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1 Systems of Linear Equations

1.0.1. Linear Equations vs nonlinear Equations Which of the following equations is linear and
which is nonlinear? Why?

3x1 − 4x2 +
√

2x3 = 4 (1)

−x1 + 2πx2 + 5x3 = 12 (2)

3x1 − 4x2 + 2
√

x3 = 4 (3)

4x1x3 − 4x2 + 8x3 = −3 (4)

A linear equation takes the form

a1x1 + a2x2 + · · ·+ anxn = c

where a1, a2, · · · , an and c are constants.

1. The constants a1, a2, · · · an and c are called the coefficients.

2. On the other hand x1, x2, · · · and xn are the variables that we want to solve for.

3. A solution of a linear equation is a collection of real numbers that when substituted for
x1, x2, · · · and xn we obtain the value c on the right hand side.

1.0.2 Example. 2× 2 systems. Solve the system

{
x −2y = 5
2x +6y = 8

(1.1)

Solution.

Notice that these are the equations of two straight lines. The slope

m = − coefficient of y

coefficient of x
, m1 = 2, m2 = 3, 2 6= 3

The two line are not parallel because the slopes are different. Therefore, the must intersect at a
unique point. The components of this point give us a unique solution for the system. Now we try
to find this point.

[−2Eq(1)+Eq(1)]7→Eq(1)

−−−−−− −→
{

x −2y = 5
+10y = −2

−→
{

x −2y = 5
+y = −1/5

−→
{

x = 23/5
y = −1/5

In this example the system has a unique solution. Geometrically, the two lines intersect at the
point (23/5,−1/5).

1.0.3 Example. Solve the system {
x +3y = 5
2x +6y = 8

(1.2)

• In this case the two lines have the same slope m = 3.
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• This means they are parallel.

• But they have different y-intercepts: 5/3 and 4.

• We conclude from this observation that the two lines do not intersect.

• Thus, the system does not have a solution.

• A system that has no solution is said to be inconsistent.

Let’s see what happens if we try to solve the system:

[−2Eq(1)+Eq(1)]7→Eq(1)

−−−−−− −→
{

x +3y = 5
0 = −2

The last equation is inconsistent with what we know. Namely, that 2 6= 0. This way we can
conclude algebraically that the system does not have any solutions.

1.1 Gauss-Jordan Elimination

1.1.1 Example (Sometimes the linear system has a unique solution). Solve the following system
and describe the solution set. 




x1 −3x2 +4x3 = 8
x1 −x2 −2x3 = 2
2x1 −5x2 +3x3 = 15

(1.3)

Answer. First use Eq(1) to eliminate x1 from Eq(2) and Eq(3):

[−Eq(1)+Eq(2)]7→Eq(2)

−−−−−− −→
[−2Eq(1)+Eq(3)]7→Eq(3)





x1 −3x2 +4x3 = 8
2x2 −6x3 = −6
x2 −5x3 = −1

Eq(2)↔Eq(3)

−− −→




x1 −3x2 +4x3 = 8
x2 −5x3 = −1
2x2 −6x3 = −6

Use Eq(2) to eliminate x2 from Eq(3):

[−2Eq(2)+Eq(3)]7→Eq(3)

−−−− −→




x1 −3x2 +4x3 = 8
x2 −5x3 = −1

x3 = −1

Use Eq(3) to eliminate x3 from Eq(1) and Eq(2):





x1 −3x2 = 12
x2 = −6

x3 = −1

Use Eq(2) to eliminate x2 from Eq(1):





x1 = −6
x2 = −6

x3 = −1
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Thus the solution set of (1.3) is a unique point:

S : {x =



−6
−6
−1


}

1.1.2. What does solving the system (1.3) mean? It means that if we substitute
x1 = −6, x2 = −6 and x3 = −1 in the 3 equations of (1.3), we obtain the values 8, 2 and -1
respectively.

In vector form, the system (1.3) can be written in the equivalent vector form

x1




1
1
2


 + x2



−3
−1
−5


 + x3




4
−2

3


 =




8
2

15


 (1.4)

Finding a solution x = (−3,−4,−1)ᵀ to (1.4), equivalently to the system (1.3), means that

−6




1
1
2


− 6



−3
−1
−5


− 1




4
−2

3


 =




8
2

15


 (1.5)

In other words (1.5) shows that we can express the vector (8, 2, 15)ᵀ as a linear combination of the
three vectors (1, 1, 2)ᵀ, (−3,−1,−5)ᵀ and (4,−2, 3)ᵀ in only one way with coefficients −6,−6 and
−1 respectively.

1.1.3 Example (Sometimes a linear system has no solution). Solve the following system




x1 −3x2 +4x3 = 2
x1 −x2 −2x3 = 3
−3x1 +10x2 −15x3 = −7

(1.6)

Answer. Use Eq(....) to eliminate x1 from Eq(2) and Eq(....):

(−Eq1+Eq2)7→Eq2−−−−−− −→
(3Eq1+Eq3)7→Eq3





x1 −3x2 +4x3 = 2
+2x2 −6x3 = 1
x2 −3x3 = −1

Switch Eq(....) with Eq(....):

Eq······↔Eq······−− −→




x1 −3x2 +4x3 = 2
+x2 −3x3 = −1
+2x2 −6x3 = 1

Use Eq(....) to eliminate x2 from Eq(3):

............+........... 7→ Eq······−−−−− −→




x1 −3x2 +4x3 = 2
+x2 −3x3 = −1

0 = 3

The Third equation is 0 = 3 which is known to be false. Thus the system (1.6) has no solution.
In this case we call the system (1.6) inconsistent.
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1.1.4. Inconsistent systems.

A linear system
that has

no solution
is called

inconsistent

1.1.5 Example (Sometimes a linear system has infinitely many solutions.). Solve the following
system and describe the solution set.





2x2 −4x3 = −2
x1 −3x2 +10x3 = 5
x1 −x2 +6x3 = 3

(1.7)

Solution.

Switch the the two equations so that we have x1 with coefficient 1 in the upper left corner:

Eq(1)↔Eq(2)−→




x1 −3x2 +10x3 = 5
2x2 −4x3 = −2

x1 −x2 +6x3 = 3

Divide Eq(2) by 2:

Eq(2)/2−→




x1 −3x2 +10x3 = 5
x2 −2x3 = −1

x1 −x2 +6x3 = 3

Use Eq(1) to eliminate x1 from Eq(3):

(−Eq(1)+Eq(3))7→Eq(3)

−−−− −→




x1 −3x2 +10x3 = 5
x2 −2x3 = −1
2x2 −4x3 = −2

Use Eq(2) to eliminate x2 from Eq(1) and Eq(3):

(3Eq(2)+Eq(1))7→Eq(1)

−−−− −→
(−2Eq(1)+Eq(3))7→Eq(3)





x1 +4x3 = 2
x2 −2x3 = −1

0 = 0
(1.8)

Remarks. We make a few remarks before we proceed with the solution.

1. The third equation is correct but useless. But we can see now that we have reduced the
original three equations with 3 unknowns of the linear system (1.7) to a system of only two
equations with the same 3 unknowns in (1.8). This means that the original 3 equations are
not completely independent from each other. There is some redundancy among them.
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2. Notice that the linear system (1.8) cannot be reduced to one equation. That is we can not
reduce the second equation to the trivial equation 0 = 0.

Exercise Explain.

3. Notice that if we specify a value for x3, say x3 = 2, then we have solution




x1

x2

x3


 =




2− 4x3

−1 + 2x3

x3


 =



−6

3
2




If instead we choose x3 = −3 we obtain a different solution




x1

x2

x3


 =




2− 4x3

−1 + 2x3

x3


 =




14
−7
−3




4. There is nothing special about the real numbers 2 and −3. We can take x3 to be any real
number, say x3 = r and obtain a solution.

Answer.

• We can see that x3 is a free variable that can take any arbitrary value x3 = r ∈ R.

• Thus the solution set (the collection of all possible solutions) of the system (1.7) can be
written in parametric form as

x1 = 2− 4r

S : x2 = −1 + 2r, −∞ < r < ∞ (1.9)

x3 = r

We also write the solution set in parametric vector form as

S : x =




2
−1

0


 + r



−4

2
1


 , −∞ < r < ∞ (1.10)

• Description of solution set. Equation (1.10) is the equation of a straight line in the
3-dimensional space R3: It is the straight line through the point (2,−1, 0)ᵀ and parallel to
the vector (−4, 2, 1)ᵀ.

1.1.6. Parametric equation of a line. The equation of a line that passes through a point xo and
parallel the the vector v is

x = xo + tv, −∞ < t < ∞
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1.1.7 Example. Solve the following system and describe the solution set and find its dimension.



3
−6
15
12


 = x1




1
2
3
4


 + x2




−3
−6
−9
−12


 + x3




1
−1
−3

4


 + x4




1
1
1
4


 (1.11)

Solution.

First we write the vector equation as a linear system:




x1 −3 x2 + x3 + x4 = 3
2 x1 −6 x2 − x3 + x4 = −6

−3 x1 +9 x2 +3 x3 −x4 = 15
4 x1 −12 x2 +4 x3 + 4x4 = 12

(1.12)

Use Eq(1) to eliminate x1 from the other three equations





(−2Eq1 + Eq2) 7→ Eq2

(3Eq1 + Eq3) 7→ Eq3

(−4Eq1 + Eq4) 7→ Eq4

=⇒





x1 −3x2 +x3 +x4 = 3
−3x3 −x4 = −12
6x3 +2x4 = 24

0 = 0

(1.13)

Notice that the fourth equation became irrelevant.
Use Eq(....) to eliminate · · · from Eq(3) and Eq(...); and then divide the second by -3 and we have:

(......+.......) 7→Eq....−−−−−− −→
(......+.......) 7→Eq....





x1 −3x2 +(2/3)x4 = −1
−3x3 −x4 = −12

0 = 0
0 = 0

(1.14)

Eq2/−3

−−− −→





x1 −3x2 +(2/3)x4 = −1
+x3 +(1/3)x4 = 4

0 = 0
0 = 0

(1.15)

We let x2 and x4 be free variables (parameters) that take the values x2 = r and x4 = t. Then we
express the variables x1 and x2 in terms of the parameters r and t:





x1 = −1 + 3r − (2/3)t
x2 = r

x3 = 4− (1/3)t
x4 = t

(1.16)

Answer.

The solution set to the system (1.12) is

S : x =




−1
0
4
0


 + r




3
1
0
0


 + t




−2/3
0

−1/3
1


 , −∞ < r, t < ∞ (1.17)
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Description of S: It is the plane in R4 passing through the point (−1, 0, 4, 0)ᵀ and generated by
the two vectors v1 = (3, 1, 0, 0)ᵀ and v2 = (2/3, 0,−1/3, 1)ᵀ.
Dimension of S. Notice that the two vectors v1 and v2 are not parallel. Thus dimension S = 2.

1.1.8. Remark. The solution (1.17) means that we can write (3,−6, 15, 12)ᵀ as a linear
combination of the 4 vectors on the right hand side of (1.11) in infinitely many ways, namely, for
any r ∈ R and any t ∈ R we can write b as the linear combination of v1, · · · , v4 given by




3
−6
15
12


 = [−1 + 3r − (2/3)t]




1
2
3
4


 + r




−3
−6
−9
−12


 (1.18)

+ [4− (1/3)t]




1
−1
−3

4


 + t




1
1
1
4




For example if we take r = 3 and t = −2 we have b as the linear combination



3
−6
15
12


 = [· · · ]




1
2
3
4


 + 3




−3
−6
−9
−12




+ [· · · ]




1
−1
−3

4


 + [· · · ]




1
1
1
4




1.1.9 Definition (Parametric form and vector parametric form of solution sets). The solution set
S of a linear system such as (1.11) can be represented in several forms:

• We call (1.16) the solution set in parametric form of the linear system (1.11).

• We call (1.16) the solution set in parametric vector form of the linear system (1.11).

• We refer to r and t as parameter and they take any values −∞ < r, t < ∞.

1.1.10 Definition (The Gauss-Jordan method). The Gauss-Jordan method for solving a
linear system consists of reducing the given linear system to a simpler one using the following and
only the following elementary row operations:

• Interchanging two rows (equations).

• Multiplying (or dividing) a row (equation) by a nonzero number.

• Adding a multiple of one row (equation) to another row (equation).

1.1.11 Definition (Row-equivalent linear systems). If a linear system is reduced to another
linear system using Gauss-Jordan elimination, the two systems are said to be row-equivalent or
just equivalent.
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1.1.12 Theorem. 1. Elementary row operations are reversible.

2. Any two row-equivalent linear systems have the same solution sets.

1.2 Exercises

1. Show that for any (r, t), x = (r, 7− 2r + 5t, t)ᵀ is a solution of the equation

2x1 + x2 − 5x3 = 7

2. In each of the following systems:

(a) Find the solution set of the system in parametric form and in vector parametric form.

(b) Determine the free variables and the basic variables.

(c) What is the dimension of the solution set?

(d) Describe the solution set geometrically.

(a)

{
x1 − 3x2 + 4x3 = 5
x2 − 2x3 = 7

, (b)

{
x1 − 3x2 + 4x3 = 5
x2 − 2x3 = 7

(c)

{
2x1 + 4x3 − x3 = 6
x1 − 3x2 − 5x3 = 7

, (d)





x1 −3x2 +x3 +x4 = 3
2x1 −6x2 −x3 +x4 = −6
3x1 −9x2 −3x3 +x4 = −10
4x1 −12x2 +4x3 +4x4 = 12

1.3 Reduced Echelon Form, Leading Variables and Free variables

1.3.1. Echelon forms. A system is said to be in echelon form if it satisfies the following:

• All equations of the form 0 = 0 are at the bottom.

• The first variable with nonzero coefficient in a row (equation) is to the right of the first
variable with nonzero coefficient in the row (equation) above it.

1.3.2. Leading (basic) variables and free (independent) variables. When the system is
reduced to an echelon form using the Gauss-Jordan method, we define the following:

• The first variable that appear in a row (i.e. has a nonzero coefficient) is called a leading
variable (LV) or a basic variable (BV).

