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Point variables in nature

A point process is a discrete
stochastic process of which the
underlying distribution in not
continuous, e.g.

 Distribution of feeding bark
beetles;

« Tree distribution

* Inland lakes in terrestrial
ecosystems;

« Cities at regional and/or
continental scales;

« Students in a classroom;

« etc.



Introduction

e Point pattern analysis looks for patterns in the
spatial location of events

v “Events” are assigned to points in space

v'e.g. infection by bird-flu, site where firm
operates, place where crime occurs,
redwood seedlings

e Point pattern analysis has the advantage that
it is not directly dependent on zone definitions
(MAUP)



Types of Point data

e Univariate, Bivariate, Multivariate

e 1,2, and 3 Dimensions (x,y,z)



Point Pattern Analysis

e Pattern may change with scale!

e Test statistic calculated from data vs.
expected value of statistic under CSR
(complete spatial randomness)



Types of Point Patterns

e Random (CSR)
e Overdispersed (spaced or regular)
e Underdispersed (clumped or aggregated)



20

10

© o o o © o
° ]
o o [} o
— o o P -]
o o o o
© o
° o o © o o
o °© ° o ©° °
© ° o o
oo °°
e o 0% o o o °
o -] d -] o o o o
° ° ° o
o -]
o o o o° ° o o o°
° ]
o o ° -
o ° o °
o o L4 °
° )
° o ) °© o o
©° o
o ° ° o o ° o o
o o ° o
e o o o o o °
° ] o L o o o o
o ° ° o
—] ° o o ° e o
1 o ° ° °, ° ° o
° o
o o o
° o0 ©O ° °
)
@ o o ° « o ) co
° © c o L)
o o oo o o o
— o o ° ° o ® o
© oo ) o
o o o o o oo o o o
oo o (- -]
ooo o© -] © o oo °
o o © o @
o ° ° ] o °© 6o o o © © °©
) c o © _ om oo
o o o o [-1-1 o o a o
o o ° o Oo oﬂﬂ o0 o o wm
o o o o -] ©° @ o o 8%
o ©o o o
® o °o ° ° ) om o ° og.°
© o o @ © oo o o
o o o o a o o
© o o o o o ° o ° ®o o o©
) oo o© @ o _oo o 8 © o
° c o e & o ° o>
) ° e o ° °®
° o o Q o e
© © o o
co -3 o 3
o
o

Rice 5

100

80

60

20 40

0

oo oo o oo
8e° &, o o
8 8% o .g."qzo ° _e°° _ °
° og; 9 °°8§° o°%°8°6?’ 00 %o
oo, o s a
o o % 8% o o
? oo o, ®%" °
° o500 ¢,
:a*%o; %o q °° :OB:o ococo
(-] o o ° o o o
% 8° o o &°o
o ° °

25

(m)
Waterfowl

]
(]

Y ool RE B PRy

BB G SR T
S e I AT

o a LY G Q 8 ®
% o 8y @® a!b 8 'Q; 8 m
® @ WP ? ® o ¥ ‘%gﬁ':g
) e & 8 8g @
'.°’ r ° e oi e
-3
e & e o P 95
* 8
® ani® ® 1 oF8
W, ot ° s . ? =
aq. : agb 8? 8 o - -
BB W D e S BAEEs RE o b

|

QO —

I | | I
40 60

N
o

(m)
Corn 3



Spatial point patterns

Random

Aggregated




Spatial point patterns

Regular




Spatial data exploration

e Point (event) based statistics
— Typically analysis of point-pair distances
— Points vs events

— Distance metrics: Euclidean, spherical, L, or
network

— Weighted or unweighted events
— Events, NOT computed points (e.g. centroids)

— Classical statistical models vs Monte Carlo and
other computational methods

3rd edition www.spatialanalysisonline.com
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Spatial data exploration

e Point (event) based statistics
— Basic Nearest neighbour (NN) model

3rd edition

e Input coordinates of all points
e Compute (symmetric) distances matrix D

e Sort the distances to identify the 1st, 2nd,...kth
nearest values

e Compute the mean of the observed 1st, 2nd, ...kth
nearest values

e Compare this mean with the expected mean under
Complete Spatial Randomness (CSR or Poisson)
model

www.spatialanalysisonline.com 11



Spatial data exploration

e Point (event) based statistics — NN model

Width = dr

2 Area = 2nrdr

Area = nir

3rd edition www.spatialanalysisonline.com 12



Nearest Neighbor Search Structure

13



Spatial data exploration

e Point (event) based statistic s — NN model

— Mean NN distance: -
— Variance: -

— NN Index (Ratio):  RER/F

3rd edition www.spatialanalysisonline.com
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Spatial data exploration

e Point (event) based statistics

— Issues
e Are observations n discrete points?
e Sample size (esp. for kt" order NN, k>1)
e Model requires density estimation, m

e Boundary definition problems (density and edge
effects) — affects all methods

e NN reflexivity of point sets
e Limited use of frequency distribution
e Validity of Poisson model vs alternative models

3rd edition www.spatialanalysisonline.com
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Spatial data exploration

 Frequency distribution of nearest neighbour
distances, I.e.

