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Point variables in nature 

A point process is a discrete 

stochastic process of which the 

underlying distribution in not 

continuous, e.g. 

 

• Distribution of feeding bark 

beetles; 

• Tree distribution 

• Inland lakes in terrestrial 

ecosystems; 

• Cities at regional and/or 

continental scales;  

• Students in a classroom; 

• etc.   



Introduction 

• Point pattern analysis looks for patterns in the 
spatial location of events 

“Events” are assigned to points in space 

e.g. infection by bird-flu, site where firm 
operates, place where crime occurs, 
redwood seedlings 

 

• Point pattern analysis has the advantage that 
it is not directly dependent on zone definitions 
(MAUP) 

 From Steve Gibbons 



Types of Point data 

• Univariate, Bivariate, Multivariate 

• 1, 2, and 3 Dimensions (x,y,z) 

 

From unknown 



Point Pattern Analysis 

• Pattern may change with scale!  

 

• Test statistic calculated from data vs. 
expected value of statistic under CSR 
(complete spatial randomness) 

From unknown 



Types of Point Patterns 

• Random (CSR) 

• Overdispersed (spaced or regular) 

• Underdispersed (clumped or aggregated) 

 

From unknown 



From unknown 



Spatial point patterns 

Random Aggregated 

From Steve Gibbons 



Spatial point patterns 

Regular 

From Steve Gibbons 
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Spatial data exploration 

• Point (event) based statistics 

– Typically analysis of point-pair distances 

– Points vs events 

– Distance metrics: Euclidean, spherical, Lp or 
network 

– Weighted or unweighted events 

– Events, NOT computed points (e.g. centroids) 

– Classical statistical models vs Monte Carlo and 
other computational methods 
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Spatial data exploration 

• Point (event) based statistics 
– Basic Nearest neighbour (NN) model 

• Input coordinates of all points  

• Compute (symmetric) distances matrix D  

• Sort the distances to identify the 1st, 2nd,...kth 
nearest values 

• Compute the mean of the observed 1st, 2nd, ...kth 
nearest values 

• Compare this mean with the expected mean under 
Complete Spatial Randomness (CSR or Poisson) 
model 
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Spatial data exploration 

• Point (event) based statistics – NN model 

r+dr

r

Area = r2
Area = 2rdr

Width = dr



13 

Nearest Neighbor Search Structure  
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Spatial data exploration 

• Point (event) based statistic s – NN model 

 

– Mean NN distance: 

 

– Variance: 

 

– NN Index (Ratio):  

 

– Z-transform: 
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Spatial data exploration 

• Point (event) based statistics 

– Issues 

• Are observations n discrete points? 

• Sample size (esp. for kth order NN, k>1) 

• Model requires density estimation, m 

• Boundary definition problems (density and edge 
effects) – affects all methods 

• NN reflexivity of point sets 

• Limited use of frequency distribution 

• Validity of Poisson model vs alternative models 
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Spatial data exploration 

• Frequency distribution of nearest neighbour 

distances, i.e. 

– The frequency of NN distances in distance bands, say 0-1 

km, 1-2 km, etc. 

– The cumulative frequency distribution is usually denoted  

• G(d) = #(di < r)/n where di are the NN distances 

    and n is the number of 

    measurements, or 

• F(d) = #(di < r)/m where m is the number of random 

    points used in sampling  
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Spatial data exploration 

• Computing G(d) [computing F(d) is similar] 

• Find all the NN distances 

• Rank them and form the cumulative frequency 
distribution 

• Compare to expected cumulative frequency distribution: 

 

 

• Similar in concept to K-S test with quadrat model, but 
compute the critical values by simulation rather than table 
lookup  
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Complete Spatial Randomness 

• The simplest “null hypothesis” regarding spatial point patterns 

• The number of events N(A) in any planar region A with area |A| 
follows a Poisson distribution with mean: 

 

• Given N(A)= n, the events in A are an independent random sample 
from the uniform distribution on A 

• Poisson process has constant “intensity”  

• Intensity is the expected number of events per unit area 

• Also mean = variance See Diggle p.47 
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From Steve Gibbons 



Kernel intensity/density estimates 

• A simple kernel intensity estimate using a “uniform” kernel 
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From Steve Gibbons 



Edge effects 

R2 

R1 

x 

y 

From Steve Gibbons 



Correcting Edge Effects 

• Intensity estimated lower at point y than at 
point x 

 

• Corrections can be based on 

– % area of circle within R1 

– % circumference of circle within R1 

– [circumference easier to calculate] 

– drawing buffer zones 

From Steve Gibbons 



K function 

• The  “K function” is the expected number of events within distance d 
of an event, divided by mean intensity in the study area (i.e. number 
of events/ area) 
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Ripley’s K  

• Ripley’s (1976) estimator of K 

 

 

 

• Where |A| means area of study area A, and                    means 

distance between s_i and s_j  

• Also need to take care of edge effects 

• If events uniformly distributed with intensity  then expected number 

of events within distance d is  d2 

• So expected K(d) under uniform distribution (CSR) is d2 
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From Steve Gibbons 