• The rest of the variables are called free variables (FV) or independent variables (IV).

1.3.3. Reduced echelon form. A system is said to be in reduced echelon form if it satisfies
the following:

• It is already in the echelon form.
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• Each LV appears only in the equation that it leads, and not in any other equation above it
or below it.

• The coefficient of each LV is 1.

1.3.4 Rule. We need to express the solution of a linear system in the simplest possible way and
with absolutely no redundancy. To achieve this goal we have the following rule:

We have to reduce the system
all the way to its reduced echelon form
before we write down the solution set.

1.3.5 Theorem. 1. A linear system may have more than one echelon form.

2. But the reduced echelon form is unique.

3. A linear system is equivalent to (i.e. has the same solution set as) its reduced echelon form.

4. In fact, a linear system is equivalent to (i.e. has the same solution set as) any linear system
that we obtain from it by elementary row operations.

1.3.6 Example. 1. Equations (1.13) and (1.14) are in echelon form but not in the reduced
echelon form. (Why?)

2. Equation (1.15) is in the reduced echelon form.

1.3.7 Example. Solve the following system and describe the solution set.
{

2x1 − 4x2 + 5x3 = 3
x1 − 3x2 + 4x3 = 1

⇔
(

2 −4 5 3
1 −3 4 1

)
(1.19)

Solution.

1. First change the order of the equations

eq1↔eq2−→
{

x1 − 3x2 + 4x3 = 1
2x1 − 4x2 + 5x3 = 3

⇔
(

1 −3 4 1
2 −4 5 3

)
(1.20)

2. Then we use Eq(1) to eliminate x1 from the second equation:

(−2eq1+eq2)7→eq2−−−− −→
{

x1 −3x2 +4x3 = 1
2x2 −3x3 = 1

⇔
(

1 −3 4 1
0 2 −3 1

)

Notice that we left the first equation unchanged.

3. Divide Eq(2) by 2:

eq2/2

−−−− −→
{

x1 −3x2 +4x3 = 1
x2 −(3/2)x3 = 1/2

⇔
(

1 −3 4 1
0 1 −3/2 1/2

)
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4. Eliminate x2 from Eq(1):

(3eq2+eq1)7→eq1−−−− −→
{

x1 −(1/2)x3 = 1
x2 −(3/2)x3 = 5/2

⇔
(

1 0 −1/2 1
0 1 −3/2 5/2

)

5. The free variable (parameter) is x3, it takes any arbitrary value x3 = r ∈ R. The
basic variables are x1 and x2.

Answer.

• The solution set is

x1 = 1 + (1/2)r

S : x2 = (5/2) + (3/2)r, −∞ < r < ∞ (1.21)

x3 = r

In parametric vector form, the solution is

S : x =




1
5/2

0


 + r




1/2
3/2

1


 , −∞ < r < ∞ (1.22)

• Description of the solution set: The solution set S is a straight line in R3 through the point
(1, 5/2, 0)ᵀ, parallel to the vector (1/2, 3/2, 1).

1.3.8 Example. Solve the following equation and describe the solution set.

2x1 + 4x2 − x3 = 5 (*)

Solution.

In this example we have three variables (unknowns) but only one equation. And we expect to
have two free variables (parameters). So, let’s take x1 = r and x2 = t.

Answer.

1. Thus, the solution set is

x1 = r

S : x2 = t, −∞ < r, t < ∞
x3 = 2r + 4t− 5

In parametric vector form

S :




x1

x2

x3


 =




r
t

2r + 4t− 5




=




0
0

−5


 + r




1
0
2


 + t




0
1
4




r ∈ R, t ∈ R
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2. Description of solution set: The solution set S is a plane through the point (0, 0,−5)ᵀ and
generated by the two vectors (1, 0, 2) and (0, 1, 4).

1.3.9. Remarks.

1. The solution set S has two free parameters r and t that we cannot control and are
independent of each other. But once we make a choice (x1, x2) = (r, t), x3 is completely and
uniquely determined in terms of the ordered pair (r, t).

2. Therefore, it makes sense to say that S has two dimensions or that it is two
dimensional.

3. Question: Why do we always refer to (r, t) as an ordered pair?

1.3.10 Example. Solve the following system and describe the solution set geometrically and
explain the meaning of the solution you found.





x1 −3x2 +4x3 = 5
x1 −x2 −2x3 = 3
2x1 −5x2 +5x3 = 9

(1.23)

Answer. Use Eq(1) to eliminate x1 from Eq(2) and Eq(3):

(−eq1+eq2) 7→eq2−−−−−− −→
(−2eq1+eq3)7→eq3





x1 −3x2 +4x3 = 5
2x2 −6x3 = −2
x2 −3x3 = −1

Switch Eq(2) with Eq(3):

eq2↔eq3−− −→




x1 −3x2 +4x3 = 5
x2 −3x3 = −1
2x2 −6x3 = −2

Use Eq(2) to eliminate x2 from Eq(3):

(−2eq2+eq3)7→eq3−−−− −→




x1 −3x2 +4x3 = 5
x2 −3x3 = −1

0 = 0

Use Eq(2) to eliminate x2 from Eq(1):

(3eq2+eq1)7→eq1−−−− −→




x1 −5x3 = 2
x2 −3x3 = −1

0 = 0

Now the system is in the reduced echelon form.
Take x3 = r to be a free variable. Then x1 and x2 are basic variables and





x1 = 2 + 5r
x2 = −1 + 3r, −∞ < r < ∞
x3 = r
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And the solution set is

S : x =




2
−1

0


 + r




5
3
1


 , −∞ < r < ∞ (1.24)

The solution set is the straight line that passes through the point (2,−1, 0) and parallel to the
vector (5, 3, 1).

What does solving the system (1.23) mean? It means that if we pick any value for r, say r = 2
than x = (12, 5, 2) is a solution of the system (1.23). That is if substitute x1 = 12, x2 = 5 and
x3 = 2 in the 3 equations of (1.23), we obtain 5, 3 and -1 respectively. In vector form we have

12




1
1
0


 + 5




3
−1

1


 + 2




4
−2

2


 =




5
3

−1


 (1.25)

This means that if we choose r = 2 we can write the vector (5, 3,−1) as a linear combination of
the 3 vectors (1, 1, 0), (3,−1, 1) and (4,−2, 2). Nothing special about r = 2. In fact for any r ∈ R
we can write the vector (5, 3,−1)




5
3

−1


 = (2 + 5r)




1
1
0


 + (−1 + 3r)




3
−1

1


 + r




4
−2

2


 , −∞ < r < ∞

1.3.11 Observation.

A linear system has either
no solution,

a unique solution,
or

infinitely many solutions

1.3.12 Observation.

#(free variables) + #(basic variables) = #(all variables)
dim(solution set) = #(.......... variables)

1.3.13 Observations.
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A linear system is inconsistent if
it has an echelon form

with an equation of the form
0 = c where c 6= 0.

A linear system is consistent
iff its echelon form

does not have an equation of the form
0 = c where c 6= 0.

A linear system is consistent
iff its echelon form

has a LV in each row (equation).

A linear system has a unique solution
if it is consistent and

each variable is a leading variable.
That is, consistent and has no free variables.

A linear system has infinitely many solutions
if it is consistent and

has at least one free variables.
In this case

dim(solution set) = #(.......... variables)
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1.4 Homogenous systems(General = particular + homogenous)

A linear system of the form
x1a1 + x2a2 + · · ·+ xnan = 0

is called a homogenous linear system
or a coefficient linear system.

A homogenous system is always consistent
because it always has the zero solution (or trivial solution)

x = 0.

The system

(H)





x1 −3x2 +4x3 = 0
x1 −x2 −2x3 = 0
2x1 −5x2 +5x3 = 0

is called a homogenous system
or a coefficient system.

The system

(NH)





x1 −3x2 +4x3 = 5
x1 −x2 −2x3 = 3
2x1 −5x2 +5x3 = 9

(1.23)

is called a non-homogenous system
or an augmented system.

Let us find whether the homogenous system (H) has any nontrivial (non zero) other solutions:

(H) −→




x1 −3x2 +4x3 = 0
2x2 −6x3 = 0
x2 −3x3 = 0

−→




x1 −3x2 +4x3 = 0
x2 −3x3 = 0
2x2 −6x3 = 0

−→




x1 −3x2 +4x3 = 0
x2 −3x3 = 0

0 = 0
−→





x1 −5x3 = 0
x2 −3x3 = 0

0 = 0
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Now the system is in the reduced echelon form. Take x3 = r to be a free variable. Then x1 and x2

are basic variables. And the general solution (solution set) of (H) is

S : xh = r




5
3
1


 , −∞ < r < ∞ (1.26)

1. We used a subscript h in xh to indicate that this is a solution to the homogenous equations.

2. Notice that the coefficient side of the homogenous system (H) is the same as that of the
system (1.23).

3. In fact, we used the same row operations to solve the two systems because row operations
depend only on the coefficient side of the equation.

4. Observe that the general solution (1.24) of the non-homogenous system (augmented system)
(1.23) is

x = xo + xh (1.27)

where xh is the general solution (1.26) of the homogenous system (H) and xo = (2,−1, 0)ᵀ is
the particular solution of (1.23) that corresponds to r = 0.

5. We do not have to use xo = (2,−1, 0)ᵀ. Any particular solution of the non-homogenous
system (1.23) will do. For example, if we take r = −2 in (1.24) we have a particular solution
x1 = (−8,−7,−2)ᵀ and we can write the general solution (1.24) in the form

S : x =



−8
−7
−2


 + t




5
3
1


 , −∞ < t < ∞ (1.28)

The general solution to the non-homogenous system (NH)
(NH) x1a1 + x2a2 + · · ·+ xnan = b

is
x = p + h

where
h is the general solution to the associated homogenous system

(H) x1a1 + x2a2 + · · ·+ xnan = 0
and p is any particular solution of (NH)

1.5 Exercises

1. In each of the following systems:

(a) Find the solution set of the system in parametric form and in vector parametric form.

(b) Determine the free variables and the basic variables.
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(c) What is the dimension of the solution set?

(d) Describe the solution set geometrically.

(a)

{
2x1 + x2 − 2x3 = 2
x1 − 3x2 − 5x3 = 3

, (b)

{ −3x1 + 2x2 − 6x3 = −1
x1 + x2 + 2x3 = 2

(c)

{ −2x1 + 4x2 − 6x3 + x4 = −1
x1 − 2x2 + 2x3 − 3x4 = 2

(d)





x1 +2x2 +4x3 = 9
−2x1 +x2 +x3 = −5
2x1 −x3 = 4
3x1 +x2 +4x3 = 2

2. Find the values of a for which the system has

(a) a unique solution (b) infinitely many solutions (c) inconsistent.
{

a x1 + x2 = 3
2 x1 +(a− 2) x2 = 4

3. Solve each of the following linear systems and determine the number of solutions in each
case:

(a)

{
2x1 + 5x2 = 4
42 − 2x3 = 2

, (b)

{
2x1 + x2 = 4
42 + 2x3 = 2

, (c)

{
2x1 + x2 = 4
42 + 2x3 = 8

4. Determine the values of h such that the system has (i) a unique solution, (ii) infinitely many
solutions, (iii) no solutions.

(a)

{
x1 + hx2 = 4
3x1 + 6x2 = 8

, (b)

{
x1 + hx2 = −3
−2x1 + 4x2 = 6

, (c)

{
x1 + 3x2 = −2
−4x1 + hx2 = 8

(d)

{
x1 − 3x2 = −2
5x1 + hx2 = −7

, (e)

{
2x1 + 3x2 = h
−6x1 + 9x2 = 5

, (f)

{
2x1 + 3x2 = h
4x1 + 6x2 = 7

5. In each of the following find the equation of the parabola that passes through the given
three points.

(a) (1, 4), (−1, 0) and (−2, 7).

(b) (1,−2), (2, 4) and (−1,−2).

Hint: The general equation of a parabola takes the form y = ax2 + bx + c. Write the 3
equations that a, b and c must satisfy if the parabola is to pass through the given points.

6. Find the values of h for which the following system has (a) no solution (b) infinitely many
solutions (c) a unique solution.

x1 + 2x2 − 3x3 = 4

3x1 − x2 + 5x3 = 2

4x1 + x2 + (h2 − 14)x3 = h + 2
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7. Find α, β and γ

1

α
+

2

β
−4

γ
= 1

2

α
+

3

β
+

8

γ
= 0

− 1

α
+

9

β
+

10

γ
= 5

8. What conditions must a, b and c satisfy in order for the system to have a solution?





x1 −3x2 +4x3 = a
x1 −x2 −2x3 = b
2x1 −5x2 +5x3 = c

9. Find a, b and c so that the following system has the solution x1 = 3, x2 = −1 and x3 = 2.

x1 + ax2 + cx3 = 0

bx1 + cx2 − 3x3 = 1

ax1 + 2x2 + bx3 = 5

10. Suppose the system below is consistent for all possible values of f and g. What can you say
about the coefficients c and d?

x1 + 3x2 = f

cx1 + dx2 = g

11. Suppose the system below is consistent for all possible values of f and g. What can you say
about the coefficients a and b?

ax1 + bx2 = f

−x1 + 2x2 = g

12. Suppose the system below is consistent for all possible values of f and g. What can you say
about the coefficients a, b, c and d?

ax1 + bx2 = f

cx1 + dx2 = g

13. Solve the following nonlinear system





tan x −3 cos y +4 sin z = 5
tan − cos y −2 sin z = 3
2 tan −5 cos y +5 sin z = 9

(1.29)
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14. Find the value(s) of h for which the system is consistent.





x1 −2x2 = 4
4x1 −3x2 = 1
−2x1 +7x2 = h

15. What condition(s) must the vector b satisfy in order for the linear system to be consistent.





2x1 −7x2 = b1

x1 −5x2 = b2

−3x1 +3x2 = b3

16. In each of the following, determine the value of h that makes the system inconsisten:

(a)

{
x + y = −2

2 x +h y = 3

(b)

{
2 x − y = 4
hx +3 y = 2

(c)

{
x − y = 2

4 x −4 y = h

(d)

{
2 x − y = h

10 x −5 y = h
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2 Linear system in Matrix notation

2.1 Gauss-Jordan elimination

2.1.1. Example Use row reduction to solve the system of equations

3x1 − 7x2 + 7x3 = −8 (2.1)

−4x1 + 6x2 − 3x3 = 7

x1 − 3x2 + 4x3 = −4

The augmented matrix of the system is

B =




3 −7 7 −8
−4 6 −3 7

1 −3 4 −4




We start by moving the third row to the top.

