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PREFACE

Linear algebra has evolved as a branch of mathematics with wide range of
applications to the natural sciences, to engineering, to computer sciences, to
management and social sciences, and more.

This book is addressed primarely to second and third your college students
who have already had a course in calculus and analytic geometry. It is the
result of lecture notes given by the author at The University of North Texas
and the University of Texas at Austin. It has been designed for use either as a
supplement of standard textbooks or as a textbook for a formal course in linear
algebra.

This book is not a ”traditional” book in the sense that it does not include
any applications to the material discussed. Its aim is solely to learn the basic
theory of linear algebra within a semester period. Instructors may wish to in-
corporate material from various fields of applications into a course.

I have included as many problems as possible of varying degrees of difficulty.
Most of the exercises are computational, others are routine and seek to fix
some ideas in the reader’s mind; yet others are of theoretical nature and have
the intention to enhance the reader’s mathematical reasoning. After all doing
mathematics is the way to learn mathematics.

Marcecl B. Finan
Austin, Texas
March, 2001.
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Chapter 1

Linear Systems

In this chapter we shall develop the theory of general systems of linear equations.
The tool we will use to find the solutions is the row-echelon form of a matrix. In
fact, the solutions can be read off from the row- echelon form of the augmented
matrix of the system. The solution technique, known as elimination method,
is developed in Section 1.4.

1.1 Systems of Linear Equations

Many practical problems can be reduced to solving systems of linear equations.
The main purpose of linear algebra is to find systematic methods for solving
these systems. So it is natural to start our discussion of linear algebra by study-
ing linear equations.

A linear equation in n variables is an equation of the form

a1x1 + a2x2 + ... + anxn = b (1.1)

where x1, x2, ..., xn are the unknowns (i.e. quantities to be found) and a1, · · · , an

are the coefficients ( i.e. given numbers). Also given the number b known as
the constant term. Observe that a linear equation does not involve any prod-
ucts, inverses, or roots of variables. All variables occur only to the first power
and do not appear as arguments for trigonometric, logarithmic, or exponential
functions.

Exercise 1
Determine whether the given equations are linear or not:
(a) 3x1 − 4x2 + 5x3 = 6.
(b) 4x1 − 5x2 = x1x2.
(c) x2 = 2

√
x1 − 6.

(d) x1 + sin x2 + x3 = 1.
(e) x1 − x2 + x3 = sin 3.

5



6 CHAPTER 1. LINEAR SYSTEMS

Solution
(a) The given equation is in the form given by (1.1) and therefore is linear.
(b) The equation is not linear because the term on the right side of the equation
involves a product of the variables x1 and x2.
(c) A nonlinear equation because the term 2

√
x1 involves a square root of the

variable x1.
(d) Since x2 is an argument of a trigonometric function then the given equation
is not linear.
(e) The equation is linear according to (1.1)

A solution of a linear equation (1.1) in n unknowns is a finite ordered col-
lection of numbers s1, s2, ..., sn which make (1.1) a true equality when x1 =
s1, x2 = s2, · · · , xn = sn are substituted in (1.1). The collection of all solutions
of a linear equation is called the solution set or the general solution.

Exercise 2
Show that (5 + 4s− 7t, s, t), where s, t ∈ IR, is a solution to the equation

x1 − 4x2 + 7x3 = 5.

Solution
x1 = 5 + 4s− 7t, x2 = s, and x3 = t is a solution to the given equation because

x1 − 4x2 + 7x3 = (5 + 4s− 7t)− 4s + 7t = 5.

A linear equation can have infinitely many solutions, exactly one solution or no
solutions at all (See Theorem 5 in Section 1.7).

Exercise 3
Determine the number of solutions of each of the following equations:
(a) 0x1 + 0x2 = 5.
(b) 2x1 = 4.
(c) x1 − 4x2 + 7x3 = 5.

Solution.
(a) Since the left-hand side of the equation is 0 and the right-hand side is 5 then
the given equation has no solution.
(b) By dividing both sides of the equation by 2 we find that the given equation
has the unique solution x1 = 2.
(c) To find the solution set of the given equation we assign arbitrary values s
and t to x2 and x3 , respectively, and solve for x1, we obtain





x1 = 5 + 4s− 7t
x2 = s
x3 = t

Thus, the given equation has infinitely many solutions
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s and t of the previous exercise are referred to as parameters. The solu-
tion in this case is said to be given in parametric form.

Many problems in the sciences lead to solving more than one linear equation.
The general situation can be described by a linear system.
A system of linear equations or simply a linear system is any finite col-
lection of linear equations. A particular solution of a linear system is any
common solution of these equations. A system is called consistent if it has a
solution. Otherwise, it is called inconsistent. A general solution of a system
is a formula which gives all the solutions for different values of parameters (See
Exercise 3 (c) ).