— The frequency of NN distances in distance bands, say 0-1
km, 1-2 km, etc.
— The cumulative frequency distribution is usually denoted
e G(d) =#(d;<r)/n where d; are the NN distances
and n is the number of
measurements, or
e F(d) =#(d: <r)/m where m is the number of random
points used in sampling

3rd edition www.spatialanalysisonline.com 16



Spatial data exploration

e Computing G(d) [computing F(d) is similar]
. Find all the NN distances

. Rank them and form the cumulative frequency
distribution

e Compare to expected cumulative frequency distribution:

e Similarin concept to K-S test with quadrat model, but
compute the critical values by simulation rather than table

lookup

3rd edition www.spatialanalysisonline.com 17



Complete Spatial Randomness

The simplest “null hypothesis” regarding spatial point patterns

The number of events N(A) in any planar region A with area |A|
follows a Poisson distribution with mean:

(A1 Al
p(N(A) =n) ="~
n!
Given N(A)=n, the events in A are an independent random sample
from the uniform distribution on A

oA A| Al

Poisson process has constant “intensity”
Intensity is the expected number of events per unit area ]

Also mean = variance See Diggle p.47



Kernel intensity/density estimates

e Asimple kernel intensity estimate using a “uniform” kernel

N(C(s,r))
7r?

A(S) =

As) =—2 —0.716
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Edge effects
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Correcting Edge Effects

e Intensity estimated lower at point y than at
point X

e Corrections can be based on
— % area of circle within R1
— % circumference of circle within R1
— [circumference easier to calculate]
— drawing buffer zones



K function

e The “Kfunction” is the expected number of events within distance d
of an event, divided by mean intensity in the study area (i.e. number
of events/ area)

or

K(d)= E[N(d)]

A

E[C(N(xd))]
p



Ripley’s K

Ripley’s (1976) estimator of K

(@)= S5 s s, <d]

i=l ji
Where |A| means area of study area A, and HSi —S; H means
distance between s _iand s _j
Also need to take care of edge effects

If events uniformly distributed with intensity A then expected number
of events within distance d is A ©d?

So expected K(d) under uniform distribution (CSR) is md?



5m

om
If uniform K(1) = n=3.14

2
E[N(1)] = 16/10
2=10/25=0.4

K(1) = 1.6/0.4 = 4




Checking for clustering

e Under CSR with uniform intensity expect K (d )

K(d)




Hypothesis tests

e Sampling distribution of these spatial point
process statistics is often unknown

e Possible to derive analytical point-wise
confidence intervals for kernel estimates

e But more generally use “monte-carlo”,
“bootstrap” and random assignment
methods



Methods

e Distance to neighbor
— sample
e Refined Nearest Neighbor

— randomization

e Second-order point pattern analysis



Second-order Point Pattern Analysis:
Ripley’s K

“Used to analyse the mapped positions of
events in the plane... and assume a
complete census...”
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sity index). We were concerned with three mam
gquestons: (1) How are vanous tree species distnbuted
across the stand (e.g., random, clustered) and at what
scales; and (2) Are these pattems consistent with
observed specwes’ functions within the stand, hfe
lstores, and inter-species interactions? Specifically,
we sought o quantify the spanal distmibutions of trees
of different species and height classes (1.e., sub-popu-
labons) and examine mter-species and intra-species
size-class interactions in terms of vertial and hor-
1zontal canopy structure.



{a‘.l En:lwn Pro;mmns of All Stems 3]] L,wcr r Canopy (< 15 m)
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Fig. 6. Croamn projections of tress in: (a) all three layers combined, (b) lower canopies, (c) intermediate canopies, and {d) upper canopics. Crvams of spruce, fir, birch, and other are
shaded m (b}, (c), and {d) as open, hght-shaded, black, and heavy-shaded, respecovely. Gnd size 15 20 m.

Chen & Bradshaw 1999
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Fig. 3. Ripley’s K for four tree species groups located in three canopy layers: L — lower layer (<10 m), M — middle or intermediate layer (10-15 m), and U — upper layer (>15m). A
indicates all stems of the species. The Monte Carlo envelope {shaded area) is constructed at the 95% confidence level. The square ot tmnstormation, L{d), of Ripley’s K were

applied (see Section 2).
Chen & Bradshaw 1999



Bi-Ripley K

(c) Picea(U) - Betula(U) ' (d) Picea (U) - Betula (4)

(a) Picea(U) - Betula (L) : | (b) Picea (U) - Betula(M)
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(f) Picea(U) - Others(L)

(9) Picea(U) - Others(M)

L(d)

(1) Abies(L) - Others(A)

(i) Abies(M) - Others (A) (i) Abies(L) - Betula(L)
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Fig. 4. Bivariate Ripley's K between two point patterns showing significant (95%) attractive or repulsive responses. L — lower layer (< 10 m), M — middle or intermediate layer (10~
15 m), and U — upper layer (=15 m). A indicates all stems of the species. The squar: mot mnstormation, L{d), of Ripley's K were applied (see Moeur 1993),

Chen & Bradshaw 1999
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2)

3)

4)

Hypotheses

all trees have a clumped distribution in small size
classes but a regular distribution in large size classes;

there is no significant attraction or repulsion between
different tree species at a fine scale (<50 m) but;

species will be significantly clumped at large scales (i.e.,
larger than canopy gaps); and

species distribution will indicate site production (i.e.,
above-ground biomass, AGB) because community
composition and tree size directly determined AGB and
other biomass measures across the stand.