B
R1↔R3−→




1 −3 4 −4
−4 6 −3 7

3 −7 7 −8




Then we eliminate the second and third entries of the first column and replace them by zeros:

(4R1+R2) 7→R2−→



1 −3 4 −4
0 −6 13 −9
3 −7 7 −8


 (−3R1+R3)7→R3−→




1 −3 4 −4
0 −6 13 −9
0 2 −5 4




Then we eliminate the third entry of the second column and replace it by zero:

R2↔R3−→



1 −3 4 −4
0 2 −5 4
0 −6 13 −9


 (3R2+R3)7→R3−→




1 −3 4 −4
0 2 −5 4
0 0 −2 3


 = Bech (2.2)

Next we want each leading term (LT) (first non-zero entry of a row) to be the only non-zero
entry in its column. The first one is already so. We need to work on the second and the third ones
and eliminate the entries above them.
We also need to make each diagonal leading term to be 1:

R2/2−→



1 −3 4 −4
0 1 −5/2 2
0 0 −2 3




(3R2+R1) 7→R1−→



1 0 −7/2 2
0 1 −5/2 2
0 0 −2 3




(−R3/2−→



1 0 −7/2 2
0 1 −5/2 2
0 0 1 −3/2



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(5R3/2+R2) 7→R2−→



1 0 −7/2 2
0 1 0 −7/4
0 0 1 −3/2




(7R3/2+R1) 7→R1−→



1 0 0 −13/4
0 1 0 −7/4
0 0 1 −3/2


 = Brech

x1 = −13/4

x2 = −7/4

x3 = −3/2

In this case the solution set has only one point

S : x =



−13/4
−7/4
−3/2




2.1.2. Terminology

1. The matrices (
3 5
4 −8

)
,




3 −7 7
−4 6 −3

1 −3 4




are called coefficient matrices.

2. The matrices (
3 5 4
4 −8 12

)
,




3 −7 7 −8
−4 6 −3 7

1 −3 4 −4




are called augmented matrices.

3. Zero-rows and non zero-rows.

4. The leading term (LT) in a row is the first non-zero entry in that row.

5. Pivot columns are the columns in the original matrix that correspond to LT’s.

6. Row echelon form: AKA echelon form:



3 −7 7 −8
0 0 −3 7
0 0 0 0




(a) All zero-rows are at the bottom.

(b) Leading terms go from top left to bottom right.

(c) All entries below a leading entry are zeros.
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7. Reduced row echelon form AKA reduced echelon form:



1 −7 0 −8
0 0 1 7
0 0 0 0




(a) All zero-rows are at the bottom.

(b) Leading terms go from top left to bottom right.

(c) All leading entries are 1’s.

(d) All entries below and above a leading entry are all zeros.
In other words, a leading entry is 1 and is the only non-zero entry in its column.

Aech =




2 ∗ ∗ ∗ ∗ ∗ ∗
0 0 3 ∗ ∗ ∗ ∗
0 0 0 0 7 ∗ ∗
0 0 0 0 0 −2 ∗
0 0 0 0 0 0 5
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0




This matrix Aech is in echelon form form. An astrix ”∗” means the entry may take any value
possibly zero.

To reduce this matrix to the reduced echelon form we need to divide each non-zero row by
the leading term and then eliminate entries above the ”ones” and obtain:




1 ∗ 0 ∗ ∗ 0 0 ∗
0 0 1 ∗ ∗ 0 0 ∗
0 0 0 0 0 1 0 ∗
0 0 0 0 0 0 1 ∗
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0




8.

Theorem 1
The reduced row echelon form

is unique.
But an echelon form is not unique.

2.1.3. Coefficient matrix and augmented matrix of a linear system.

3x1 − 7x2 + 7x3 = −8 (2.3)
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−4x1 + 6x2 − 3x3 = 7

x1 − 3x2 + 4x3 = −4

2x1 − 5x2 + 3x3 = 1

The coefficient matrix of the system is

A =




3 −7 7
−4 6 −3

1 −3 4
2 −5 3




The augmented matrix of the system is

B =




3 −7 7 −8
−4 6 −3 7

1 −3 4 −4
2 −5 3 1




2.1.4. Row-equivalent matrices.

Two matrices A and B are said to be
row-equivalent

iff
one of them can be obtained from the other

(can be reduced to the other)
using elementary row operations.

If A is equivalent to B and B is equivalent to C
then

A is equivalent to C.

Elementary row operations are reversible.

If two matrices A and B can be reduced to the sam matrix R
then

they are row equivalent.
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2.1.5 Theorem.

Row operations
do not change the span of the rows of a matrix.

That is

span{rows of A} = span {rows of Aech}

2.1.6. Multiplying a vector by a matrix.
Write a matrix a with n columns a1, a2, · · · and an as

A =
[

a1 a2 · · · an

]

As before we write a vector with n components as

x =




x1

x2
...

xn




The multiplication Ax (with A is to the left of x) is defined as

Ax =
[

a1 a2 · · · an

]



x1

x2
...

xn




Ax = x1a1 + x2a2 + · · ·+ xnan

2.1.7. Nonsingular (square) matrices

A square matrix A is nonsingular
iff

it is the coefficient matrix
of a homogenous system

(H) Ax = 0
has a unique solution.

That is
(H) has only the trivial (zero) solution.
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2.1.8. Example: Inconsistent system This is an example of system with no solution.
Solve the system of equations

3x1 − 7x2 + 7x3 = −8 (2.4)

−4x1 + 6x2 − x3 = 7

x1 − 3x2 + 4x3 = −4

The coefficient matrix for the system is

A =




3 −7 7
−4 6 −1

1 −3 4




The augmented matrix for the system is

B =




3 −7 7 −8
−4 6 −1 7

1 −3 4 −4




The first goal is to eliminate the second and third entries of the first column and replace them by
zeros:

R1↔R3−→



1 −3 4 −4
−4 6 −1 7

3 −7 7 −8




(4R1+R2)7→R2−→



1 −3 4 −4
0 −6 15 −9
3 −7 7 −8




(−3R1+R3)7→R3−→



1 −3 4 −4
0 −6 15 −9
0 2 −5 4




The second step is to eliminate the entries below the LT in the 2nd row, that is the third entry of
the second column and replace it by zero:

R2↔R3−→



1 −3 4 −4
0 2 −5 4
0 −6 15 −9




3R2+R3 7→R3−→



1 −3 4 −4
0 2 −5 4
0 0 0 3




In this case the last equation reads

0x1 + 0x2 + 0x3 = 3
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That is
0 = 3

In this case the system has no solution and is called inconsistent.

Notice that in this example we didn’t need to reduce the augmented matrix matrix. We stop as
soon as we obtain a row of the form

(
0 0 0 0 ∗ )

, where 0 6= ∗. But then that row leads to
the equation

0 = ∗ 6= 0

which is false. And the system is inconsistent. I.e. , has no solution.
The coefficient matrix A has the echelon form

Aech =




1 −3 4
0 2 −5
0 0 0




2.1.9 Theorem.

Rule 1
A linear system

Ax = b
with augmented matrix

B =
(

A b
)

is consistent
m

Bech

doesn’t have a row of the form[
0 0 0 0 c

]
, c 6= 0

Rule 2
Ax = y

is consistent for any y
m

each row of Aech

has a LT

2.1.10. Example: System with infinitely many solutions Solve the system of equations

3x1 − 7x2 + 7x3 = −8 (2.5)

−4x1 + 6x2 − x3 = 4

x1 − 3x2 + 4x3 = −4
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The augmented matrix of the system is

B =




3 −7 7 −8
−4 6 −1 4

1 −3 4 −4




The first goal is to eliminate the second and third entries of the first column and replace them by
zeros:

B
R1↔R3−→




1 −3 4 −4
−4 6 −1 4

3 −7 7 −8




(4R1+R2)7→R2−→



1 −3 4 −4
0 −6 15 −12
3 −7 7 −8




(−3R1+R3)7→R3−→



1 −3 4 −4
0 −6 15 −12
0 2 −5 4




The second goal is to eliminate the entries below the LT in the 2nd row, that is the third entry of
the second column and replace it by zero:

R2↔R3−→



1 −3 4 −4
0 2 −5 4
0 −6 15 −12


 (2.6)

R2/2−→



1 −3 4 −4
0 1 −5/2 2
0 −6 15 −12




(6R2+R3)7→R3−→



1 −3 4 −4
0 1 −5/2 2
0 0 0 0




In this case the last equation reads
0 = 0

which is correct but not useful. Then we proceed. Next we want each leading term (first
non-zero entry of a row) to be the only non-zero entry in its column. The first one is already so.
We need to work on the second and the third ones and eliminate the entries above them.
We also need to make each diagonal leading term to be 1:




1 −3 4 −4
0 1 −5/2 2
0 0 0 0




3R2+R1 7→R1−→



1 0 −7/2 2
0 1 −5/2 2
0 0 0 0


 (2.7)
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Now we have two equations

x1 − (7/2)x3 = 2

x2 − (5/2)x3 = 2

This can be rewritten as

x1 = (7/2)x3 + 2

x2 = (5/2)x3 + 2

x3 = free variable

can take any value t,−∞ < t < ∞
Once we decide on a value for x3, say x3 = t, the other two variable are completely and uniquely
determined.
The solution set in parametric form is

x1 = (7/2)t + 2 (2.8)

S : x2 = (5/2)t + 2

x3 = t

−∞ < t < ∞
The solution set in parametric vector form is

x =




2
2
0


 + t




7/2
5/2

1


 (2.9)

−∞ < t < ∞
This is a straight line through the point (2, 2, 0)ᵀ along the vector (7/2, 5/2, 1)ᵀ.

Now we can see that we have infinitely many solutions given by (2.8).

Basic variables: x1 and x2.
Free variables: x3.

Rule 3
Assume Ax = b is consistent.

Then
it has a unique solution

m
each column of A
is a pivot column

m
each column of Aech

has a LT
m

There is no free variables
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Rule 4
Assume Ax = b is consistent.

Then
The system has infinitely many solutions.

m
The system has at least one free variables.

m
Some of the columns of A are not pivot columns.

m
Some of the columns of Aech have no LT’s.

1. Basic variables are the variables that correspond to the leading terms, (LT’s),
equivalently, correspond to pivot columns.

2. Free variables are the rest of the variables.

3. We write the basic variables in terms of the free variable. In order to solve the linear
system (2.5) we used (2.7) to write the basic variables x1 and x2 in terms of the free
variables x3.

4. Parametric description of solutions. The description of the solution in the form (2.8) or
(2.9) are called Parametric descriptions of the solution of the linear system (2.5).

5. Parametric vector description of solutions. The description of the solution in the form
(2.9) is called Parametric descriptions of the solution of the linear system (2.5).

6. The solution set (2.9) is an equation of a straight line in a 3-dimensional space. This line
passes by the point (2, 2, 0)ᵀ and points in the direction of the vector < 7/2, 5/2, 1 >ᵀ.

2.1.11. Important observation

#( basic variables ) + #( free variables )
= #( columns )

= #( all variables )

dim(solution set) = #( free variables )

2.1.12. More terminology

1. Gauss elimination is the process of reducing a matrix A to an echelon form.
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2. Gauss-Jordan elimination is the process of reducing a matrix A to its reduced echelon
form.

3. Pivot position in a matrix A is the location of a leading term in an echelon form of the
matrix.

4. Pivot column in a matrix A is the column of a leading term .

5. Exercise: Row-reduce the matrix to a reduced echelon form .




2 6 10 14
3 5 7 9
5 7 9 1




2.2 Exercises

1. Solve problems in Exercises 1.5 using matrices.

2. The augmented matrix of a linear system has the form

(
a 1 1
2 a− 1 1

)

Find the values of a for which the system has

(a) a unique solution (b) infinitely many solutions (c) inconsistent.

3. In each of the following determine the values of a and b for which the system is consistent:

(i)

(
1 2
a 0

)(
3 b

−4 1

)
=

( −5 6
12 16

)
(ii)

(
1 2
a 0

)(
3 b

−4 1

)
=

(
7 6

12 16

)
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3 Inverse of a matrix

3x = 7 → 3−13x = 3−17

→ 1.x =
3

7
→ x =

3

7

”3−1” is called ”the multiplicative inverse of 3”.

(3−1)(3) = (3)(3−1) = 1

Can we do the same with matrices?