A linear system of m equations in n variables has the form



a11x1 + a12x2 + ... + a1nxn = b1

a21x1 + a22x2 + ... + a2nxn = b2

........................ ....
am1x1 + am2x2 + ... + amnxn = bm

As in the case of a single linear equation, a linear system can have infinitely
many solutions, exactly one solution or no solutions at all. We will provide a
proof of this statement in Section 1.7 (See Theorem 5). An alternative proof of
the fact that when a system has more than one solution then it must have an
infinite number of solutions will be given in Exercise 14.

Exercise 4
Find the general solution of the linear system

{
x1 + x2 = 7
2x1 + 4x2 = 18.

Solution.
Multiply the first equation of the system by −2 and then add the resulting
equation to the second equation to find 2x2 = 4. Solving for x2 we find x2 = 2.
Plugging this value in one of the equations of the given system and then solving
for x1 one finds x1 = 5

Exercise 5
By letting x3 = t, find the general solution of the linear system

{
x1 + x2 + x3 = 7
2x1 + 4x2 + x3 = 18.

Solution.
By letting x3 = t the given system can be rewritten in the form

{
x1 + x2 = 7− t
2x1 + 4x2 = 18− t.

By multiplying the first equation by −2 and adding to the second equation one
finds x2 = 4+t

2 . Substituting this expression in one of the individual equations
of the system and then solving for x1 one finds x1 = 10−3t

2
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1.2 Geometric Meaning of Linear Systems

In the previous section we stated that a linear system can have exactly one solu-
tion, infinitely many solutions or no solutions at all. In this section, we support
our claim using geometry. More precisely, we consider the plane since a linear
equation in the plane is represented by a straight line.

Consider the x1x2 − plane and the set of points satisfying ax1 + bx2 = c. If
a = b = 0 but c 6= 0 then the set of points satisfying the above equation is
empty. If a = b = c = 0 then the set of points is the whole plane since the
equation is satisfied for all (x1, x2) ∈ IR2.

Exercise 6
Show that if a 6= 0 or b 6= 0 then the set of points satisfying ax1 + bx2 = c is a
straight line.

Solution.
If a 6= 0 but b = 0 then the equation x1 = c

a is a vertical line in the x1x2-plane.
If a = 0 but b 6= 0 then x2 = c

b is a horizontal line in the plane. Finally, sup-
pose that a 6= 0 and b 6= 0. Since x2 can be assigned arbitrary values then the
given equation possesses infinitely many solutions. Let A(a1, a2), B(b1, b2), and
C(c1, c2) be any three points in the plane with components satisfying the given
equation. The slope of the line AB is given by the expression mAB = b2−a2

b1−a1

whereas that of AC is given by mAC = c2−a2
c1−a1

. From the equations aa1 +ba2 = c

and ab1 + bb2 = c one finds b2−a2
b1−a1

= −a
b . Similarly, c2−a2

c1−a1
= −a

b . This shows
that the lines AB and AC are parallel. Since these lines have the point A in
common then A,B, and C are on the same straight line

The set of solutions of the system
{

ax1 + bx2 = c
a′x1 + b′x2 = c′

is the intersection of the set of solutions of the individual equations. Thus, if the
system has exactly one solution then this solution is the point of intersection of
two lines. If the system has infinitely many solutions then the two lines coincide.
If the system has no solutions then the two lines are parallel.

Exercise 7
Find the point of intersection of the lines x1 − 5x2 = 1 and 2x1 − 3x2 = 3.

Solution.
To find the point of intersection we have to solve the system

{
x1 − 5x2 = 1
2x1 − 3x2 = 3.

Using either elimination of unknowns or substitution one finds the solution
x1 = 12

7 , x2 = 1
7 .
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Exercise 8
Do the three lines 2x1 + 3x2 = −1, 6x1 + 5x2 = 0, and 2x1 − 5x2 = 7 have a
common point of intersection?

Solution.
Solving the system {

2x1 + 3x2 = −1
6x1 + 5x2 = 0

we find the solution x1 = 5
8 , x2 = − 3

4 . Since 2x1 − 5x2 = 5
4 + 15

4 = 5 6= 7 then
the three lines do not have a point in common

A similar geometrical interpretation holds for systems of equations in three
unknowns where in this case an equation is represented by a plane in IR3. Since
there is no physical image of the graphs for linear equations in more than three
unknowns we will prove later by means of an algebraic argument(See Theorem
5 of Section 1.7) that our statement concerning the number of solutions of a
linear system is still valid.

Exercise 9
Consider the system of equations





a1x1 + b1x2 = c1

a2x1 + b2x2 = c2

a3x1 + b3x2 = c3.

