ind the arc-length of the curve $r(t)=\left\langle 2 t, e^{t}, e^{-t}\right\rangle$ when $0 \leq t \leq \ln (2)$. 2
a) Find parametric equations for the tangent line to the curve $r(t)=$ $\left\langle t^{3}, t, t^{3}\right\rangle$ at the point $(-1,1,-1)$.
(b) At what point on the curve $r(t)=\left\langle t^{3}, t, t^{3}\right\rangle$ is the normal plane (this is the plane that is perpendicular to the tangent line) parallel to the plane $24 x+2 y+24 z=3$?

ind the domain and first partial derivatives of the following functions.
(a) $f(s, t)=\left(s^{2}+t^{2}\right) \sin \left(s^{2}-t^{2}\right)$.
(b) $g(x, y)=\frac{2 x-3 y}{x+2 y}$.
(c) $h(x, y)=\ln \left(\frac{x+y}{x-y}\right)$.
(d) $k(x, t)=\frac{(3 x+4 t)\left(x^{2}-t^{2}\right)}{x^{2}+t^{2}}$.

Use implicit differentiation to find z_{v} and z_{y} if $x y z=e^{x^{2}+y^{2}+z^{2}}$.
Suppose that over a certain region of plane the electrical potential is given by $V(x, y)=x^{2}-x y+y^{2}$.
(a) Find $\nabla V(x, y)$.
(b) Find the direction of the greatest decrease in the electrical potential at the point $(1,1)$. What is the magnitude of the greatest decrease?
(c) Find the direction of the greatest increase in the electrical potential at the point $(1,1)$. What is the magnitude of the greatest increase?
(d) Find a direction at the point $(1,1)$ in which the temperature does not increase or decrease.
(e) Find the rate of change of V at $(1,1)$ in the direction $\langle 3,-4\rangle$.