Ax = b → A−1Ax = A−1b

Ix = A−1b → x = A−1b

Answer: Not always.
The 2× 2 case: (

a b
c d

)(
x1

x2

)
=

(
b1

b2

)

(
x1

x2

)
=

1

ad− bc

(
d −b
−c a

)(
b1

b2

)

A−1 =
1

det A

(
d −b
−c a

)

det A = ad− bc

Example 1

A =




1 0 −2
−3 1 4
2 −3 4







1 0 −2 1 0 0
−3 1 4 0 1 0
2 −3 4 0 0 1




→



1 0 −2 1 0 0
0 1 −2 3 1 0
0 −3 8 −2 0 1




→



1 0 −2 1 0 0
0 1 −2 3 1 0
0 0 2 7 3 1




→



1 0 0 8 3 1
0 1 0 10 4 1
0 0 2 7 3 1



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→



1 0 0 8 3 1
0 1 0 10 4 1
0 0 1 7/2 3/2 1/2




= [I | S]

S =




8 3 1
10 4 1
7/2 3/2 1/2


 =

[
s1 s2 s3

]

What did we actually do?
We solved three equations simultaneously

Ax = e1, Ax = e2, Ax = e3

And we obtained
As1 = e1, As2 = e2, As3 = e3

Thus
A−1e1 = s1, A−1e2 = s2, A−1e2 = s2

Which gives us the columns of A−1

A−1 =
[

A−1e1 A−1e2 A−1e3

]

=
[

s1 s2 s3

]

= S

Example 2

A =




1 −2 1
4 −7 3
−2 6 −4







1 −2 1 1 0 0
4 −7 3 0 1 0
−2 6 −4 0 0 1




→



1 −2 1 1 0 0
0 1 −1 −4 1 0
0 2 −2 2 0 1




→



1 −2 1 1 0 0
0 1 −1 −4 1 0
0 0 0 10 −2 1




This means that A does not have an inverse.
Example 3

A =




3 1 0
−1 2 2

5 0 −1



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


3 1 0 1 0 0
−1 2 2 0 1 0

5 0 −1 0 0 1




→



1 5 4 1 2 0
−1 2 2 0 1 0

5 9 −1 0 0 1




→



1 5 4 1 2 0
0 7 6 1 3 0
0 −25 −21 −5 −10 1




→



1 5 4 1 2 0
0 1 6/7 1/7 3/7 0
0 −25 −21 −5 −10 1




→



1 5 4 1 2 0
0 1 6/7 1/7 3/7 0
0 0 3/7 −10/7 5/7 1




→



1 5 4 1 2 0
0 1 6/7 1/7 3/7 0
0 0 1 −10/3 5/3 7/3




→



1 5 0 43/3 −14/3 −28/3
0 1 0 3 −1 −2
0 0 1 −10/3 5/3 7/3




→



1 0 0 −2/3 1/3 2/3
0 1 0 3 −1 −2
0 0 1 −10/3 5/3 7/3




A−1 =




−2/3 1/3 2/3
3 −1 −2

−10/3 5/3 7/3




Example 4

B =




3 3 6
0 1 2

−2 0 0




→ · · · →



1 3 6 1 0 1
0 1 2 0 1 0
0 0 0 2 −6 3




Thus, B does not have an inverse.
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3.0.1 Example. This one happens to start with a row swap.




0 3 −1 1 0 0
1 0 1 0 1 0
1 −1 0 0 0 1


 ρ1 ↔ ρ2




1 0 1 0 1 0
0 3 −1 1 0 0
1 −1 0 0 0 1




−ρ1+ρ3−→



1 0 1 0 1 0
0 3 −1 1 0 0
0 −1 −1 0 −1 1


 · · ·




1 0 0 1/4 1/4 3/4
0 1 0 1/4 1/4 −1/4
0 0 1 −1/4 3/4 −3/4




3.1 Exercises

1. Determine the value of c for which the matrix does not have an inverse:



2 0 3
−3 3 4

5 0 c




2.

3. Determine the value of c for which the matrix does not have an inverse:



c −1 0
−1 c −1

0 −1 c




4. Find the inverse, if it exists, by using the Gauss-Jordan method.

(a)

(
3 1
0 2

)

(b)

(
2 1/2
3 1

)

(c)

(
2 −4
−1 2

)

(d)




1 1 3
0 2 4

−1 1 0




(e)




0 1 5
0 −2 4
2 3 −2




(f)




2 2 3
1 −2 −3
4 −2 −3



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4 Determinants

Determinants are computed only
for square matrices.

4.1 Determinants of 2× 2 matrices

There is a simple method for calculating the determinant of a 2× 2 matrix.

∣∣∣∣
a b
c d

∣∣∣∣ = ad− bc

Interchanging 2 rows
changes the sign of the det

∣∣∣∣
c d
a b

∣∣∣∣ = bc− ad = −
∣∣∣∣

a b
c d

∣∣∣∣
Multiplying a row by k 6= 0, Factorizing

∣∣∣∣
ka kb
c d

∣∣∣∣ = kad− kbc = k(ad− bc)

= k

∣∣∣∣
a b
c d

∣∣∣∣

Adding a multiple of a row to another

∣∣∣∣
a b

c + ka d + kb

∣∣∣∣ = a(d + kb)− b(c + ka)

= ad− bc + akb− bka

=

∣∣∣∣
a b
c d

∣∣∣∣

Example

A =

(
3 −2
5 4

)
, det(A) = 22

∣∣∣∣
−9 6
5 4

∣∣∣∣ = −3

∣∣∣∣
3 −2
5 4

∣∣∣∣ = −3(22)

∣∣∣∣
5 4
3 −2

∣∣∣∣ = −
∣∣∣∣

3 −2
5 4

∣∣∣∣ = −22

4.1.1. The geometric meaning of a 2× 2 determinant.
Question: What is the geometric meaning of the numbers 22,−66 and −22?



4 DETERMINANTS 37

4.2 Determinants of 3× 3 using cofactor expansion:

∣∣∣∣∣∣

a1 a2 a3

b1 b2 b3

c1 c2 c3

∣∣∣∣∣∣
= a1

∣∣∣∣
b2 b3

c2 c3

∣∣∣∣− a2

∣∣∣∣
b1 b3

c1 c3

∣∣∣∣

+ a3

∣∣∣∣
b1 b2

c1 c2

∣∣∣∣

We can use the same method with any row or column.

We need the sign convention

∣∣∣∣∣∣

+ − +
− + −
+ − +

∣∣∣∣∣∣

Short cut only for 3× 3 determinants

∣∣∣∣∣∣∣∣∣∣

+ + +
a1 a2 a3 a1 a2

b1 b2 b3 b1 b2

c1 c2 c3 c1 c2

− − −

∣∣∣∣∣∣∣∣∣∣

det = a1b2c3 + a2b3c1 + a3b1c2

− a3b2c1 − a1b3c2 − a2b1c3

Triangular matrices are nice:

∣∣∣∣∣∣

a1 a2 a3 a1 a2

0 b2 b3 0 b2

0 0 c3 0 0

∣∣∣∣∣∣
= a1b2c3

∣∣∣∣∣∣

a1 0 0 a1 0
b1 b2 0 b1 b2

c1 c2 c3 c1 c2

∣∣∣∣∣∣
= a1b2c3

We know how to change a matrix to an upper-triangular matrix using row operations.

What effect do row operations have on determinants?
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4.3 Properties of Determinants

(1) Transpose, inverse and multiples

(1) det Aᵀ = det A det A−1 =
1

det A
det(AB) = det(A) det(B)

Hoever
det(A + B) 6= det A + det B

(2) Interchanging two rows

(2)

∣∣∣∣∣∣∣∣∣∣∣∣

...
Rj
...

Rk
...

∣∣∣∣∣∣∣∣∣∣∣∣

= −

∣∣∣∣∣∣∣∣∣∣∣∣

...
Rk
...

Rj
...

∣∣∣∣∣∣∣∣∣∣∣∣

(3) Factorizing one row

(3)

∣∣∣∣∣∣∣∣∣∣∣∣

...
cRj
...

Rk
...

∣∣∣∣∣∣∣∣∣∣∣∣

= c

∣∣∣∣∣∣∣∣∣∣∣∣

...
Rj
...

Rk
...

∣∣∣∣∣∣∣∣∣∣∣∣
(4) Two equal rows

(4)

∣∣∣∣∣∣∣∣∣∣∣∣

...
Rj
...

Rk = Rj
...

∣∣∣∣∣∣∣∣∣∣∣∣

= 0

(5) Adding a multiple of one row to another

(5)

∣∣∣∣∣∣∣∣∣∣∣∣

...
Rj
...

Rk + 5Rj
...

∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣

...
Rj
...

Rk
...

∣∣∣∣∣∣∣∣∣∣∣∣

(6) Breaking a row into two parts

(6)

∣∣∣∣∣∣∣

...
Rk + Sj

...

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣

...
Rj
...

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣

...
Sj
...

∣∣∣∣∣∣∣
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Example

∣∣∣∣∣∣∣∣

2 5 4 1
4 7 5 2
6 −2 −4 0

−6 7 7 0

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣

2 5 4 1
0 −3 −3 0
6 −2 −4 0
−6 7 7 0

∣∣∣∣∣∣∣∣

= (−1)

∣∣∣∣∣∣

0 −3 −3
6 −2 −4
−6 7 7

∣∣∣∣∣∣
= (−1)

∣∣∣∣∣∣

0 −3 −3
6 −2 −4
0 5 3

∣∣∣∣∣∣

= (−1)[(−1)6]

∣∣∣∣
−3 −3
5 3

∣∣∣∣
= (−1)[(−1)3][−9 + 15] = 36

Example

∣∣∣∣∣∣∣∣

2 −2 −6 0
0 1 5 4
−1 2 8 5
3 −1 −2 3

∣∣∣∣∣∣∣∣
= 2

∣∣∣∣∣∣∣∣

1 −1 −3 0
0 1 5 4
−1 2 8 5
3 −1 −2 3

∣∣∣∣∣∣∣∣

= 2

∣∣∣∣∣∣∣∣

1 −1 −3 0
0 1 5 4
0 1 5 5
0 2 7 3

∣∣∣∣∣∣∣∣
= 2

∣∣∣∣∣∣∣∣

1 −1 −3 0
0 1 5 4
0 0 0 −1
0 0 −3 −5

∣∣∣∣∣∣∣∣

= 2

∣∣∣∣∣∣∣∣

1 −1 −3 0
0 1 5 4
0 0 0 −1
0 0 −3 −5

∣∣∣∣∣∣∣∣
= 2

∣∣∣∣∣∣∣∣

1 −1 −3 0
0 1 5 4
0 0 −3 −5
0 0 0 −1

∣∣∣∣∣∣∣∣
= (2)(1)(1)(−3)(−1) = 6
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4.3.1 Theorem. Let A be an n× n matrix.

A is invertible
m

det A 6= 0
m

rankA = n
m

A is row-equivalent to In

m
The homogenous system Ax = 0 has only the trivial solution.

m
The system Ax = b has a unique solution.

The columns of A
are linearly independent iff

det A 6= 0

4.4 Exercises

1. Find the determinant of each of the following:

(a)

(
3 1
0 2

)
,

(
2 1/2
3 1

)
,

(
2 −4

−1 2

)

(b)




1 1 3
0 2 4

−1 1 0


 ,




0 1 5
0 −2 4
2 3 −2


 ,




2 2 3
1 −2 −3
4 −2 −3




2. Combine the method of row reduction and cofactor expansion to compute the determinant

∣∣∣∣∣∣∣∣

4 0 10 4
−1 2 3 9

5 −5 −1 6
3 7 1 −2

∣∣∣∣∣∣∣∣
,

∣∣∣∣∣∣∣∣

5 −2 2 7
1 0 0 3

−3 1 5 0
3 −1 −9 4

∣∣∣∣∣∣∣∣
,

∣∣∣∣∣∣∣∣∣∣

2 −2 0 3 4
4 −1 0 1 −1
0 5 0 0 −1
3 2 −3 4 3
7 −2 0 9 −5

∣∣∣∣∣∣∣∣∣∣

3. Find the determinant of A without multiplying through.

A =




2 0 0
−3 −3 0

4 −1 4







2 0 2
5 −3 4
2 0 −4



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4. Assume that ∣∣∣∣∣∣

a b c
d e f
g h i

∣∣∣∣∣∣
= 3

Find the following determinants and explain your answer:

∣∣∣∣∣∣

d e f
g h i
a b c

∣∣∣∣∣∣
= −−−

∣∣∣∣∣∣

a + 3g b + 3h c + 3i
d e f
g h i

∣∣∣∣∣∣
= −−−

∣∣∣∣∣∣

a b c
d e f

a + 3g b + 3h c + 3i

∣∣∣∣∣∣
= −−−

∣∣∣∣∣∣

a b c
−2d −2e −2f

g h i

∣∣∣∣∣∣
= −−−

∣∣∣∣∣∣

a + 3g b + 3h c + 3i
d e f

a + 3g b + 3h c + 3i

∣∣∣∣∣∣
= −−−

∣∣∣∣∣∣

a d g
b e h
c f i

∣∣∣∣∣∣
= −−−

5. Compute the following determinants of the following matrices by row reduction to echelon
form:

B =




1 3 −1 0 −2
0 2 −4 −1 −6

−2 −6 2 3 9
3 7 −3 8 −7
3 5 5 2 −7




, A =




−1 2 3 0
3 4 3 0
5 4 6 6
4 2 4 3




6. Combine the method of row reduction and cofactor expansion to compute the determinant∣∣∣∣∣∣∣∣

2 5 −3 −1
3 0 1 −3

−6 0 −4 9
4 10 −4 −1

∣∣∣∣∣∣∣∣

7. If det B = −5, then det(B−1Bᵀ) = −−−−−.

8. Find the determinant of A without multiplying through.

A =




2 0 0
−3 −3 0

4 −1 4







2 0 2
5 −3 4
2 0 −4




9.

If C =




2 −2 13 3 4
4 −1 29 1 −1
0 5 7 0 −1
3 2 −3 4 3
7 −2 0 9 −5




, then det(C−1Cᵀ) = −−−−−
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4.5 Cramer’s Rule for n× n systems

Solving 2 equations in 2 unknowns

ax + by = r , cx + dy = s (4.1)

x =
rd− bs

ad− bc
, y =

as− cr

ad− bc
(4.2)

Using determinants,

x =

∣∣∣∣
r b
s d

∣∣∣∣
∣∣∣∣

a b
c d

∣∣∣∣
, y =

∣∣∣∣
a r
c s

∣∣∣∣
∣∣∣∣

a b
c d

∣∣∣∣
(4.3)

Writing the solution of (4.1)
in the form (4.3)

is called
Cramer’s rule

It is obvious that the system of equation (4.1) has a unique solution iff det(A) 6= 0, where A is the
matrix of coefficients.

Exercise: Show that det(A) = 0 iff the second row of A is a multiple of the first one. That is,

A =

(
a b
ka kb

)

Exercise: Show that det(A) = 0 iff the second column of A is a multiple of the first one. That is,

A =

(
a rb
c rc

)

Cramer’s Rule for n× n linear system

Ax = b

Ai(b) =
[

a1, · · · , ai−1,b, ai+1, · · · , an

]

xi =
det Ai(b)

det A

4.5.1. The Inverse A−1 using the cofactor method: Notice that

colk(A
−1) = A−1ek
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which is the solution to
Ax = ek

Let Aki be the (n− 1)× (n− 1) matrix obtained from A by removing the kth row and the ith

column. It follows that
det Aki = (−1)k+i det Ai(ek)

The (−1)k+i factor is nothing more then the sign convention.

