x}(x, y)=12-6 x=0$ and $f_{y}(x, y)=$ $6-2 y=0$. Hence, $(2,3)$ is the only critical point. We also have $f_{x x}=-6$, $f_{x y}=f_{y x}=0$ and $f_{y y}=-2$.

$$
\left(D^{2} f(x, y)\right)=\left(\begin{array}{cc}
-6 & 0 \\
0 & -2
\end{array}\right)
$$

Since $\operatorname{det}\left(D^{2} f(2,3)\right)=12>0$ and $f_{x x}(2,3)<0$, the second derivative test implies that f has a local maximum at $(2,3)$. Because f is a quadratic function, it follows the graph of f is an elliptical paraboloid and $(2,3)$ is a global maximum. We can also see that f has a global maximum at $(2,3)$ be completing the square: $f(x, y)=31-3(x-2)^{2}-(y-3)^{2}$.
(b) The system of equations

$$
f_{x}(x, y)=2 x-3 y=0 \quad f_{y}(x, y)=3 y^{2}-3 x=0
$$

implies that $x=\frac{3}{2} y$ and $3\left(y^{2}-\frac{3}{2} y\right)=2 y\left(y-\frac{3}{2}\right)=0$. Thus, $(0,0)$ and $(9 / 4,3 / 2)$ are the critical points. We also have $f_{x x}=2, f_{x y}=f_{y x}=-3$ and $f_{y y}=6 y$.

$$
\left(D^{2} f(x, y)\right)=\left(\begin{array}{cc}
2 & -3 \\
-3 & 6 y
\end{array}\right)
$$

Since

$$
\begin{aligned}
\operatorname{Det}\left(D^{2} f(x, y)\right) & =f_{x x} f_{y y}-f_{x y}^{2}=(2)(6 y)-(-3)^{2}=12 y-9, \\
\operatorname{Det}\left(D^{2} f(0,0)\right) & =-9<0, \\
\operatorname{Det}\left(D^{2} f(9 / 4,3 / 2)\right) & =18>0,
\end{aligned}
$$

the second derivative test establishes that f has a saddle point at $(0,0)$ and a local minimum at $(9 / 4,3 / 2)$. Because $\lim _{y \rightarrow-\infty} f(0, y)=\lim _{y \rightarrow-\infty} y^{3}=-\infty$, we see that $(9 / 4,3 / 2)$ is not a global minimum.
7. Use Lagrange multipliers to find the maximum or minimum values of f subject to the given constraint.
(a) $f(x, y, z)=x^{2}-y^{2}, x^{2}+y^{2}=2$

Solution. Let $f(x, y)=x^{2}-y^{2}$ and $g_{(}(x, y)=x^{2}+y^{2}=2$. The necessary conditions for the optimizer (x, y) are
$\nabla f(x, y)=\lambda \nabla g_{(x, y)}$ and the constraint equations $x^{2}+y^{2}=2$ which are:

Since $\nabla f(x, y)=(2 x,-2 y)$ and $\nabla g(x, y)=(2 x, 2 y)$, thus (x, y) must satisfy

$$
\begin{aligned}
2 x & =2 \lambda x \\
-2 y & =2 \lambda y \\
x^{2}+y^{2} & =2
\end{aligned}
$$

From (4), (5), we get $4 x^{2}+4 y^{2}=4 \lambda^{2}\left(x^{2}+y^{2}\right)$. Since $x^{2}+y^{2}=2 \mathrm{~m}$ we have $\lambda^{2}=1$. So $\lambda= \pm 1$. If lambda $=1$, then eq(4) is always true and we get $y=0$ by eq(5). Using $x^{2}+y^{2}=2$, we get $x= \pm \sqrt{2}$. If lambda $=-1$, then eq(5) is always true and we get $x=0$ by eq(4). Using $x^{2}+y^{2}=2$, we get $y= \pm \sqrt{2}$.
So the candidates are $(\sqrt{2}, 0),(-\sqrt{2}, 0),(0, \sqrt{2}, 0)$ and $(0, \sqrt{2}, 0)$.
So $f((\sqrt{2}, 0))=f((-\sqrt{2}, 0))=2$ and $f((0, \sqrt{2}, 0))=f((0, \sqrt{2}, 0))=-2$.
Thus the maximum is 2 , the minimum is -2 , the maximizers are $(\sqrt{2}, 0)$, $(-\sqrt{2}, 0)$, and the minimizers are $(0, \sqrt{2}, 0)$ and $(0, \sqrt{2}, 0)$.
(b) $f(x, y, z)=x+y+z, x^{2}+y^{2}+z^{2}=1$.