Methods

Stem Map
Point pattern Analysis (Ripley’s K function)
Semivariance analysis and Kriging

Spatial correlation between composition and
production



Elevation Gradient across the 12 ha plot at WRCCRF
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Spatial distribution of tree species on a topographic map in
the 12 ha (400 x 300 m) plot facing north.
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Ripley’s K statistics for six major species in an old-growth Douglas-fir forest
based on stem-mapped data. The Monte Carlo envelope (shaded area) was
constructed at the 95% confidence level with 100 Monte Carlo simulations.
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Bivariate Ripley’s K
statistics for all
combinations of any two
of the six major species
(TSHE, PSME, ABGR,
ABAM, THPL, and TABR)
showing significant (95%)
random (L(d) falls within
the 95% Cl envelope),
attractive (L(d) falls above
the 95% Cl envelope), or
repulsive (L(d) falls below
the 95% Cl envelope)
based on 100 Monte Carlo
simulations.
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Bivariate Ripley’s K
statistics for all
combinations of any two
height classes for H20 (<20
m), H40 (20-40 m), and
H60 (>40 m) showing
significant (95%
confidence intervals)
showing repulsive,
attractive, and random
relationships based on 100
Monte Carlo simulations.
Tree heights were
calculated using models
developed by Song (1998)
and Ishii et al. (2000).



Spatial distribution of infected trees across the stand

Fig. 6
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Spatial distribution of infected trees across the stand
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R resource webpage: http://cran.r-project.org/
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spatstat: Spatial Point Pattern analysis, model-fitting, simulation, tests

CRAN
Mirrors
What's new?
Task Views
Search

About R

R Homepage
The R. Journal

Software
R Sources
R Binaries
Packages
Other

Documentation
Manuals

FAQs
Contributed

A package for analysing spatial data, mainly Spatial Point Patterns, including multitype/marked points and spatial covariates, in any two-dimensional spatial region.
Also supports three-dimensional point patterns, and space-time point patterns in any number of dimensions. Contains over 1000 functions for plotting spatial data,
exploratory data analysis, model-fitting, simulation, spatial sampling, model diagnostics, and formal inference. Data types include point patterns, line segment patterns,
spatial windows, pixel images and tessellations. Exploratory methods include K -functions, nearest neighbour distance and empty space statistics, Fry plots, pair
correlation function, kernel smoothed intensity, relative risk estimation with cross-validated bandwidth selection, mark correlation functions, segregation indices, marlk
dependence diagnostics etc. Point process models can be fitted to point pattern data using finctions ppm, kppm, skrm similar to glm Models may include
dependence on covariates, interpoint interaction, cluster formation and dependence on marks. Fitted models can be simulated automatically. Also provides facilities
for formal inference (such as chi-squared tests) and model diagnostics (incliding simulation envelopes, residuals, residual plots and Q-Q plots).

Versionn  1.25-5

Depends: R (= 2.14.0), stats, graphics, utils, mgev, deldir (= 0.0-10)
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License: GPL (=21}
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Spatial data exploration

e Point (event) based statistics — clustering (ESDA)

— Is the observed clustering due to natural background variation
in the population from which the events arise?

— Over what spatial scales does clustering occur?

— Are clusters a reflection of regional variations in underlying
variables?

— Are clusters associated with some feature of interest, such as a
refinery, waste disposal site or nuclear plant?

— Are clusters simply spatial or are they spatio-temporal?

3rd edition www.spatialanalysisonline.com 48



Spatial data exploration

e Point (event) based statistics — clustering
— kt order NN analysis

— Cumulative distance frequency distribution,
G(r)

— Ripley K (or L) function — single or dual pattern
— PCP
— Hot spot and cluster analysis methods

3rd edition www.spatialanalysisonline.com 49



Spatial data exploration

Point (event) based
statistics — Ripley K or L

Construct a circle, radius d, around each point
(event), i

Count the number of other events, labelled j,
that fall inside this circle

Repeat these first two stages for all points i,
and then sum the results

Increment d by a small fixed amount

Repeat the computation, giving values of K(d)
for a set of distances, d

Adjust to provide ‘normalised measure’ L:

3rd edition www.spatialanalysisonline.com 50



Spatial data exploration

e Point (event) based statistics — comments

3rd edition

CSR vs PCP vs other models

Data: location, time, attributes, error, duplicates

e Duplicates: deliberate rounding, data resolution, genuine
duplicate locations, agreed surrogate locations, deliberate data
modification

Multi-approach analysis is beneficial
Methods: choice of methods and parameters

Other factors: borders, areas, metrics, background variation,
temporal variation, non-spatial factors

Rare events and small samples
Process-pattern vs cause-effect
ESDA in most instances

www.spatialanalysisonline.com 51