(A−1)ki =
det Ai(ek)

det A

= (−1)k+i det Aki

det A

=
Cki

det A
Cki = (−1)k+i det Aki

thus

A−1 =
1

det A




C11 C12 · · · C1n

C21 C22 · · · C2n
...

...
...

Cn1 Cn2 · · · Cnn




Cki is called the cofactor of aki

Area of parallelogram determined by(
a
c

)
and

(
b
d

)
is

∣∣∣∣det

(
a b
c d

)∣∣∣∣ = ad− bc

Exercise: Completet the following sentence:
Volume of the parallelepiped determined by ....... is ........
Theorem. Let T : R2 −→ R2 be the linear transformation x 7→ Ax. Let S be a parallelogram in
R2. Then

area of T (S) = | det A| (area of S)

Theorem. Let T : R3 −→ R3 be the linear transformation x 7→ Ax. Let S be a parallelepiped in
R3. Then

area of T (S) = | det A| (area of S)

Theorem. Let A be a square matrix of size n. Then
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The system Ax = b is consistent
for all b ∈ Rn

iff det A 6= 0

This is because

A square matrix A has an inverse
iff

det A 6= 0

4.6 Exercise.

In each of the following use Cramer’s rule to solve the linear system if possible. If Cramer’s rule
does not work, use Gauss-Jordan elimination to find why and if possible solve the system.





x1 −3x2 +4x3 = 8
x1 −x2 −2x3 = 2
2x1 −5x2 +3x3 = 15

,





3 x1 −7 x2 +7 x3 = −8
−4 x1 +6 x2 − x3 = 7

x1 −3 x2 +4 x3 = −4





2 x2 −4 x3 = −2
x1 −3 x2 +10 x3 = 5
x1 − x2 +6 x3 = 3
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5 Vector Spaces

5.1 The geometry of Rn

5.1.1. Example

v1 =




1
1
2


 , v2 =



−3
−1
−5


 , v3 =




4
−2

3


 ,b




8
2

15


 (5.1)

Find c1, c2, and c3 such that we can write

c1v1 + c2v2 + c3v3 = b

5.1.2. Vectors in Rn. In all the operations listed below that involve two or more vectors
v, w, · · · , the vectors v, w, · · · must lie in the same space Rn.
That is v, w, · · · must have the same number of components.

• Addition of two vectors. We can add two vectors iff they lie in the same space Rn. That
is, they have the same number of components.

• The parallelogram rule.

• Rescaling a vector. That is multiplying a vector by a scalar (real number).

• The vector connecting two points P, Q ∈ Rk.
−→
PQ = Q− P .

• An equations for the line through two points P and Q.

x = P + t
−→
PQ, t ∈ R

• A parametric equation for the plane through three points P,Q and R.

x = P + r
−→
PQ + t

−→
PR, r, t ∈ R

5.1.3. Length of a vector.

‖v‖ =
√

v2
1 + v2

2 + · · ·+ v2
n

5.1.4. Distance between two points P and Q.

d(P, Q) = ‖−→PQ‖ =
√
|x1 − y1|2 + · · ·+ |xn − yn|2

5.1.5. Unit vectors If ‖w‖ = 1, it is said to be a unit vector.

5.1.6. The mid point between P and Q.

M = (
x1 + y1

2
, · · · ,

xn + yn

2
)
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5.1.7. The dot product of two vector v and w. The dot product of two vectors v and w that
lie in the same space Rn is

v ·w = v1w1 + v2w2 + · · ·+ vnwn

5.1.8. The angle between two vector. The low of cosines
(...............................................................................) leads to the identity

v ·w = |v| |w| cos θ

where θ ∈ (−π, π] is the angle between the two vectors v and w.

Recall that cos θ is an even function. (What does this mean?)

cos θ =
v ·w
|v||w|

θ = arccos

(
v ·w
|v||w|

)

5.1.9. Orthogonal vectors. Two nonzero vectors v and w are said to be orthogonal iff the angle
between them is θ = ±π/2.

v ⊥ w ⇔ θ = ±π/2 ⇔ v ·w = 0

5.1.10. Note. It does not matter whether we measure the angle θ from v to w or from w to v
(and have a difference of a minus sign) because cos θ is an even function. That is
cos(−θ) = cos(· · · ).
5.1.11. The cross product of two vectors v1 and v2 in R3.

w = u× v =

∣∣∣∣∣∣

i j k
u1 u2 u3

v1 v2 v3

∣∣∣∣∣∣

Question: Why is u× v orthogonal to both u and v?

‖u× v‖2 = ‖u‖2‖v‖2 − (u · v)2

5.1.12. Notice

1. u× v = −v × u.

2. u× v is orthogonal to both u and v. That is

u · (u× v) = 0, v · (u× v) = 0
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5.2 Exercises

Homework: Do problems 1-12.

1. Find the point that lie in the middle of the line segment that connects the two points where
P = (3, 2,−1, 4)ᵀ and Q = (3,−2, 4, , 7)ᵀ.

2. Find the length of the vector
−→
PQ where P = (2,−1, 3, 4)ᵀ and Q = (4, 2,−3, 1)ᵀ.

3. Find the length of the line segment that connects the two points P = (2,−1, 3, 4)ᵀ and
Q = (4, 2,−3, 1)ᵀ.

4. Find the dot-products u · v and v · u: v = (3,−2, 4, , 7)ᵀ and u = (1, 2, 3,−1)ᵀ.

What do you notice?

5. Find the angles between the two vector (3,−2, 4, , 7, 2)ᵀ and (1, 2, 3,−15)ᵀ.

6. Find the angles between the two vector (2,−1, 3, 4)ᵀ and (4, 2,−3, 1)ᵀ.

7. Find an equation for the hyperplane that contains the origin and perpendicular to the vector
~n = (−3, 2,−1, 5, 7)ᵀ.

8. Find an equation for the hyperplane that contains the point (2,−1, 3, 4) and perpendicular
to the vector ~n = (2, 4,−5, 7)ᵀ.

9. Find an equation for the plane that contains the point (x1, x2, x3, x4) and perpendicular to
the vector ~n = (a, b, c, d)ᵀ.

10. **** Find a unit vector that starts at the point (2,−1, 2,−4)ᵀ and points in the direction of
the point (−1, 3, 5, 2)ᵀ.

11. **** Find a vector of length 5 that starts at the point (−3,−2, 1,−4, 3)ᵀ and points in the
direction of the point (3, 2,−1, 2, 4)ᵀ.

12. Find an equation for the plane that contains the three points

(1,−1, 3, 4)ᵀ, (2, 3,−1, 5)ᵀ, (3,−2, 6, 4)ᵀ

13. Find an equation for the plane that contains the point (2,−1, 4)ᵀ and the line








2
1

−1


 + r




3
−1

2


 | r ∈ R





14. Show that

‖u× v‖ = ‖u‖ ‖v‖ sin θ, 0 ≤ θ ≤ π
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Notice that we measure the angle θ counterclockwise.

15. Show that

‖u× v‖ = area of the parallelogram with sides u and v.

16. Find the cross-products u× v and v × u: v = (2, 5, 3)ᵀ and u = (4,−2, 1)ᵀ.

What do you notice?

17. Find the area of the parallelogram with sides (2, 1,−3) and (4, 1, 2).

18. Find the intersection of each pair if possible:

(a)








1
1
0


 + r




0
3
0


 + t




2
0
4


 |r, t ∈ R



 ,



r




1
1
1


 + t




0
1
3


 |r, t ∈ R





(b)








2
0
1


 + r




1
1

−1


 |r ∈ R



 ,



r




0
1
2


 + t




1
1
4


 |r, t ∈ R





(c)








1
1
2


 + r




0
1
1


 |r ∈ R



 ,








1
3

−2


 + t




0
1
2


 |t ∈ R




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5.3 Definition and Examples of Vector Spaces and subspaces

5.3.1 Definition (Vector spaces). A set V is called a vector space iff for any u,v and w in V
and α and β in R the following holds

1. u + v is also in V.

2. u + v = v + u.

3. u + 0 = u

4. u + (−u) = 0.

5. αu is in V.

6. (u + v) + w = u + (v + w)

7. α(u + v) = αu + αv

8. (α + β)u = αu + βv.

9. (αβ)u = α(βu).

10. 1u = u

5.3.2 Definition (Subspaces). A nonempty subset W of a vector space V is itself a vector space
(and called a vector subspace) iff whenever w1 ∈ W and w2 ∈ W and α ∈ R then the following
holds:

1. w1 + w2 is in W.

2. αw1 ∈ W.

What about αw2, is it also in W?

More generaly

A subspace of a vector space V
is any nonempty subset W ⊆ V which is

closed under linear combinations
of any number of vectors.

That is,

given any collection of k vectors
w1, · · · ,wk in W

and any k real numbers a1, · · · , ak,
then the linear combination

a1w1 + · · ·+ akwk

is also in W.

Question. Why are these two definitions equivalent?
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5.4 Exercises

1. For each of the given sets answer the following questions:

• Is it a vector space under the standard addition and scalar multiplication?

• If it is not, determine all the properties that fail.

• If it is, find its dimension.

• Sketch when possible.

(a) The set F (R,R) consisting of all functions f : R −→ R.

(b) The set Mt×4 consisting of all matrices of size 3× 4.

(c) V = {(x, y) ∈ R | x ≥ 0, y ≥ 0}.
(d) V = {(x, y) ∈ R | x > 0, y > 0}.
(e) V = {(x, y) ∈ R | xy > 0}.
(f) V = {(x, y) ∈ R | xy ≥ 0}.
(g) P3 = the set of all polynomials p(t) of degree 3.

2. For each of the following, determine the ambient space and then determine whether the
given set is a subspace. If it is a vector space, find its dimension.

(a) V =

{(
a 0 c
d e 0

)
| a, b, c, d, e are real numbers

}
.

(b) V =

{(
a b
c d

)
| a, b, c, d are real numbers and a + d = 0

}

(c) V =

{(
0 b
c 0

)
| b, c ∈ R

}

(d)

V1 =



t




2
−1

3


 + r




4
5

−1


 | −∞ < t, r < ∞





V2 =








3
−1

4


 + t




2
−1

3


 + r




4
5

−1


 | −∞ < t, r < ∞





(e) i. V1 = all functions f : R −→ R that takes the form f(t) = a cos 5t + b sin 5t, where
a and b are real numbers.

ii. V2 = all functions f : R −→ R that takes the form f(t) = ae3t + be−2t, where a and
b are real numbers.

(f) i. B1 = the set of all polynomials p(t) of degree 3 that satisfies p(0) = 5.

ii. B2 = the set of all polynomials p(t) of degree 3 that satisfies p(0) = 0.
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(g) i. B1 = the set of all polynomials p(t) of degree 4 that satisfies d2p/dt2(0) = 0.

ii. B2 = the set of all polynomials p(t) of degree 4 that satisfies d2p/dt2(0) = 7.

(h) W = the solution set of the homogenous system





x1 −3 x2 + x3 + x4 = 0
2 x1 −6 x2 − x3 + x4 = 0

−3 x1 +9 x2 +3 x3 −x4 = 0
4 x1 −12 x2 +4 x3 + 4x4 = 0

(i) W = the solution set of the non-homogenous system





x1 −3 x2 + x3 + x4 = 3
2 x1 −6 x2 − x3 + x4 = −6

−3 x1 +9 x2 +3 x3 − x4 = 15
4 x1 −12 x2 +4 x3 + 4x4 = 12

(j) W = the solution set of the homogenous system





x1 −3x2 +x3 = 0
2x1 −6x2 −x3 = 0
3x1 −9x2 = 0
4x1 −12x2 +4x3 = 0

(NH)

(k) W = the solution set of the non-homogenous system





x1 −3x2 +x3 = 1
2x1 −6x2 −x3 = 1
3x1 −9x2 = 2
4x1 −12x2 +4x3 = 4

(NH)
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5.5 Projections and orthogonal projections.

Let F be a force that pulls an object along the line determined by v (possibly in opposite
direction). And let the angle between F and v be θ. For example if we pull a box along a surface
using a robe that makes an angle of π/6 with the surface and applying a force of magnitude ‖F‖.
Question. How much of the force is actually used and how much is lost?

• The part that is used is called the component of F along v. It could be negative if we
pull the object in the direction opposite to v. In this case π/2 ≤ θ ≤ π and −1 ≤ cos θ ≤ 0.

The component of F along v

compvF = ‖F‖ cos θ =
F · v
‖v‖

• We can make this into a vector by multiplying it by a unit vector in the direction of v.

The vector projection of F along v

projvF = ‖F‖ cos θ
v

‖v‖ =
F · v
‖v‖2

v

• Recall that ‖F‖2 = ‖F‖2(cos2 θ + sin2 θ). Thus the lost part of the force ‖F‖ is

The component of F orthogonal to v

comp⊥v F = ‖F‖ sin θ =
‖F× v‖
‖v‖

• Now we make this lost quantity into a vector

The orthogonal projection of F ⊥ v

proj⊥v F = F− F · v
‖v‖2

v

Remarks. Note that

• compvF and comp⊥vF are scalars (real numbers)

• while projvF and proj⊥v F are vectors.

• projvF can point in opposite direction of v. When?
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5.6 Exercises

For each of the following, if possible, find the component, projection and orthogonal projection of
the first vector relative to the second. Then find the same objects for the second relative to the
first.

1. (2, 3,−1, 4)ᵀ, (1,−2, 3, 1)ᵀ.

2. (3, 0, 2,−1, 1)ᵀ, (3, 1,−1, 4, 5)ᵀ.

3. (2, 3,−1, 4)ᵀ, (1,−2, 3, 1,−3)ᵀ.
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5.7 Linear Combinations of Vectors

Let v1, · · · ,v4 be given (known) 4 vector in the 7-dimensional space R7(i.e. each v has 7
components).