Solution. Let $f(x, y, z)=x+y+z$ and $g(x, y, z)=x^{2}+y^{2}+z^{2}=1$.
We have $\nabla f(x, y, z)=(1,1,1)$ and $\nabla g(x, y, z)=(2 x, 2 y, 2 z)$.
The necessary conditions for the optimizer (x, y, z) are
$\nabla f(x, y, z)=\lambda \nabla g(x, y, z)$ and the constraint equations which are:

$$
\begin{align*}
1 & =2 \lambda x \tag{0.0.4}\\
1 & =2 \lambda y \tag{0.0.5}\\
1 & =2 \lambda z \tag{0.0.6}\\
x^{2}+y^{2}+z^{2} & =1 \tag{0.0.7}
\end{align*}
$$

From (7),(8) (9) and (10), we know that $\lambda \neq 0, x=\frac{1}{2 \lambda}, y=\frac{1}{2 \lambda}$ and $z=\frac{1}{2 \lambda}$. Plugging into (10), we get $\frac{1}{4 \lambda^{2}}+\frac{1}{4 \lambda^{2}}+\frac{1}{4 \lambda^{2}}=1, \frac{3}{4 \lambda^{2}}=1$ and $\lambda= \pm \frac{\sqrt{3}}{2}$. So $(x, y, z)=\left(\frac{1}{2 \lambda}, \frac{1}{2 \lambda}, \frac{1}{2 \lambda}\right)=\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$ or $(x, y, z)=\left(\left(-\frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}}\right)\right.$.
We have $f\left(\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)\right)=\frac{3}{\sqrt{3}}=\sqrt{3}$ and $f\left(\left(-\frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}}\right)\right)=-\frac{3}{\sqrt{3}}=$ $-\sqrt{3}$.
Thus the maximizers are $\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$ with maximum $\sqrt{3}$. The minimizers are $\left(-\frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}}\right)$ with minimum $-\sqrt{3}$.
8. Compute the following iterated integrals.
(a) $\int_{0}^{1} \int_{\sqrt{y}}^{1} \frac{y e^{x^{2}}}{x^{3}} d x d y$

Let $D=\{(x, y) \mid \sqrt{y} \leq x \leq 1,0 \leq y \leq 1\}$ Then $0 \leq y \leq x^{2}$ and $0 \leq x \leq 1$. So D is the same as $\left\{(x, y) \mid 0 \leq x \leq 1,0 \leq y \leq x^{2}\right\}$.

We have $\int_{0}^{1} \int_{\sqrt{y}}^{1} \frac{y x^{x^{2}}}{x^{3}} d x d y=\int_{0}^{1} \int_{0}^{x^{2}} \frac{y e^{x^{2}}}{x^{3}} d y d x=\left.\int_{0}^{1} \frac{y^{2} e^{x^{2}}}{2 x^{3}}\right|_{0} ^{x^{2}} d x=\int_{0}^{1} \frac{x e^{x^{2}}}{2} d x=$ $\left.\frac{e^{x^{2}}}{4}\right|_{0} ^{1}=\frac{e}{4}-\frac{1}{4}$.
(b) $\int_{0}^{2} \int_{-\sqrt{4-x^{2}}}^{0} e^{-x^{2}-y^{2}} d y d x$

Solution. The region of integration is $\left\{(x, y) 0 \leq x \leq 2,-\sqrt{4-x^{2}} \leq y \leq\right.$ $0\}$. The is the region in fourth quadrant. In polar coordinates, it is $R=$ $\left\{(r, \theta): 0 \leq r \leq 3, \frac{-\pi}{2} \leq \theta \leq 0\right\}$. We also have $x^{2}+y^{2}=r^{2}$ and
$\int_{0}^{2} \int_{-\sqrt{4-x^{2}}}^{0} e^{-x^{2}-y^{2}} d y d x=\int_{\frac{-\pi}{2}}^{0} \int_{0}^{2} e^{-r^{2}} \cdot r d r d \theta$
$=\int_{\frac{-\pi}{2}}^{0}-\left.\frac{e^{-r^{2}}}{2}\right|_{0} ^{2} d \theta=-\left(\frac{e^{-4}}{2}-\frac{1}{2}\right) \cdot \frac{\pi}{2}$.
(c) $\int_{-1}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} \int_{x^{2}+y^{2}}^{2-x^{2}-y^{2}}\left(x^{2}+y^{2}\right)^{\frac{3}{2}} d z d y d x$