Ripley’s K 
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From Steve Gibbons 



Checking for clustering 

• Under CSR with uniform intensity expect 
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Hypothesis tests 

• Sampling distribution of these spatial point 

process statistics is often unknown 

• Possible to derive analytical point-wise 

confidence intervals for kernel estimates 

• But more generally use “monte-carlo”, 

“bootstrap” and random  assignment 

methods 

 
 

From Steve Gibbons 



Methods 

• Distance to neighbor 

– sample 

• Refined Nearest Neighbor 

– randomization 

• Second-order point pattern analysis 

 

From unknown 



Second-order Point Pattern Analysis:  
Ripley’s K 

“Used to analyse the mapped positions of 
events in the plane… and assume a 
complete census…”  

   

From unknown 







Chen & Bradshaw 1999 



Chen & Bradshaw 1999 



Chen & Bradshaw 1999 

Bi-Ripley K 
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Hypotheses 

1) all trees have a clumped distribution in small size 
classes but a regular distribution in large size classes;  

2) there is no significant attraction or repulsion between 
different tree species at a fine scale (<50 m) but;  

3) species will be significantly clumped at large scales (i.e., 
larger than canopy gaps); and  

4) species distribution will indicate site production (i.e., 
above-ground biomass, AGB) because community 
composition and tree size directly determined AGB and 
other biomass measures across the stand.   

 



Methods 

 

• Stem Map 

• Point pattern Analysis (Ripley’s K function) 

• Semivariance analysis and Kriging 

• Spatial correlation between composition and 
production 



Elevation Gradient across the 12 ha plot at WRCCRF 

Canopy Crane 



Spatial distribution of tree species on a topographic map in 
the 12 ha (400 x 300 m) plot facing north.   
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Ripley’s K statistics for six major species in an old-growth Douglas-fir forest 
based on stem-mapped data.  The Monte Carlo envelope (shaded area) was 
constructed at the 95% confidence level with 100 Monte Carlo simulations.   
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Bivariate Ripley’s K 
statistics for all 
combinations of any two 
of the six major species 
(TSHE, PSME, ABGR, 
ABAM, THPL, and TABR) 
showing significant (95%) 
random (L(d) falls within 
the 95% CI envelope), 
attractive (L(d) falls above 
the 95% CI envelope), or 
repulsive (L(d) falls below 
the 95% CI envelope) 
based on 100 Monte Carlo 
simulations. 
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Bivariate Ripley’s K 
statistics for all 
combinations of any two 
height classes for H20 (<20 
m), H40 (20-40 m), and 
H60 (>40 m) showing 
significant (95% 
confidence intervals) 
showing repulsive, 
attractive, and random 
relationships based on 100 
Monte Carlo simulations.   
Tree heights were 
calculated using models 
developed by Song (1998) 
and Ishii et al. (2000).  



Spatial distribution of infected trees across the stand 
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Fig. 8 



0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

G  (y)
_

     ij
G

  
(y

)
^    
 ij

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

G  (y)
_

     ij

G
  
(y

)
^    
 ij

Fig. 9 



R resource webpage: http://cran.r-project.org/ 



Questions? 

http://research.eeescience.utoledo.edu/lees/ 
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Spatial data exploration 

• Point (event) based statistics – clustering (ESDA) 
– Is the observed clustering due to natural background variation 

in the population from which the events arise? 

– Over what spatial scales does clustering occur? 

– Are clusters a reflection of regional variations in underlying 
variables? 

– Are clusters associated with some feature of interest, such as a 
refinery, waste disposal site or nuclear plant? 

– Are clusters simply spatial or are they spatio-temporal? 
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Spatial data exploration 

• Point (event) based statistics – clustering 

– kth order NN analysis 

– Cumulative distance frequency distribution, 
G(r) 

– Ripley K (or L) function – single or dual pattern 

– PCP 

– Hot spot and cluster analysis methods 
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Spatial data exploration 

• Point (event) based 
statistics – Ripley K or L 

• Construct a circle, radius d, around each point 
(event), i 

• Count the number of other events, labelled j, 
that fall inside this circle  

• Repeat these first two stages for all points i, 
and then sum the results  

• Increment d by a small fixed amount 

• Repeat the computation, giving values of K(d) 
for a set of distances, d 

• Adjust to provide ‘normalised measure’ L: d
dK

dL 


)(
)(
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Spatial data exploration 

• Point (event) based statistics – comments 
– CSR vs PCP vs other models 

– Data: location, time, attributes, error, duplicates 
• Duplicates: deliberate rounding, data resolution, genuine 

duplicate locations, agreed surrogate locations, deliberate data 
modification 

– Multi-approach analysis is beneficial 

– Methods: choice of methods and parameters 

– Other factors: borders, areas, metrics, background variation, 
temporal variation, non-spatial factors 

– Rare events and small samples 

– Process-pattern vs cause-effect 

– ESDA in most instances  