1. Let c1, · · · , c4 be any 4 real numbers.

The vector b given by
b = c1v1 + c2v2 + · · ·+ c4v4

is called a linear combination of the vectors v1, · · · ,v4.

The vector b is (lies, lives) in the · · · -dimensional space R···(i.e. b has · · · components).

2. Nothing special about the numbers 4 and 7. We can replace 4 by any positive integer n and
7 by any positive integerk: Let v1, · · · ,vn be given (known) n vector in the k-dimensional
space Rk(i.e. each v has k components). Let c1, · · · , cn be any n real numbers.

3. In Example 5.7.4 the vector b can be written as a linear combination of the vectors
v1, · · · ,v4 in infinitely many ways given by (5.8). Any choice of r and t gives us a way of
writing b as a linear combination of the vectors v1, · · · ,v4.

5.7.1 Definition.

The vector b given by
b = c1v1 + c2v2 + · · ·+ cnvn

is called a linear combination of the vectors v1, · · · ,vn.

In matrix notation

b =
(

v1 v2 · · · vn

)
c

The vector b is (lies, lives) in the · · · -dimensional space R···(i.e. b has · · · components).

5.7.2 Example.

3v1 − 5v2 = 3




11
−3
13


− 5




5
2

−8


 =




8
−19

79




5.7.3 Example. In each of the following Determine whether b can be written as a linear
combination of (lies in the span of; lies in the plane spanned by) v1 and v2:

1. v1 =




3
−2

5


 , v2 =




10
−6
12


 , b =




11
−6

9



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2. v1 =




2
−1

1


 , v2 =




1
−3

5


 , b =




4
3

−2




3. v1 =




3
−2

5


 , v2 =




10
−6
12


 , b =




11
−6

9




Solution.

(a) Try to solve the system

3x1 + 10x2 = 11

−2x1 − 6x2 = −6

5x1 + 12x2 = 9

In matrix notation 


3 10
−2 −6

5 12


x =




11
−6

9




If we can solve this system, then the answer is: Yes b can be written as ...... . If we cannot then
the answer is: No, b cannot be written as ...... .
(b)& (c) Can be solved similarly.

5.7.4 Example. Find, if possible, c1, c2, c3 and c4 such that



3
−6
15
12


 = c1




1
2
3
4


 + c2




−3
−6
−9
−12


 + c3




1
−1
−3

4


 + c4




1
1
1
4


 (5.2)

We can ask the same question in a different way:
If possible write the vector b as a linear combination of the vectors v1, · · · , v4.

b =




3
−6
−3
12


 , v1 =




1
2
3
4


 , v2 =




−3
−6
−9
−12


 , v3 =




1
−1

0
4


 , v4 =




1
1
2
4


 (5.3)

Solution.

In either case we need to solve the system

x1v1 + x2v1 + x3v3 + x4v4 = b (5.4)

That is: Find c1, c2, c3 and c4 such that



3
−6
−15

12


 = x1




1
2
3
4


 + x2




−3
−6
−9
−12


 + x3




1
−1
−3

4


 + x4




1
1
1
4


 (5.5)
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thus we need to solve the system





x1 −3x2 +x3 +x4 = 3
2x1 −6x2 −x3 +x4 = −6
3x1 +9x2 +3x3 −x4 = 15
4x1 −12x2 +4x3 +4x4 = 12

(5.6)

Use Eq(1) to eliminate x1 from the other three equations





(−2eq1 + eq2) 7→ eq2

(3eq1 + eq3) 7→ eq3

(−4eq1 + eq4) 7→ eq4

=⇒





x1 −3x2 +x3 +x4 = 3
−3x3 −x4 = −12
6x3 +2x4 = 24

0 = 0

Notice that the fourth equation became irrelevant.
Use Eq(....) to eliminate · · · from Eq(3) and Eq(...); and then divide the second by -3 and we have:

(......+.......) 7→eq....−−−−−− −→
(......+.......) 7→eq....





x1 −3x2 +(2/3)x4 = −1
−3x3 −x4 = −12

0 = 0
0 = 0

eq2/−3

−−− −→





x1 −3x2 +(2/3)x4 = −1
+x3 +(1/3)x4 = 4

0 = 0
0 = 0

Thus x1 and x2 are basic variables and x2 and x4 are free variables. Take x2 = r and x4 = t as
parameters and obtain 




x1 = −1 + 3r − (2/3)t
x2 = r

x3 = 4− (1/3)t
x4 = t

The solution set to the system (5.6) is

S : x =




−1
0
4
0


 + r




3
1
0
0


 + t




−2/3
0

−1/3
1


 , −∞ < r, t < ∞ (5.7)

Description of S: It is the plane passing through the point (−1, 0, 4, 0) and generated by the two
vectors (3, 1, 0, 0) and (2/3, 0,−1/3, 1).
Dimension of S = 2.
Answer to the question we are asked: The set S (5.7) is the solution set to the linear system
(1.12) but it is not the answer to the question we are asked. We are asked to write b as a linear
combination of v1, · · · , v4. The answer to this question is that we can write b as a linear
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combination of v1, · · · , v4 in infinitely many ways, namely, for any r ∈ R and any t ∈ R we can
write b as the linear combination of v1, · · · , v4 given by




3
−6
−15

12


 = [−1 + 3r − (2/3)t]




1
2
3
4


 + r




−3
−6
−9
−12


 (5.8)

+ [4− (1/3)t]




1
−1
−3

4


 + t




1
1
1
4




For example if we take r = 3 and t = −2 we have b as the linear combination




3
−6
−15

12


 = [· · · ]




1
2
3
4


 + 3




−3
−6
−9
−12




+ [· · · ]




1
−1
−3

4


 + [· · · ]




1
1
1
4




5.8 Exercises.

1. Determine whether the vector a is a linear combination of the others. If it is find all possible
ways of doing that.

(a) a =

(
2
3

)
, a1 =

( −1
2

)
, a2 =

(
2

−5

)

(b) a =

(
2
3

)
, a1 =

(
4

−2

)
, a2 =

( −6
3

)

(c) a =




1
4
1


 , a1 =



−3

3
0


 , a2 =




1
0

−1


 , a3 =




2
0
1




(d) a =



−1

1
5


 , a1 =




1
2

−1


 , a2 =




1
1

−3


 , a3 =




0
1
2




(e) a =




3
−17

17
7


 , a1 =




2
−3

4
1


 , a2 =




1
6

−1
2


 , a3 =




−1
−1

2
3



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2. Find all possible ways that the vector b can be written as a linear combination of the others.

b =




0
−1
−3


 , v1 =




0
1
1


 , v2 =



−2
−1

2


 , v3 =



−2
−3
−1


 , v4 =




2
−1

2




3. Determine if the matrix A is a linear combination of the others:

(a) A =

( −2 4
4 0

)
, M1 =

(
1 2
1 −1

)
, M2 =

( −2 3
1 4

)
, M3 =

( −1 3
2 1

)

(b) A =

(
2 1

−1 2

)
, M1 =

(
2 2

−1 3

)
, M2 =

(
3 −1
2 −2

)
, M3 =

(
3 −1
2 2

)

4. Write the product Ax as a linear combination of the columns of A:

A =




1 2 −8
2 3 7

−3 −1 1


 , x =




4
−2

5




5. Write each column of AB as a linear combination of the columns of A.

A =




1 2 −8
2 3 7

−3 −1 1


 , B =




4 5 4
−1 −2 3

3 −7 6




6. If possible, write the given polynomial as a linear combination of p1(x) = 1 + x and
p2(x) = x2.

(a) p(x) = 2x2 − 3x− 1.

(b) p(x) = −x2 + 3x31.

7. If possible, write the given polynomial as a linear combiation of

p1(x) = 1 + x, p2(x) = −x, p3(x) = x2 + 1, p4(x) = 2x3 − x + 1

(a) p(x) = x3 − 2x + 1.

(b) p(x) = −4x3.

8. Describe all 2× 2 matrices that can be written as a linear combination of the matrices
(

1 0
0 0

)
,

(
0 1
1 0

)
,

(
0 0
0 1

)
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5.9 The span of Vectors

Let v1, · · · ,vn be given (known) n vector in the k-dimensional space Rk(i.e. each v has k
components).

5.9.1 Definition.

Span{v1,v2, · · · ,vn}
is the collection of all possible linear combinations

of the vectors v1,v2, · · · and vn.
m

span{v1,v2, · · · ,vn} = {c1v1 + c2v2 + · · ·+ cnvn|c1, c2, · · · , cn ∈ R}

Thus

span{v1,v2, · · · ,vn}
is the collection of all b for which the system

x1v1 + x2v2 + · · ·+ xnvn = b
is consistent (i.e. has a solution).

00 This is not the solution set of this system.

5.9.2 Theorem.

b is in span{v1,v2, · · · ,vn}
m

b is a linear combination of v1,v2, · · · ,vn

m
the linear system x1v1 + x2v2 + · · ·+ xnvn = b

is consistent.
m

In matrix notation
Ax = b

is consistent
where A =

[
v1 v2 · · · vn

]
.

Thus

To test whether a vector b is in span{v1,v2, · · · ,vn} we try to solve the system
x1v1 + x2v2 + · · ·+ xnvn = b.

If we can, the answer is ”yes it is”.
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5.9.3 Example. Find the value(s) of h for which b lies in the plane spanned by (a linear
combination of) the two vectors a1 and a2:

a1 =




1
4

−2


 a2 =



−2
−3

7


 b =




4
1
h




Solution.

Find the value(s) of h for which the system

x1




1
4

−2


 + x2



−2
−3

7


 =




4
1
h




is consistent (i.e. has a solution). As usual we start by witting the system explicitly.





x1 −2x2 = 4
4x1 −3x2 = 1
−2x1 +7x2 = h

−→




x1 −2x2 = 4
5x2 = −15
3x2 = h + 8

−→




x1 −2x2 = 4
5x2 = −15
0 = h + 17

In order for the system to be consistent we shouldn’t have an equation of the form 0 = c with
c 6= 0.

Answer.

Thus b lies in the plane spanned by (a linear combination of) the two vectors a1 and a2 iff (if and
only if)

h = −17

5.9.4 Example. 1. Find the subspace spanned by {v1,v2}.

v1 =




2
1
−3


 , v2 =




3
−1
2




2. Determine which of the following vectors lie in the space generated (spanned) by {v1,v2}.

a1 =




4
2
−6


 , a2 =




5
−4
7




Answer: We need to find all possible vectors y that can be written as a linear combination of
v1&v2:

y = x1v1 + x2v2

⇔ [
v1 v2

] (
x1

x2

)
= y
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


2 3 y1

1 −1 y2

−3 2 y3


 →




1 −1 y2

2 −3 y1

−3 2 y3




→



1 −1 y2

0 −1 y1 − 2y2

0 −1 y3 + 3y2




→



1 −1 y2

0 −1 y1 − 2y2

0 0 y3 − y1 + 5y2




This system is consistent
m

y3 − y1 + 5y2 = 0

1. Thus

span{v1,v2} =
{y ∈ R3 | − y1 + 5y2 + y3 = 0}

2. The vector a1 is in span{v1,v2} because

−4 + 10− 6 = 0

The vector a2 is not in span{v1,v2} because

−5− 20 + 7 = −18 6= 0

5.9.5 Example. The following four questions are equivalent. That is have the same answer.

1. Find the value(s) of b1, b2 and b3 for which b lie in the plane spanned by (a linear
combination of) the two vectors a1 and a2.

2. Find the set of all b’s that are a linear combination of the two vectors a1 and a2.

3. Find and describe the span of a1 and a2.

4. Find the set of all b the linear system x1a1 + x2a2 = b is consistent.

a1 =




3
−2

4


 , a2 =



−5

1
3



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Solution.

As we mentioned, these four questions have the same answer which is the answer to part (d).
Thus we need to find the set of all vectors b for which the following system s consistent.

x1



−5

1
3


 + x2




3
−2

4


 =




b1

b2

b3




Notice that we switched a1 and a2. This is allowed since we can label vectors any which way we
like as long as we do not change the labeling during the course of the work.

As usual we start by witting the system explicitly.



−5x1 +3x2 = b1

x1 −2x2 = b2

3x1 +4x2 = b3

−→




x1 −2x2 = b2

−5x1 +3x2 = b1

3x1 +4x2 = b3

−→




x1 −2x2 = b2

−7x2 = b1 + 5b2

10x2 = b3 − 3b1





x1 −2x2 = b2

−70x2 = 10b1 + 50b2

70x2 = 7b3 − 21b1

−→




x1 −2x2 = b2

−70x2 = 10b1 + 50b2

0 = 10b1 + 29b2 + 7b3

In order for the system to be consistent we shouldn’t have an equation of the form 0 = c with
c 6= 0.

Answer.

Thus b lies in the plane spanned by (a linear combination of) the two vectors a1 and a2 iff (if and
only if)

span{a1, a2} = {b ∈ R3|10b1 + 29b2 + 7b3 = 0}
5.9.6 Definition. Let A be an r × c matrix

A =
(

c1 c2 · · · cc

)
=




r1

r2
...

rr




1. The column space of a matrix A = the range of a matrix A

col A = span{c1, c2, · · · , cc} = rng A
= the set of all y for which Ax = y is consistent.

2. The row space of a matrix A

row A = span{r1, r2,
..., rr} = rng A

= the set of all y for which Ax = y is consistent.
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3. The nul space of a matrix A

nul A = the set of all solutions of Ax = 0
= {x | Ax = 0}

5.9.7 Example. For each of the vectors a1, · · · , a4:

1. Determine whether it lies in the span of v1, · · · ,v3.

2. Determine whether it is a linear combination of v1, · · · ,v3.

3. Determine whether the linear system c1v1 + c2v2 + c3v3 = a is consistent.

4. Find and describe the span of v1, · · · ,v3.

v1 =




1
2
3
4


 , v2 =




−3
−6
−9
−12


 , v3 =




1
−1

0
4


 ,

a1 =




1
1
2
4


 , a2 =




2
1
4
0


 , a3 =




5
1
1

−3


 , a4 =




4
1
5
3


 ,

Solution.