Solution. The region of integration is $\left\{(x, y, z) \mid-1 \leq x \leq 1,-\sqrt{1-x^{2}} \leq\right.$ $\left.y \leq \sqrt{1-x^{2}}, x^{2}+y^{2} \leq z \leq 2-x^{2}-y^{2}\right\}$. In cylindrical coordinates, it is $R=\left\{(r, \theta, z): 0 \leq r \leq 1,0 \leq \theta \leq 2 \pi, r^{2} \leq z \leq 2-r^{2}\right\}$. Recall that $x=r \cos (\theta), x=r \sin (\theta)$ We have $\left(x^{2}+y^{2}\right)^{\frac{3}{2}}=r^{3}$ and
$\int_{-1}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} \int_{x^{2}+y^{2}}^{2-x^{2}-y^{2}}\left(x^{2}+y^{2}\right)^{\frac{3}{2}} d z d y d x=\int_{0}^{2 \pi} \int_{0}^{1} \int_{r^{2}}^{2-r^{2}} r^{3} \cdot r d z d r d \theta$
$=\left.\int_{0}^{2 \pi} \int_{0}^{1} r^{4} z\right|_{r^{2}} ^{2-r^{2}} d r d \theta$
$=\int_{0}^{2 \pi} \int_{0}^{1} r^{4}\left(2-2 r^{2}\right) d r d \theta$
$=\left.\int_{0}^{2 \pi} \int_{0}^{1}\left(\frac{2 r^{5}}{5}-\frac{2 r^{7}}{7}\right)\right|_{0} ^{1} d \theta$
$=\int_{0}^{\frac{\pi}{2}} \frac{4}{35} d \theta$
$=\frac{8 \pi}{35}$.
(d) $\int_{-2}^{2} \int_{0}^{\sqrt{4-y^{2}}} \int_{-\sqrt{4-x^{2}-y^{2}}}^{\sqrt{4-x^{2}-y^{2}}} y^{2} \sqrt{x^{2}+y^{2}+z^{2}} d z d x d y$

Solution. In spherical coordinates, the region $E=\{(x, y, z) \mid 0 \leq x \leq$ $\left.\sqrt{4-y^{2}},-2 \leq y \leq 2,-\sqrt{4-x^{2}-y^{2}} \leq z \leq \sqrt{4-x^{2}-y^{2}}\right\}$
is described by the inequalities $0 \leq \rho \leq 2,0 \leq \theta \leq \pi \pi$ and $0 \leq \phi \leq \pi$. Note that $y=\rho \sin (\phi) \cos (\theta)$ Hence, the integral is

$$
\begin{aligned}
& \int_{-2}^{2} \int_{0}^{\sqrt{4-y^{2}}} \int_{-\sqrt{4-x^{2}-y^{2}}}^{\sqrt{4-x^{2}-y^{2}}} y^{2} \sqrt{x^{2}+y^{2}+z^{2}} d z d x d y \\
& =\int_{0}^{\pi} \int_{0}^{\pi} \int_{0}^{2} \rho^{2} \sin ^{2}(\phi) \cos ^{2}(\theta)(\rho) \rho^{2} \sin (\phi) d \rho d \theta d \phi \\
& =\int_{0}^{\pi} \int_{0}^{\pi} \int_{0}^{2} \rho^{5} \sin ^{3}(\phi) \cos ^{2}(\theta) d \rho d \theta d \phi \\
& =\left(\int_{0}^{\pi} \cos ^{2}(\theta) d \theta\right)\left(\int_{0}^{\pi} \sin ^{3}(\phi) d \phi\right)\left(\int_{0}^{2} \rho^{5} d \rho\right) \\
& =\left(\int_{0}^{\pi} \frac{1+\cos (2 \theta)}{2} d \theta\right)\left(\int_{0}^{\pi}\left(1-\cos ^{2}(\phi)\right) \sin (\phi) d \phi\right)\left(\int_{0}^{2} \rho^{5} d \rho\right) \\
& =\left(\left.\left(\frac{\theta}{2}+\frac{\sin (2 \theta)}{4}\right)\right|_{0} ^{\pi}\right)\left(\left.\left(-\cos (\phi)+\frac{\cos ^{3}(\phi)}{3}\right)\right|_{0} ^{\pi}\right)\left(\left.\frac{\rho^{6}}{6}\right|_{0} ^{2}\right) \\
& =\frac{\pi}{2} \cdot \frac{4}{3} \cdot \frac{64}{6}=\frac{64 \pi}{9}
\end{aligned}
$$

9. Find the volume of the following regions:
(a) The solid bounded by the surface $z=x \sqrt{x^{2}+y}$ and the planes $x=0$, $x=1, y=0, y=1$ and $z=0$.