Discuss the relative positions of the above three lines when

(a) the system has no solutions,
(b) the system has exactly one solution,
(c) the system has infinitely many solutions.

Solution.
(a) The lines have no point of intersection.
(b) The lines intersect in exactly one point.
(c) The three lines coincide

Exercise 10
In the previous exercise, show that if c1 = c2 = c3 = 0 then the system has
always a solution.

Solution.
If c1 = c2 = c3 then the system has at least one solution, namely the trivial
solution x1 = x2 = 0
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1.3 Matrix Notation

Our next goal is to discuss some means for solving linear systems of equations.
In Section 1.4 we will develop an algebraic method of solution to linear systems.
But before we proceed any further with our discusion, we introduce a concept
that simplifies the computations involved in the method.
The essential information of a linear system can be recorded compactly in a
rectangular array called a matrix. A matrix of size m × n is a rectangular
array of the form 



a11 a12 ... a1n

a21 a22 ... a2n

... ... ... ...
am1 am2 ... amn




where the aij ’s are the entries of the matrix, m is the number of rows, and n
is the number of columns. If n = m the matrix is called square matrix.
We shall often use the notation A = (aij) for the matrix A, indicating that aij

is the (i, j) entry in the matrix A.
An entry of the form aii is said to be on the main diagonal. An m×n matrix
A with entries aij is called upper triangular (resp. lower triangular) if the
entries below (resp. above) the main diagonal are all 0. That is, aij = 0 if i > j
(resp. i < j). A is called a diagonal matrix if aij = 0 whenever i 6= j. By a
triangular matrix we mean either an upper triangular, a lower triangular, or a
diagonal matrix.
Further definitions of matrices and related properties will be introduced in the
next chapter.

Now, let A be a matrix of size m × n and entries aij ; B is a matrix of size
n × p and entries bij . Then the product matrix is a matrix of size m × p and
entries

cij = ai1b1j + ai2b2j + · · ·+ ainbnj

that is cij is obtained by multiplying componentwise the entries of the ith row
of A by the entries of the jth column of B. It is very important to keep in mind
that the number of columns of the first matrix must be equal to the number of
rows of the second matrix; otherwise the product is undefined.

Exercise 11
Consider the matrices

A =
(

1 2 4
2 6 0

)
, B =




4 1 4 3
0 −1 3 1
2 7 5 2




Compute, if possible, AB and BA.
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Solution.
We have

AB =
(

1 2 4
2 6 0

) 


4 1 4 3
0 −1 3 1
2 7 5 2




=
(

4 + 8 1− 2 + 28 4 + 6 + 20 3 + 2 + 8
8 2− 6 8 + 18 6 + 6

)

=
(

12 27 30 13
8 −4 26 12

)
.

BA is not defined since the number of columns of B is not equal to the number
of rows of A

Next, consider a system of linear equations




a11x1 + a12x2 + ... + a1nxn = b1

a21x1 + a22x2 + ... + a2nxn = b2

........................ ....
am1x1 + am2x2 + ... + amnxn = bm

Then the matrix of the coefficients of the xi’s is called the coefficient matrix:

A =




a11 a12 ... a1n

a21 a22 ... a2n

... ... ... ...
am1 am2 ... amn




The matrix of the coefficients of the xi’s and the right hand side coefficients is
called the augmented matrix:




a11 a12 ... a1n b1

a21 a22 ... a2n b2

... ... ... ... ...
am1 am2 ... amn bm




Finally, if we let

x =




x1

x2

...
xn




and

b =




b1

b2

...
bm



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then the above system can be represented in matrix notation as

Ax = b.

Exercise 12
Consider the linear system





x1 − 2x2 + x3 = 0
2x2 − 8x3 = 8

−4x1 + 5x2 + 9x3 = − 9.

(a) Find the coefficient and augmented matrices of the linear system.
(b) Find the matrix notation.

Solution.
(a) The coefficient matrix of this system is




1 −2 1
0 2 −8
−4 5 9




and the augmented matrix is



1 −2 1 0
0 2 −8 8
−4 5 9 −9




(b) We can write the given system in matrix form as



1 −2 1
0 2 −8
−4 5 9







x1

x2

x3


 =




0
8
−9




Exercise 13
Write the linear system whose augmented matrix is given by




2 −1 0 −1
−3 2 1 0
0 1 1 3




Solution.
The given matrix is the augmented matrix of the linear system





2x1 − x2 = −1
−3x1 + 2x2 + x3 = 0

x2 + x3 = 3
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Exercise 14
(a) Show that if A is an m × n matrix, x, y are n × 1 matrices and α, β are
numbers then A(αx + βy) = αAx + βAy.
(b) Using the matrix notation of a linear system, prove that, if a linear system
has more than one solution then it must have an infinite number of solutions.