Notice that the answers to the first three questions (1-3) are the same. for the three of them we
need to find out whether the linear system c1v1 + c2v2 + c3v3 = a is consistent. That is, to answer
question 3.





x1 −3x2 +x3 = b1

2x1 −6x2 −x3 = b2

−3x1 −9x2 = b2

4x1 −12x2 +4x3 = b4





x1 −3x2 +x3 = b1

−3x3 = b2 − 2b1

−3x3 = b3 − 3b1

0 = b4 − 4b1

−→





x1 −3x2 +x3 = b1

x3 = −(b2 − 2b1)/3
0 = b3 − 3b1 − (b2 − 2b1)
0 = b4 − 4b1

Thus, in order for the linear system c1v1 + c2v2 + c3v3 = b is consistent, the vector b must satisfy
both of the two conditions {

b3 − b1 − b2 = 0
b4 − 4b1 = 0

(*)

Check which of the 4 vector satisfies these two conditions:
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• a1: 4− 4 = 0, −1− 1 + 2 = 0.

• a2: 0− 8 6= 0. In this case we do not need to check the second condition.

• a3: −3− 20 6= 0.

• a3: 3− 16 6= 0.

Answer 1-3:

1. Only a1 lies in the span of of v1, · · · ,v3.

2. Only a1 is a linear combination of v1, · · · ,v3.

3. Only c1v1 + c2v2 + c3v3 = a is consistent.

To answer part (4) we reduce the system to the reduced echelon form:




x1 −3x2 = (b1 + b2)/3
x3 = −(b2 − 2b1)/3
0 = b3 − 3b1 − (b2 − 2b1)
0 = b4 − 4b1

Thus, if the system is consistent, (i.e. b satisfies the 2 conditions in (*)) the system has infinitely
many solutions with x2 as a free variable:

x1 = (b1 + b2)/3 + 3r

x2 = r, −∞ < r < ∞
x3 = (2b1 − b2)/3

When b = a1, the solution is

x1 = 2/3 + 3r

x2 = r, −∞ < r < ∞
x3 = 1/3

In vector parametric form,

x =




2/3
0

1/3


 + r




3
1
0


 , −∞ < r < ∞

5.9.8 Example. Consider the vectors

a1 =




2
1

−3


 , a2 =



−7
−5

3




v1 =



−2

3
5


 , v2 =




1
2
6


 , v3 =




2
3
7


 , v4 =




3
2
6



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1. Find and describe the span of a1 and a2.

2. For each v, determine whether it lies in span{a1, a2}.
3. For each v, determine whether it can be written as a linear combination of a1 and a2.

4. For each v, determine whether the linear system of x1a1 + x2a2 = v is consistent. If it is,
find x.

Solution.

Notice that parts (2-4) have the same answer: For each v the answer is either ”yes” on all of them
or ”no” for all of them. This is because to answer any of them we need to decide whether
x1a1 + x2a2 = v has a solution.

1. There are two methods to answer question (1). First we describe each. Then we give the
advantage of each, or when to use each.

(a) First method: Observe that the span of the two vectors a1 and a2 is a plane through
the origin. (Why?) Therefore we find a vector normal to both a1 and a2:

a1 × a2 =




12
15
−3


 , n = (1/3)a1 × a2 =




4
5

−1


 (5.9)

We divide by the common factor 3 only to use smaller numbers.

Now the equation of the plane spanned by a1 and a2 is

n · x = 0, that is , 4x1 + 5x2 − x3 = 0

Thus the span of {a1, a2} is the plane

span{a1, a2} = {b ∈ R3|4x1 + 5x2 − x3 = 0}

This answers question (1) using the first method.

(b) Second method: Recall that Theorem 5.9.2 tells us that

b is in span{a1, a2}
m

b is a linear combination of a1 and a2

m
the linear system x1a1 + x2a2 = b is consistent.

Thus, to answer any of the four questions we need to find b = (b1, b2, b3)
ᵀ for which the

following system is consistent (i.e. has a solution):
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x1




2
1

−3


 + x2



−7
−5

3


 =




b1

b2

b3




As usual we start by witting the system explicitly.





2x1 −7x2 = b1

x1 −5x2 = b2

−3x1 +3x2 = b3

−→




x1 −5x2 = b2

2x1 −7x2 = b1

−3x1 +3x2 = b3

−→




x1 −5x2 = b2

3x2 = b1 − 2b2

−12x2 = b3 + 3b2





x1 −5x2 = b2

3x2 = b1 − 2b2

0 = b3 + 3b2 + 4(b1 − 2b2)
−→





x1 −5x2 = b2

3x2 = b1 − 2b2

0 = 4b1 − 5b2 + b3

In order for the system to be consistent we shouldn’t have an equation of the form 0 = c
with c 6= 0.

Thus the span of {a1, a2} is the plane

span{a1, a2} = {b ∈ R3|4x1 + 5x2 − x3 = 0}

This answers question (1).

Which method to use?: Before answering (2-4) Let us find out which method to use:

• The first method is simpler but it works only in R3 not in any higher dimension.

• The second method works in any dimension.

2. A vector v lies in the plane spanned by (a linear combination of) the two vectors a1 and a2

iff (if and only if)
4b1 − 5b2 + b3 = 0 (*)

• v1 : −8− 15 + 5 6= 0 : No, v1 does not lie in span{a1, a2}.
• v2 : 4− 10 + 6 = 0 : Yes, v2 lies in span{a1, a2}.
• v3 : 8− 15 + 7 = 0 : Yes, v2 lies in span{a1, a2}.
• v4 : 12− 10 + 6 6= 0 : No, v1 does not lie in span{a1, a2}.

3. From the definition answer to part (2) is yes iff the answer to part (3) is yes. That is

• No, v1 cannot be written as a linear combination.

• Yes, v2 can be written as a linear combination.

• Yes, v3 can be written as a linear combination.

• No, v4 cannot be written as a linear combination.
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4. We need to answer this question only for v2 and v3. We simplify the system to the reduced
echelon form: 




x1 −5x2 = b2

3x2 = b1 − 2b2

0 = 4b1 − 5b2 + b3

−→




x1 = (5b1 − 7b2)/3
x2 = (b1 − 2b2)/3
0 = 4b1 − 5b2 + b3

• v2 = (1, 2, 6)ᵀ 



x1 = (5(1)− 7(2))/3 = −3
x2 = ((1)− 2(2))/3 = −1
0 = 0{

x1 = −3
x2 = −1

or in vector form x =

( −3
−1

)

Thus (check)
−3a1 − a2 = v2

• v3 = (2, 3, 7)ᵀ: hence, 



x1 = (5(2)− 7(3))/3 = −11/3
x2 = ((2)− 2(3))/3 = −4/3
0 = 0

Thus the solution to x1a1 + x2a2 = v is{
x1 = −11/3
x2 = −4/3

or in vector form x =

( −11/3
−4/3

)

Thus (check)
−(11/3)a1 − (4/3)a2 = v3

5.10 Exercises.

1. Answer all questions in Exercises 5.8 after replacing the phrase ”linear combination of ” by
the phrase ”span of ”.

2. In each of the following describe the span of B:

(a) B = {(1, 3,−2)ᵀ, 4,−1, 5)ᵀ}
(b) B =

{(
3 0
1 −1

)
,

(
1 1
0 2

)}

(c) B = {x, (1 + x)2, x2 + 3x + 1}
(d) B = {x2 − 4, 2− x, x2 + x + 1}

3. The columns of a 9× 4 matrix A satisfies the following: Three times the second column plus
twice the third column minus the first one equals five times the fourth column minus six
times the first column.

(a) Find a nonzero solution to the homogenous system Ax = 0.

(b) For some b ∈ R9 the linear system Ax = b is consistent. How many solution does it
have?
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5.11 Linear independence.

Linear independence of two vectors {v1,v2}:
Two nonzero vectors v1&v2 are linearly independent iff any of the following equivalent
situations occurs:

1. v1&v2 are not parallel.

2. span{v1,v2} is 2-d, i.e. a plane.

3. Neither of them is a multiple of the other. That is v2 6= cv1.

4. the only solution to c1v1 + c2v2 = 0 is c1 = c2 = 0.

Linear independence of 3 vectors {v1,v2,v3}:

Three nonzero vectors {v1,v2,v3}
are linearly independent

iff
none of them is a linear combination

of the other two.

Any of the following situations is used to test for linear independence:

1. The only solution to the homogenous equation

c1v1 + c2v2 + c3v3 = 0

is c1 = c2 = c3 = 0, i.e the vector c = 0.

2. The homogenous system [
v1 v2 v3

]
c = 0

has only the trivial solution c = 0.

3. None of them is a linear combination of the other. For example, we cannot write

v3 6= c1v1 + c2v2

4. None of {v1,v2,v3} lies in the plan spanned by the other two.

5. span{v1,v2,v3} is 3-d.

General case:
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A set of n nonzero vectors {v1,v2, · · · ,vn}
is called linearly independent

iff
none of them can be written as

a linear combination of the others.
Otherwise

it is called linearly dependent.

5.11.1 Theorem. Let V = {v1,v2, · · · ,vn} be a set of n nonzero vectors. The following are
equivalent:
iff any of the following equivalent situations occur

1. The set V is linearly independent. None of them is a linear combination of the others. For
example, we cannot write

vn 6= c1v1 + · · ·+ cn−1vn−1

2. The only solution of the homogenous system

c1v1 + c2v2 + · · ·+ cnvn = 0

is the trivial solution c1 = c2 = · · · = cn = 0

Notice that condition can be written in matrix notation as follows:

The system [
v1 v2 . . . v2

]
c = 0

has only the trivial solution c = 0.

3. None of them lies in the space spanned by the others.

4. {v1,v2, · · · ,vn} span an n dimensional space.

5.11.2. Example. Determine whether the following three 3-vectors are linearly independent or
not. If they are not, write v3 as a linear combination of the other two.

v1 =




1
−2

3


 , v2 =



−2

4
1


 , v3 =




1
10
10




Solution.

The three vectors are linearly independent iff the homogenous Ax = 0 has a nontrivial solution.

A =
(

v1 v2 v3

)
=




1 −2 1
2 4 10
3 1 10



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→



1 −2 1
0 8 8
0 7 7




→ Aech =




1 −2 1
0 8 8
0 0 0




The homogenous system Ax = 0 has a nontrivial solution because Aech has a zero-row. Thus the
three vectors are linearly dependent.

In order to write v3 as a linear combination of the other two we proceed:

Aech −→ · · · −→



1 −2 1
0 8 8
0 0 0


 −→




1 0 3
0 1 1
0 0 0




thus
−3v1 − v2 + v3 = 0

and hence
v3 = 3v1 + v2

In fact if we go back and draw a vertical line between the second and third columns we have:

B =
(

v1 v2 v3

) −→ · · · −→



1 −2 1
0 8 8
0 0 0


 −→ Bech −→




1 0 3
0 1 1
0 0 0




and hence
v3 = 3v1 + v2

as above

5.11.3. Example. Answer the following questions for each case where A =
[

v1 v2 v3

]

1. Find the value(s) of h for which {v1,v2,v3} are linearly independent.

2. Find the value(s) of h for which v3 lies in the Span{v1,v2}
3. Find the value(s) of h for which the linear system Ax = 0 has a non-trivial solution where

the vector columns of A are the 3 vectors above.

(a)




3
−5

7


 ,




1
−1

4


 ,



−1

5
h




(b)




1
2
3


 ,




2
3
5


 ,




1
3
h




Solution.

First notice that
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• Answer(1): {v1,v2,v3} are linearly independent iff Ac = 0 has only the trivial solution. To
determine that we reduce the augmented matrix B =

[
v1 v2 v3 0

]
to an echelon form

Bech.

– If each column in Bech has a LT, then we have no free variables and the system Ac = 0
has only the zero solution.

– If one of the columns does not have a LT (in this case Bech has a zero row) then we
have at least one FV and the system Ac = 0 has infinitely many nonzero solutions.

• Answer(2) = complement of Answer(1). This is because if v3 lies in the Span{v1,v2} then
{v1,v2,v3} are linearly dependent.

• Answer(3) = Answer(2) = complement of Answer(1). This is because Ac = 0 has a
nontrivial solution iff {v1,v2,v3} are linearly dependent.

(a) To answer any of these questions we need to put the augmented matrix
[

v1 v2 v3 0
]

in
echelon form. 


1 3 −1 0

−1 −5 5 0
4 7 h 0


 −→ · · · −→




1 3 −1 0
0 1 −2 0
0 0 h− 6 0




We have two possibilities
(a) h 6= 6: In this case the system Ax = 0 has a unique solution, which is the trivial solution. In
this case {v1,v2,v3} are linearly independent.
(b)h = 6: We have one free variable because

#(col) - #(LT) = 3-2 =1

Hence, there are infinitely many nontrivial solutions for h = 6 and {v1,v2,v3} are linearly
dependent.
Conclusion:

1. h 6= 6.

2. h = 6.

3. h = 6.

5.11.4. Example. Answer the following questions for each case where A =
[

v1 v2 v3

]

1. Find the value(s) of h for which {v1,v2,v3} are linearly independent.

2. Find the value(s) of h for which v3 lies in the Span{v1,v2}
3. Find the value(s) of h for which the linear system Ax = 0 has a non-trivial solution where

the vector columns of A are the 3 vectors above.
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(a)




1
5
−3


 ,



−2
−9
6


 ,




3
h
−9




(b) v1 =




1
5
−3


 ,v2 =



−2
−9
6


 ,v3 =




3
h
−9




To answer any of these questions we need to put the augmented matrix
[

v1 v2 v3 0
]

in
echelon form. 


1 −2 3 0
0 1 h− 15 0
0 0 0 0




Here the zero-row in Aech does not lead to any inconsistency because we are dealing with a
homogenous system Ax = 0. We have one free variable because

#(col) - #(LT) = 3-2 =1

Hence, there are infinitely many solutions for all h.
Conclusion:

1. No h.

2. All h.

3. All h.

5.11.5. Example. Answer the following questions for each case where A =
[

v1 v2 v3

]

1. Find the value(s) of h for which {v1,v2,v3} are linearly independent.

2. Find the value(s) of h for which v3 lies in the Span{v1,v2}
3. Find the value(s) of h for which the linear system Ax = 0 has a non-trivial solution where

the vector columns of A are the 3 vectors above.