Solution. The volume is $\int_{0}^{1} \int_{0}^{1} x \sqrt{x^{2}+y} d x d y$ Let $u=x^{2}+y$. Then $d u=$ $2 x d x, x d x=\frac{d u}{2}$ and $\int x \sqrt{x^{2}+y} d x=\int \frac{u^{1 / 2}}{2} d u=\frac{u^{3 / 2}}{3}+C=\frac{\left(x^{2}+y\right)^{3 / 2}}{3}+C$. So $\int_{0}^{1} \int_{0}^{1} x \sqrt{x^{2}+y} d x d y=\left.\int_{0}^{1} \frac{\left(x^{2}+y\right)^{3 / 2}}{3}\right|_{0} ^{1} d y$
$=\int_{0}^{1} \frac{(1+y)^{3 / 2}}{3}-\frac{(y)^{3 / 2}}{3} d x=\frac{2(1+y)^{5 / 2}}{15}-\left.\frac{2(y)^{5 / 2}}{15}\right|_{0} ^{1}=\frac{2(2)^{5 / 2}}{15}-\frac{2}{15}-\left(\frac{2}{15}-0\right)$ $=\frac{2(2)^{5 / 2}}{15}-\frac{4}{15}=\frac{8 \sqrt{2}}{15}-\frac{4}{15}$
(b) The solid bounded by the plane $x+y+z=3, x=0, y=0$ and $z=0$.

Solution. The region E bounded by the $x y, y z, x z$ planes and the plane $x+y+z=3$ is the set $\left\{(x, y, z) \in \mathbb{R}^{3}: 0 \leq x \leq 3,0 \leq y \leq 3-x, 0 \leq z \leq\right.$
$3-x-y\}$. The volume of E is

$$
\begin{gathered}
\iiint_{E} d V=\int_{0}^{3)} \int_{0}^{3-x} \int_{0}^{3-x-y} d z d y d x=\left.\int_{0}^{3)} \int_{0}^{3-x} z\right|_{0} ^{3-x-y} d y d x \\
=\int_{0}^{3} \int_{0}^{3-x} 3-x-y d y d x=\int_{0}^{3} 3 y-x y-\left.\frac{y^{2}}{2}\right|_{0} ^{3-x} d x \text { (by substitution u=4-x-2y) } \\
=\int_{0}^{3} 3(3-x)-x(3-x)-\frac{(3-x)^{2}}{2} d x=\int_{0}^{3} 9-3 x+3-3 x+x^{2}-\frac{\left(x^{2}-6 x+9\right)}{2} d x \\
=\int_{0}^{3} \frac{9}{2}-3 x+\frac{x^{2}}{2} d x=\frac{9 x}{2}-\frac{3 x^{2}}{2}+\left.\frac{x^{3}}{6}\right|_{0} ^{3}=\frac{27}{2}-\frac{27}{2}+\frac{27}{6}=\frac{9}{2}
\end{gathered}
$$

(c) The region bounded by the cylinder $x^{2}+y^{2}=4$ and the plane $z=0$ and $y+z=3$.
Solution. The region is bounded above by the plane $z=3-y$ and below by $z=0$. In polar coordinates, this region $x^{2}+y^{2} \leq 4$ is $R=\{(r, \theta): 0 \leq$ $r \leq 2,0 \leq \theta \leq 2 \pi\}$. Note that $z=3-y=3-r \cos (\theta)$ Hence, we can compute the volume of the region by

$$
\begin{aligned}
\text { Volume } & =\int_{0}^{2 \pi} \int_{0}^{2}(3-r \cos (\theta)) r d r d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{2} 3 r-r^{2} \cos (\theta) d r d \theta=\int_{0}^{2 \pi}\left[\frac{3}{2} r^{2}-\frac{1}{3} r^{3} \cos (\theta)\right]_{0}^{2} d \theta \\
& =\int_{0}^{2 \pi}\left[6-\frac{8}{3} \cos (\theta)\right] d \theta=12 \pi
\end{aligned}
$$

10. Let C be the oriented path which is a straight line segment running from $(1,1,1)$ to $(0,-1,3)$. Calculate $\int f d s$ where $f=(x+y+z)$.

Solution.