Solution.
Recall that a number is considered an 1× 1 matrix. Thus, using matrix multi-
plication we find

A(αx + βy) =




a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

...
am1 am2 · · · amn







αx1 + βy1

αx2 + βy2

...
αxn + βyn




=




α(a11x1 + a12x2 + · · ·+ a1nxn) + β(a11y1 + a12y2 + · · ·+ a1nyn)
...

α(am1x1 + am2x2 + · · ·+ amnxn) + β(am1y1 + am2y2 + · · ·+ amnyn)




= α




a11x1 + a12x2 + · · ·+ a1nxn

...
am1x1 + am2x2 + · · ·+ amnxn


 + β




a11y1 + a12y2 + · · ·+ a1nyn

...
am1y1 + am2y2 + · · ·+ amnyn




= αAx + βAy.

(b) Let X1 and X2 be two solutions of Ax = b. For any t ∈ IR let Xt =
tX1 +(1− t)X2. Then AXt = tAX1 +(1− t)AX2 = tb+(1− t)b = b. That is, Xt

is a solution to the linear system. Note that for s 6= t we have Xs 6= Xt. Since
t is arbitrary then there exists infinitely many Xt. In other words, the system
has infinitely many solutions

1.4 Elementary Row Operations

In this section we introduce the concept of elementary row operations that will
be vital for our algebraic method of solving linear systems.
We start with the following definition: Two linear systems are said to be equiv-
alent if and only if they have the same set of solutions.

Exercise 15
Show that the system {

x1 − 3x2 = −7
2x1 + x2 = 7

is equivalent to the system




8x1 − 3x2 = 7
3x1 − 2x2 = 0
10x1 − 2x2 = 14.



14 CHAPTER 1. LINEAR SYSTEMS

Solution.
Solving the first system one finds the solution x1 = 2, x2 = 3. Similarly, solving
the second system one finds the solution x1 = 2 and x2 = 3. Hence, the two
systems are equivalent

Exercise 16
Show that if x1 + kx2 = c and x1 + lx2 = d are equivalent then k = l and c = d.

Solution.
For arbitrary t the ordered pair (c− kt, t) is a solution to the second equation.
That is c− kt + lt = d for all t ∈ IR. In particular, if t = 0 we find c = d. Thus,
kt = lt for all t ∈ IR. Letting t = 1 we find k = l

Our basic method for solving a linear system is known as the method of elim-
ination. The method consists of reducing the original system to an equivalent
system that is easier to solve. The reduced system has the shape of an upper
(resp. lower) triangle. This new system can be solved by a technique called
backward-substitution (resp. forward-substitution): The unknowns are
found starting from the bottom (resp. the top) of the system.
The three basic operations in the above method, known as the elementary
row operations, are summarized as follows.

(I) Multiply an equation by a non-zero number.
(II) Replace an equation by the sum of this equation and another equation mul-
tiplied by a number.
(III) Interchange two equations.

To indicate which operation is being used in the process one can use the follow-
ing shorthand notation. For example, r3 ← 1

2r3 represents the row operation of
type (I) where each entry of row 3 is being replaced by 1

2 that entry. Similar
interpretations for types (II) and (III) operations.
The following theorem asserts that the system obtained from the original sys-
tem by means of elementary row operations has the same set of solutions as the
original one.

Theorem 1
Suppose that an elementary row operation is performed on a linear system. Then
the resulting system is equivalent to the original system.

Proof.
We prove the theorem only for operations of type (II). The cases of operations of
types (I) and (III) are left as an exercise for the reader (See Exercise 20 below).
Let

c1x1 + c2x2 + · · ·+ cnxn = d (1.2)

and

a1x1 + a2x2 + · · ·+ anxn = b (1.3)
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denote two different equations of the original system. Suppose a new system is
obtained by replacing (1.3) by (1.4)

(a1 + kc1)x1 + (a2 + kc2)x2 + · · ·+ (an + kcn)xn = b + kd (1.4)

obtained by adding k times equation (1.2) to equation (1.3). If s1, s2, · · · , sn is
a solution to the original system then

c1s1 + c2s2 + · · ·+ cnsn = d

and

a1s1 + a2s2 + · · ·+ ansn = b.

By multiplication and addition, these give

(a1 + kc1)s1 + (a2 + kc2)s2 + · · ·+ (an + kcn)sn = b + kd.

Hence, s1, s2, · · · , sn is a solution to the new system. Conversely, suppose that
s1, s2, · · · , sn is a solution to the new system. Then

a1s1 + a2s2 + · · ·+ ansn = b + kd− k(c1s1 + c2s2 + · · ·+ cnsn) = b + kd− kd = b.

That is, s1, s2, · · · , sn is a solution to the original system.