(a)




1
−3
2


 ,



−3
9
−6


 ,




5
−7
h




(b) v1 =




1
−3
2


 ,v2 =



−3
9
−6


 ,v3 =




5
−7
h




To answer any of these questions we need to put the augmented matrix
[

v1 v2 v3 0
]

in
echelon form. 


1 −3 0
0 0 1
0 0 h− 10



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If h = 8, the last row is a zero row. If h 6= 8, replace R3 by R3 − (h− 8)R2. We obtain



1 −3 0
0 0 1
0 0 0




Then the solution to Ax = 0 is

x2 = 0, x3 = t, x1 = 3t, −∞ < t < ∞
for all h. Conclusion:

1. No h.

2. All h.

3. All h.

5.11.6. Example. The following five 4-vectors cannot be linearly independent. Why?

v1 =




1
−2

2
3


 , v2 =




3
−2

3
4


 , v3 =




3
2
0

−1


 , v4 =




2
−8

7
11


 , v5 =




−9
2
1

−8




1. Find the largest set of vectors among {v1, · · · ,v5} that are linearly independent.

2. Let V = span{v1, · · · ,v5}. What is the smallest set among {v1, · · · ,v5} that span V?

3. What is the dimension of V?

Solution.

A =
(

v1 · · · v5

)
=




1 3 3 2 −9
−2 −2 2 −8 2

2 3 0 7 1
3 4 −1 11 −8




→ Aech =




1 3 3 2 −9
0 1 2 −1 −4
0 0 0 0 1
0 0 0 0 0




Question 1:
The largest set of vectors

among {v1, · · · ,v5}
that are linearly independent

is B = {v1,v2,v5}.

Notice that
these are

the LT vectors in A not Aech.
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Question 2:
The smallest set of vectors

among {v1, · · · ,v5}
that span H is again B = {v1,v2,v5}.

Again notice that
these are

the LT vectors in A not Aech.

Question 3:
if H = span{v1, · · · ,v5}

dim H = #(members of B) = #(LT’s) = 3.

5.11.7 Theorem.
The columns of a square matrix A are linearly independent

iff
det A 6= 0.

Question: Show that Theorem 5.11.7 follows from Theorem 4.3.1.
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**************************************************************
**************************************************************
**************************************************************
**************************************************************
**************************************************************
**************************************************************
**************************************************************

5.12 Basis for V := span{v1, · · · ,vn}.

A basis for V := span{v1, · · · ,vn}
is a maximal linearly independent subset V .

Equivalently

it is a minimal spanning subset of V .

Practically

we look for a subset of V that
(1) spans V and

(2) is linearly independent.

It does not have to include
any vector from the set {v1, · · · ,vn}.

In fact we look for the simplest one,
that is, with as many zero components as possibly.

5.12.1. Example. Let v1, · · · ,v6 be the columns of the matrix A. Let H = {v1, · · · ,v6}.

A =




0 −3 −6 6 −3 15
−1 −2 −1 3 3 1
−2 −3 0 3 10 −1

1 4 5 −9 5 −7




1. Find the largest possible subset of linearly independent vectors among {v1, · · · ,v6}.
2. Find the smallest possible subset among {v1, · · · ,v6} that you can use to express all vectors

in H as linear combinations.

3. Write each of the remaining vectors in {v1, · · · ,v6} as a linear combination of the ones you
found in the first part.

4. Find a basis for the subspace H.
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A −→




1 4 5 −9 5 −7
0 −3 −6 6 −3 15
0 2 4 −6 8 −6
0 5 10 −15 20 −15




−→




1 4 5 −9 5 −7
0 1 2 −3 4 −3
0 −3 −6 6 −3 15
0 2 4 −6 8 −6




−→




1 4 5 −9 5 −7
0 1 2 −3 4 −3
0 −3 −6 6 −3 15
0 2 4 −6 8 −6




−→ Aech




[1] 4 5 −9 5 −7
0 [1] 2 −3 4 −3
0 0 0 [3] 9 −6
0 0 0 0 0 0




Then, a largest set of linearly independent vectors among the columns of A ar the pivot columna
{a1, a2, a4}.
To write each of the rest as a linear combination of these ones, we consider them one at a time.
Start with a6. We pretend that we started with {a1, a2, a4} and a6 as (a1, a2, a4|a6) and done the
Gauss elimination. Then we would have arrived at the same Aech with aaug

3 and aaug
5 removed and

aaug
6 at the end. That is (aaug

1 aaug
2 aaug

4 |aaug
6 ),




[1] 4 −9 −7
0 [1] −3 −3
0 0 [3] −6
0 0 0 0




−→




[1] 0 0 11
0 [1] 0 −9
0 0 [1] −2
0 0 0 0




and the solution is x1 = 11, x2 = −9, x3 = −2, and hence

a6 = 11a1 − 9a2 − 2a4

Now repeat the same process with a3 and 5. That is (aaug
1 aaug

2 aaug
4 |aaug

3 ) and (aaug
1 aaug

2 aaug
4 |aaug

5 ).
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5.12.2. Subspaces of Rn

v1 =




2
1
−3


 , v2 =




3
−1
2




H = span{v1,v2}
That is, H consists of all vectors of the form

y = a1v1 + a2v2, a1, a2 ∈ R

H = {v ∈ V | v = c1v1 + c2v2, c1, c2 ∈ R}
Recall the parallelogram rule.
Notice that

(b) If u ∈ H, c ∈ R, then the entire line that u determines through the origin lies in H. That is,

If u = a1v1 + a2v2, c ∈ R

Then cu = (ca1)u1 + (ca2)u2 ∈ H

(c) If u,v ∈ H, then u + v ∈ H. That is

u = a1v1 + a2v2, v = b1v1 + b2v2

⇒ u + v = (a1 + b2)v1 + (a2 + b2)v2

⇒u + v ∈ H

Notice that the zero vector 0 ∈ H because

0 = 0v1 + 0v2 ∈ H

There is nothing special about these two vectors:

1. The span of any two 3-vectors v1,v2 ∈ R3, will have the same properties.

2. The span of any two n-vectors, v1,v2 in any higher dimension space ∈ Rn, has the same
properties.

3. In fact, the span of any number of n-vectors, v1,v2, · · ·vk in any space ∈ Rn has the same
properties (a-c).

Definition:
A set H in Rn is called a subspace of Rn

if it satisfies (a-b).

Definition:
the subspace spanned by v1,v2, · · · ,vk

= span{v1,v2, · · · ,vk}
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5.13 Spanning sets.

Review section 5.9 using matrices.

6 Linear Transformations

6.1 Isomorphisms

6.1.1 Definitions

Let V and W be two vector spaces.

Recall that

A map T : V −→ W is called
a linear transformation

or a homomorphism
iff

T (v1 + v2) = T (v1) + T (v1), for all v1,v2 ∈ V
T (cv) = cT (v), for all v ∈ V, c ∈ R

A map T : V −→ W is called
a linear transformation

or a homomorphism
iff

it can be represented by a matrix.

A map T : V −→ W is said to be
one-to-one or injective

iff
T (v1) = T (v2) ⇔ v1 = v2

equivalently

T (v) = 0 ⇔ v = 0
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A map T : V −→ W is said to be
onto or surjective

iff
for any w ∈ W
the equation
T (x) = w

has at least one solution

Let V and W be two vector spaces.

A map T : V −→ W is called
a correspondence

iff it is
one-to-one and

onto

A map T : V −→ W is called
an isomorphism

iff it is
a correspondence,

and a linear transformation

In short, we have:

A map T : V −→ W is called
an isomorphism

iff it is
a linear transformation

one-to-one and
onto

An isomorphism T : V −→ V is called
an automorphism
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6.1.2 Dimension characterizes isomorphisms.

Two vector spaces are isomorphic

iff

they have the same dimension.

6.2 Homomorphisms = Linear maps.

A map T : V −→ W is called
a linear transformation

or a homomorphism
iff

T (v1 + v2) = T (v1) + T (v1), for all v1,v2 ∈ V
T (cv) = cT (v), for all v ∈ V, c ∈ R

6.2.1. Exercises.

1. Three matrices A1, A2 and A3 has echelon forms B1, B2 and B3 where ”♣” stands for a
leading term.

For which of the three matrices the homomorphism h : R··· → R··· is (a) onto and for which
(b) one-to-one.

B1 =

( ♣ ∗ ∗
0 ♣ ∗

)
, B2 =

( ♣ ∗ ∗
0 0 0

)
, B3 =

( ♣ ∗ ∗
0 0 ♣

)

2. A map h : Rc → Rr is given by h(x) = Ax where A is an · · · × · · · matrix. Assume that an
echelon form of A has a zero row.

(a) Is the map h linear?

(b) Is the map h onto?

(c) Is the map h one-to-one?

(d) Does the equation Ax = y has a solution for each y ∈ R···?
(e) Does the equation h(x) = y has a solution for each y ∈ R···?

3. A map h : Rc → Rr is given by h(x) = Ax where A is an · · · × · · · matrix. Assume that
r > c.

(a) Is the map h linear?

(b) Is the map h onto?
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(c) Is the map h one-to-one?

(d) Does the equation Ax = y has a solution for each y ∈ R···?
(e) Does the equation h(x) = y has a solution for each y ∈ R···?

4. A homomorphism h : R3 → R2 satisfies h(e1) = (7, 2)ᵀ, h(e2) = (−1, 3)ᵀ and h(e3) = (5, 4)ᵀ.

(a) Find h(x) explicitly.

(b) Represent the map h by a matrix.

A linear map h : V → W
is completely determined

by its action
on a basis of · · · · · · .
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6.3 The matrix of a linear transformation

In R3 let

e1 =




1
0
0


 , e2 =




0
1
0


 , e3 =




0
0
1




Exercise. Find the matrix of the linear transformation T (x) = Ax, T : R3 → R4 and

TA(e1) =




2
−4
6
5


 , TA(e2) =




−3
−2
9
6


 ,

TA(e3) =




4
0
3
−2




Answer:

T (x) = T (x1e1 + x2e2 + x3e3)

= x1T (e1) + x2T (e2) + x3T (e3)

= x1




2
−4
6
5


 + x2




−3
−2
9
6


 + x3




4
0
3
−2




=




2 −3 4
−4 −2 0
6 9 3
5 6 −2







x1

x2

x3




Therefore

AT =




2 −3 4
−4 −2 0
6 9 3
5 6 −2




Example. Let T : R3 → R4 be the linear transformation

TA(x) = Ax, ≈ x 7→ y = Ax,

A =




2 −3 11
−3 4 −3
5 2 6
7 5 −1


 =

[
a1 a2 a3

]
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Ae1 =




2 −3 11
−3 4 −3
5 2 6
7 5 −1







1
0
0


 =




2
−3
5
7




Ae2 = a2, Ae3 = a3

TA(x) = TA(x1e1 + x2e2 + x3e3)

= x1TA(e1) + x2TA(e2) + x3TA(e3)

= x1a1 + x2a2 + x3a3

TA(x) = x1




2
−3
5
7


 + x2




−3
4
2
5




+ x3




11
−3
6
1




6.3.1 Example. Rotation in the plane: Let Rφ : R2 → R2 be the transformation that rotates each
point in R2 about the origin with by angle φ, where the positive direction is counterclockwise.
Answer: Notice that

(
1
0

)
7→

(
cos φ
sin φ

)
,

(
0
1

)
7→

( − sin φ
cos φ

)

Then

Aφ =

(
cos φ − sin φ
sin φ cos φ

)

Aπ/6 =

( √
3

2
−1

2
1
2

√
3

2

)

6.3.2 Example. Find the standard matrix for the linear transformation T : R2 → R2 that maps
e1 into 3e1 + 4e2 and maps e2 into 2e1 − 5e2.
Answer: The transformation T maps

e1 7→
(

3
4

)
, e2 7→

(
2
−5

)

Thus, The matrix of T is

A =
[

T (e1) T (e1)
]

=

(
3 2
4 −5

)

6.3.3 Exercise. 1. Find the standard matrix for the linear transformation T : R2 → R2 that
rotate each vector by an angle π/6 then maps e1 into −2e1 + 3e2 and maps e2 into 5e1 − e2,
then rotate each vector by an angle π/6.
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2. Find the standard matrix for the linear transformation T : R2 → R2 that maps e1 into
−2e1 + 3e2 and maps e2 into 5e1 − e2.

3. Are the two linear systems the same?

6.4 The Null space, Row space and Col space of A.

6.4.1. The Null space of A. Let A be a matrix of size r × c.

The Null space of A
Nul A

is
the solution set of the homogenous system

Ax = 0

Nul A = The set of all x ∈ Rc

that satisfies
Ax = 0

dim(Nul A) = #(free variables)

6.4.2. The column space of A. Let A be a matrix of size r × c

The column space of A
denoted by ColA or Range A

=
The span of the columns of A.

m
The set of all y ∈ Rr which is

a linear combination of
the columns of A.

m
The set of all y ∈ Rr for which

Ax = y has a solution.

dim(Col A) = #(basic variables)

dim(Nul A) + dim(Col A) = ................
dim(Nul A) = ...............

6.4.3. The row space of A. Let A be a matrix of size r × c



6 LINEAR TRANSFORMATIONS 85

The row space of A
denoted by RowA

=
The span of the rows of A.

6.4.1 NulA is orthogonal to RowA.

If v ∈ NulA, that is Av = 0, then

Av =




r1

r2
...
r4


 v =




r1 · v
r2 · v

...
r4 · v


 =




0
0
...
0




Thus v is orthogonal to all the rows of A. Hence

NulA ⊥ RowA

6.4.2 The rank and nullity of A.

rank of A := #(basic variables) = #(LT’s in Aech)
nullity of A := #(free variables)

Thus, we can translate (2.1.11) to

rank of A + nullity of A = #(variables)
=#(columns)


