$$
\begin{gathered}
\text { Practice Ex } 1 \\
\text { set } 2
\end{gathered}
$$

Problem 1. 10pt Find the tangent line to the curve $r(t)=(t, \arctan (t), \cos \pi t)$ at the point $\left(1, \frac{\pi}{4},-1\right)$

Problem 2. 10pt Fvaluate the following limits if they exist Otherwise prove that they do not exist
a. 5pt $\lim _{(1, y) \rightarrow(1,0)} \cos \left(\frac{x}{x-y}\right)$
b. 5pt $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{4}}{x^{4}+y^{2}}$

Problem 3. 10pt Let $x^{2}+x y^{3}-z^{4}-x z^{3}=1$ Find $\frac{\partial x}{\partial z}$ at $(1,0,0)$

Problem 4. 10pt Let $F(x)=\int_{\sin \lambda}^{\cos \lambda} \sqrt{x^{2}+t^{3}} d t$. Find $F^{\prime}(0)$.
[Problem 5. 10pt $]$ Let $F(x, y)=x^{2} \cos y-y^{2} \sin x, x=u+\cos v, y=u+\sin v$. Find $\left.\frac{\partial^{2} F}{\partial u \partial v} \right\rvert\,(u, v)=(1,0)$

Problem 6. 10pt Let $f(x, y)=x y^{2}+x^{2} \cos y$ denote height of a hull and $p=(1,1)$. Find the direction in which the height does not change at p and direction in which the height increases the most at the point p