Exercise 17
Use the elimination method described above to solve the system





x1 + x2 − x3 = 3
x1 − 3x2 + 2x3 = 1
2x1 − 2x2 + x3 = 4.

Solution.
Step 1: We eliminate x1 from the second and third equations by performing two
operations r2 ← r2 − r1 and r3 ← r3 − 2r1 obtaining





x1 + x2 − x3 = 3
− 4x2 + 3x3 = −2
− 4x2 + 3x3 = −2

Step 2: The operation r3 ← r3 − r2 leads to the system
{

x1 + x2 − x3 = 3
− 4x2 + 3x3 = −2

By assigning x3 an arbitrary value t we obtain the general solution x1 =
t+10

4 , x2 = 2+3t
4 , x3 = t. This means that the linear system has infinitely many

solutions. Every time we assign a value to t we obtain a different solution
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Exercise 18
Determine if the following system is consistent or not





3x1 + 4x2 + x3 = 1
2x1 + 3x2 = 0
4x1 + 3x2 − x3 = −2.

Solution.
Step 1: To eliminate the variable x1 from the second and third equations we
perform the operations r2 ← 3r2−2r1 and r3 ← 3r3−4r1 obtaining the system





3x1 + 4x2 + x3 = 1
x2 − 2x3 = −2

− 7x2 − 7x3 = − 10.

Step 2: Now, to eliminate the variable x3 from the third equation we apply the
operation r3 ← r3 + 7r2 to obtain





3x1 + 4x2 + x3 = 1
x2 − 2x3 = −2

− 21x3 = − 24.

Solving the system by the method of backward substitution we find the unique
solution x1 = − 3

7 , x2 = 2
7 , x3 = 8

7 . Hence the system is consistent

Exercise 19
Determine whether the following system is consistent:

{
x1 − 3x2 = 4

−3x1 + 9x2 = 8.

Solution.
Multiplying the first equation by 3 and adding the resulting equation to the
second equation we find 0 = 20 which is impossible. Hence, the given system is
inconsistent

Exercise 20
(a) Show that the linear system obtained by interchanging two equations is equiv-
alent to the original system.
(b) Show that the linear system obtained by multiplying a row by a scalar is
equivalent to the original system.

Solution.
(a) Interchanging two equations in a linear system does yield the same system.
(b) Suppose now a new system is obtained by multiplying the ith row by α 6= 0.
Then the ith equation of this system looks like

(αai1)x1 + (αai2)x2 + · · ·+ (αain)xn = αdi. (1.5)
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If s1, s2, · · · , sn is a solution to the original system then

ai1s1 + ai2s2 + · · ·+ ainsn = di.

Multiply both sides of this equation by α yields (1.5). That is, s1, s2, · · · , sn is
a solution to the new system.
Now if s1, s2, · · · , sn is a solution to (1.5) then by dividing through by α we find
that s1, s2, · · · , sn is a solution of the original system

1.5 Solving Linear Systems Using Augmented
Matrices

In this section we apply the elimination method described in the previous sec-
tion to the augmented matrix corresponding to a given system rather than to
the individual equations. Thus, we obtain a triangular matrix which is row
equivalent to the original augmented matrix, a concept that we define next.
We say that a matrix A is row equivalent to a matrix B if B can be obtained
by applying a finite number of elementary row operations to the matrix A.
This definition combined with Theorem 1 lead to the following

Theorem 2 Let Ax = b be a linear system. If [C|d] is row equivalent to [A|b]
then the system Cx = d is equivalent to Ax = b.

Proof.
The system Cx = d is obtained from the system Ax = b by applying a finite
number of elementary row operations. By Theorem 1, this system is equivalent
to Ax = b

The above theorem provides us with a method for solving a linear system using
matrices. It suffices to apply the elementary row operations on the augmented
matrix and reduces it to an equivalent triangular matrix. Then the correspond-
ing system is triangular as well. Next, use either the backward-substitution or
the forward-substitution technique to find the unknowns.

Exercise 21
Solve the following linear system using elementary row operations on the aug-
mented matrix:





x1 − 2x2 + x3 = 0
2x2 − 8x3 = 8

−4x1 + 5x2 + 9x3 = −9.

Solution.
The augmented matrix for the system is




1 −2 1 0
0 2 −8 8
−4 5 9 −9



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Step 1: The operations r2 ← 1
2r2 and r3 ← r3 + 4r1 give




1 −2 1 0
0 1 −4 4
0 −3 13 −9




Step 2: The operation r3 ← r3 + 3r2 gives



1 −2 1 0
0 1 −4 4
0 0 1 3




The corresponding system of equations is




x1 − 2x2 + x3 = 0
x2 − 4x3 = 4

x3 = 3

Using back-substitution we find the unique solution x1 = 29, x2 = 16, x3 = 3

Exercise 22
Solve the following linear system using the method described above.





x2 + 5x3 = −4
x1 + 4x2 + 3x3 = −2
2x1 + 7x2 + x3 = −1.