C is parametrized by $x(t)=1-t, y(t)=1-2 t$ and $z(t)=1+2 t$ where $0 \leq t \leq 1$. We have $f(x(t), y(t), z(t))=x(t)+y(t)+z(t)=1-t+1-2 t+1+2 t=3-t$ and $d s=\sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}+z^{\prime}(t)^{2}} d t=\sqrt{(-1)^{2}+(-2)^{2}+2^{2}} d t=\sqrt{9} d t=3 d t$. So $\int_{C} f d s=\int_{0}^{1}(3-t) d t=3 t-\left.\frac{t^{2}}{2}\right|_{0} ^{1}=\frac{5}{2}$.
11. Calculate the following line integrals $\int_{C} \vec{F} \cdot d \vec{r}$:
(a) $\vec{F}=y \sin (x y) \vec{i}+x \sin (x y) \vec{j}$ and C is the parabola $y=2 x^{2}$ from $(1,2)$ to $(3,18)$.
(b) $\vec{F}=2 x \vec{i}-4 y \vec{j}+(2 z-3) \vec{k}$ and C is the line from $(1,1,1)$ to $(2,3,-1)$.

Solution.

(a) If $f(x, y)=-\cos (x y)$ then $\nabla f=y \sin (x y) \vec{i}+x \sin (x y) \vec{j}=\vec{F}$. Hence, the Fundamental Theorem for line integrals implies that

$$
\int_{C} \vec{F} \cdot d \vec{r}=f(3,18)-f(1,2)=\cos (2)-\cos (54)
$$

(b) If $f(x, y, z)=x^{2}-2 y^{2}+z^{2}-3 z$ then $\nabla f=2 x \vec{i}-4 y \vec{j}+(2 z-3) \vec{k}=\vec{F}$.

Hence, the Fundamental Theorem for line integrals implies that

$$
\int_{C} \vec{F} \cdot d \vec{r}=f(2,3,-1)-f(1,1,1)=-10+3=-7
$$

12. Calculate the circulation of \vec{F} around the given paths.
(a) $\vec{F}=x y \vec{j}$ around the square $0 \leq x \leq 1,0 \leq y \leq 1$ oriented counterclockwise.
(b) $\vec{F}=\left(2 x^{2}+3 y\right) \vec{i}+\left(2 x+3 y^{2}\right) \vec{j}$ around the triangle with vertices $(2,0),(0,3)$, $(-2,0)$ oriented counterclockwise.
(c) $\vec{F}=3 y \vec{i}+x y \vec{j}$ around the unit circle oriented counterclockwise.

Solution.

(a) If $R=\{(x, y): 0 \leq x \leq 1,0 \leq y \leq 1\}$ then Green's Theorem implies that
$\int_{\partial R} \vec{F} \cdot d \vec{r}=\int_{R}\left(\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right) d A=\int_{0}^{1} \int_{0}^{1} y d y d x=\left(\int_{0}^{1} d x\right)\left(\int_{0}^{1} y d y\right)=\frac{1}{2}$.
(b) If T is the triangle with vertices $(2,0),(0,3),(-2,0)$ then Green's Theorem gives

$$
\int_{\partial T} \vec{F} \cdot d \vec{r}=\int_{T}\left(\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right) d A=\int_{T} 2-3 d A=-\operatorname{Area}(T)=-\frac{1}{2}(4)(3)=-6
$$

(c) If D is the unit disk then Green's Theorem yields

$$
\int_{\partial D} \vec{F} \cdot d \vec{r}=\int_{D}\left(\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right) d A=\int_{D} y-3 d A=\int_{D} y d A-3 \int_{D} d y=3 \pi
$$

Indeed, the function $f(x, y)=y$ is symmetry about the origin [which means $f(-x,-y)=-f(x, y)]$ so the integral of $f(x, y)$ over D is zero.
13. Calculate the area of the region within the ellipse $x^{2} / a^{2}+y^{2} / b^{2}=1$ parameterized by $x=a \cos (t), y=b \sin (t)$ for $0 \leq t \leq 2 \pi$.

Solution. If R is region in the plane and $\vec{F}=x \vec{j}$ then Green's Theorem implies that $\operatorname{Area}(R)=\int_{R} d A=\int_{R}\left(\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right) d A=\int_{\partial R} \vec{F} \cdot d \vec{r}$. Using this idea, we
can calculate the area of the region enclosed by the given parameterized curves. For the ellipse, we have

$$
\begin{aligned}
\text { Area } & =\int_{\partial R} \vec{F} \cdot d \vec{r}=\int_{0}^{2 \pi} a \cos (t) b \cos (t) d t=a b \int_{0}^{2 \pi} \cos ^{2}(t) d t \\
& =a b\left[\frac{1}{2} \cos (t) \sin (t)+\frac{t}{2}\right]_{0}^{2 \pi}=a b \pi
\end{aligned}
$$