Solution.
The augmented matrix for the system is




0 1 5 −4
1 4 3 −2
2 7 1 −1




Step 1:The operation r2 ↔ r1 gives



1 4 3 −2
0 1 5 −4
2 7 1 −1




Step 2: The operation r3 ← r3 − 2r1 gives the system



1 4 3 −2
0 1 5 −4
0 −1 −5 3




Step 3: The operation r3 ← r3 + r2 gives



1 4 3 −2
0 1 5 −4
0 0 0 −1



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The corresponding system of equations is




x1 + 4x2 + 3x3 = −2
x2 + 5x3 = −4

0 = −1

From the last equation we conclude that the system is inconsistent

Exercise 23
Solve the following linear system using the elimination method of this section.





x1 + 2x2 = 0
−x1 + 3x2 + 3x3 = −2

x2 + x3 = 0.

Solution.
The augmented matrix for the system is




1 2 0 0
−1 3 3 −2
0 1 1 0




Step 1: Applying the operation r2 ← r2 + r1 gives



1 2 0 0
0 5 3 −2
0 1 1 0




Step 2: The operation r2 ↔ r3 gives



1 2 0 0
0 1 1 0
0 5 3 −2




Step 3: Now performing the operation r3 ← r3 − 5r2 yields



1 2 0 0
0 1 1 0
0 0 −2 −2




The system of equations equivalent to the original system is




x1 + 2x2 = 0
x2 + x3 = 0

− 2x3 = −2

Using back-substitution we find x1 = 2, x2 = −1, x3 = 1

Exercise 24
Determine if the following system is consistent.





x2 − 4x3 = 8
2x1 − 3x2 + 2x3 = 1
5x1 − 8x2 + 7x3 = 1.
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Solution.
The augmented matrix of the given system is




0 1 −4 8
2 −3 2 1
5 −8 7 1




Step 1: The operation r3 ← r3 − 2r2 gives



0 1 −4 8
2 −3 2 1
1 −2 3 −1




Step 2: The operation r3 ↔ r1 leads to



1 −2 3 −1
2 −3 2 1
0 1 −4 8




Step 3: Applying r2 ← r2 − 2r1 to obtain



1 −2 3 −1
0 1 −4 3
0 1 −4 8




Step 4: Finally, the operation r3 ← r3 − r2 gives



1 −2 3 −1
0 1 −4 3
0 0 0 5




Hence, the equivalent system is




x1 − 2x2 + 3x3 = 0
x2 − 4x3 = 3

0 = 5

This last system has no solution ( the last equation requires x1, x2, and x3 to
satisfy the equation 0x1 + 0x2 + 0x3 = 5 and no such x1, x2, and x3 exist).
Hence the original system is inconsistent

Pay close attention to the last row of the row equivalent augmented matrix
of the previous exercise. This situation is typical of an inconsistent system.

Exercise 25
Find an equation involving g, h, and k that makes the following augmented ma-
trix corresponds to a consistent system.




2 5 −3 g
4 7 −4 h
−6 −3 1 k



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Solution.
The augmented matrix for the given system is




2 5 −3 g
4 7 −4 h
−6 −3 1 k




Step 1: Applying the operations r2 ← r2 − 2r1 and r3 ← r3 + 3r1 give



2 5 −3 g
0 −3 2 h− 2g
0 12 −8 k + 3g




Step 2: Now, the operation r3 ← r3 + 4r2 gives



2 5 −3 g
0 −3 2 h− 2g
0 0 0 k + 4h− 5g




For the system , whose augmented matrix is the last matrix, to be consistent the
unknowns x1, x2, and x3 must satisfy the property 0x1+0x2+0x3 = −5g+4h−k,
that is −5g + 4h + k = 0

1.6 Echelon Form and Reduced Echelon Form

The elimination method introduced in the previous section reduces the aug-
mented matrix to a ”nice” matrix ( meaning the corresponding equations are
easy to solve). Two of the ”nice” matrices discussed in this section are matrices
in either row-echelon form or reduced row-echelon form, concepts that we dis-
cuss next.
By a leading entry of a row in a matrix we mean the leftmost non-zero entry
in the row.
A rectangular matrix is said to be in row-echelon form if it has the following
three characterizations:

(1) All rows consisting entirely of zeros are at the bottom.
(2) The leading entry in each non-zero row is 1 and is located in a column to
the right of the leading entry of the row above it.
(3) All entries in a column below a leading entry are zero.

The matrix is said to be in reduced row-echelon form if in addition to
the above, the matrix has the following additional characterization:

(4) Each leading 1 is the only nonzero entry in its column.

Remark
From the definition above, note that a matrix in row-echelon form has zeros
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below each leading 1, whereas a matrix in reduced row-echelon form has zeros
both above and below each leading 1.

Exercise 26
Determine which matrices are in row-echelon form (but not in reduced row-
echelon form) and which are in reduced row-echelon form
(a) 


1 −3 2 1
0 1 −4 8
0 0 0 1




(b) 


1 0 0 29
0 1 0 16
0 0 1 1




Solution.
(a)The given matrix is in row-echelon form but not in reduced row-echelon form
since the (1, 2)−entry is not zero.
(b) The given matrix satisfies the characterization of a reduced row-echelon form

The importance of the row-echelon matrices is indicated in the following theo-
rem.

Theorem 3
Every nonzero matrix can be brought to (reduced) row-echelon form by a finite
number of elementary row operations.

Proof.
The proof consists of the following steps:

Step 1. Find the first column from the left containing a nonzero entry (call
it a), and move the row containing that entry to the top position.

Step 2. Multiply the row from Step 1 by 1
a to create a leading 1.

Step 3. By subtracting multiples of that row from rows below it, make each
entry below the leading 1 zero.

Step 4. This completes the first row. Now repeat steps 1-3 on the matrix
consisting of the remaining rows.

The process stops when either no rows remain in step 4 or the remaining rows
consist of zeros. The entire matrix is now in row-echelon form.
To find the reduced row-echelon form we need the following additional step.
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Step 5. Beginning with the last nonzero row and working upward, add suitable
multiples of each row to the rows above to introduce zeros above the leading 1

The process of reducing a matrix to a row-echelon form discussed in Steps 1 -
4 is known as Gaussian elimination. That of reducing a matrix to a reduced
row-echelon form, i.e. Steps 1 - 5, is known as Gauss-Jordan elimination.
We illustrate the above algorithm in the following problems.

Exercise 27
Use Gauss-Jordan elimination to transform the following matrix first into row-
echelon form and then into reduced row-echelon form




0 −3 −6 4 9
−1 −2 −1 3 1
−2 −3 0 3 −1
1 4 5 −9 −7




Solution.
The reduction of the given matrix to row-echelon form is as follows.

Step 1: r1 ↔ r4 


1 4 5 −9 −7
−1 −2 −1 3 1
−2 −3 0 3 −1
0 −3 −6 4 9




Step 2: r2 ← r2 + r1 and r3 ← r3 + 2r1


1 4 5 −9 −7
0 2 4 −6 −6
0 5 10 −15 −15
0 −3 −6 4 9




Step 3: r2 ← 1
2r2 and r3 ← 1

5r3




1 4 5 −9 −7
0 1 2 −3 −3
0 1 2 −3 −3
0 −3 −6 4 9




Step 4: r3 ← r3 − r2 and r4 ← r4 + 3r2


1 4 5 −9 −7
0 1 2 −3 −3
0 0 0 0 0
0 0 0 −5 0




Step 5: r3 ↔ r4 


1 4 5 −9 −7
0 1 2 −3 −3
0 0 0 −5 0
0 0 0 0 0



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Step 6: r5 ← − 1
5r5 



1 4 5 −9 −7
0 1 2 −3 −3
0 0 0 1 0
0 0 0 0 0




Step 7: r1 ← r1 − 4r2




1 0 −3 3 5
0 1 2 −3 −3
0 0 0 1 0
0 0 0 0 0




Step 8: r1 ← r1 − 3r3 and r2 ← r2 + 3r3




1 0 −3 0 5
0 1 2 0 −3
0 0 0 1 0
0 0 0 0 0




Exercise 28
Use Gauss-Jordan elimination to transform the following matrix first into row-
echelon form and then into reduced row-echelon form




0 3 −6 6 4 −5
3 −7 8 −5 8 9
3 −9 12 −9 6 15




Solution.
By following the steps in the Gauss-Jordan algorithm we find

Step 1: r3 ← 1
3r3 


0 3 −6 6 4 −5
3 −7 8 −5 8 9
1 −3 4 −3 2 5




Step 2: r1 ↔ r3 


1 −3 4 −3 2 5
3 −7 8 −5 8 9
0 3 −6 6 4 −5




Step 3: r2 ← r2 − 3r1




1 −3 4 −3 2 5
0 2 −4 4 2 −6
0 3 −6 6 4 −5




Step 4: r2 ← 1
2r2 


1 −3 4 −3 2 5
0 1 −2 2 1 −3
0 3 −6 6 4 −5



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Step 5: r3 ← r3 − 3r2




1 −3 4 −3 2 5
0 1 −2 2 1 −3
0 0 0 0 1 4




Step 6: r1 ← r1 + 3r2




1 0 −2 3 5 −4
0 1 −2 2 1 −3
0 0 0 0 1 4




Step 7: r1 ← r1 − 5r3 and r2 ← r2 − r3




1 0 −2 3 0 −24
0 1 −2 2 0 −7
0 0 0 0 1 4




It can be shown that no matter how the elementary row operations are varied,
one will always arrive at the same reduced row-echelon form; that is the reduced
row echelon form is unique (See Theorem 68). On the contrary row-echelon form
is not unique. However, the number of leading 1’s of two different row-echelon
forms is the same (this will be proved in Chapter 4). That is, two row-echelon
matrices have the same number of nonzero rows. This number is called the
rank of A and is denoted by rank(A). In Chapter 6, we will prove that if A is
an m× n matrix then rank(A) ≤ n and rank(A) ≤ m.

Exercise 29
Find the rank of each of the following matrices
(a)

A =




2 1 4
3 2 5
0 −1 1




(b)

B =




3 1 0 1 −9
0 −2 12 −8 −6
2 −3 22 −14 −17




Solution.
(a) We use Gaussian elimination to reduce the given matrix into row-echelon
form as follows:

Step 1: r2 ← r2 − r1 


2 1 4
1 1 1
0 −1 1



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Step 2: r1 ↔ r2 


1 1 1
2 1 4
0 −1 1




Step 3: r2 ← r2 − 2r1 


1 1 1
0 −1 2
0 −1 1




Step 4: r3 ← r3 − r2 


1 1 1
0 −1 2
0 0 −1




Thus, rank(A) = 3.
(b) As in (a), we reduce the matrix into row-echelon form as follows:

Step 1: r1 ← r1 − r3




1 4 −22 15 8
0 −2 12 − 8 − 6
2 −3 22 −14 −17




Step 2: r3 ← r3 − 2r1




1 4 −22 15 25
0 − 2 12 − 8 − 6
0 −11 −22 −44 −33




Step 3: r2 ← − 1
2r2




1 4 −22 15 8
0 1 − 6 4 3
0 −11 −22 −44 −33




Step 4: r3 ← r3 + 11r2




1 4 −22 15 8
0 1 − 6 4 3
0 0 −88 0 0




Step 5: r3 ← 1
8r3 


1 4 −22 15 8
0 1 − 6 4 3
0 0 1 0 0




Hence, rank(B) = 3
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Exercise 30
Consider the system {

ax + by = k
cx + dy = l.

Show that if ad − bc 6= 0 then the reduced row-echelon form of the coefficient
matrix is the matrix (

1 0
0 1

)

Solution.
The coefficient matrix is the matrix

(
a b
c d

)

Assume first that a 6= 0. Using Gaussian elimination we reduce the above matrix
into row-echelon form as follows:

Step 1: r2 ← ar2 − cr1 (
a b
0 ad− bc

)

Step 2: r2 ← 1
ad−bcr2 (

a b
0 1

)

Step 3: r1 ← r1 − br2 (
a 0
0 1

)

Step 4: r1 ← 1
ar1 (

1 0
0 1

)

Next, assume that a = 0. Then c 6= 0 and b 6= 0. Following the steps of Gauss-
Jordan elimination algorithm we find

Step 1: r1 ↔ r2 (
c d
0 b

)

Step 2: r1 ← 1
c r1 and r2 ← 1

b r2

(
1 d

c
0 1

)

Step 3: r1 ← r1 − d
c r2 (

1 0
0 1

)
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1.7 Echelon Forms and Solutions to Linear Sys-
tems

In this section we give a systematic procedure for solving systems of linear
equations; it is based on the idea of reducing the augmented matrix to either
the row-echelon form or the reduced row-echelon form. The new system is
equivalent to the original system as provided by the following

Theorem 4
Let Ax = b be a system of linear equations. Let [C|d] be the (reduced) row-
echelon form of the augmented matrix [A|b]. Then the system Cx = d is equiv-
alent to the system Ax = b.

Proof.
This follows from Theorem 2 and Theorem 3

Unknowns corresponding to leading entries in the echelon augmented matrix
are called dependent or leading variables. If an unknown is not dependent
then it is called free or independent variable.

Exercise 31
Find the dependent and independent variables of the following system




x1 + 3x2 − 2x3 + 2x5 = 0
2x1 + 6x2 − 5x3 − 2x4 + 4x5 − 3x6 = −1

5x3 + 10x4 + 15x6 = 5
2x1 + 6x2 + 8x4 + 4x5 + 18x6 = 6

Solution.
The augmented matrix for the system is




1 3 −2 0 2 0 0
2 6 −5 −2 4 −3 −1
0 0 5 10 0 15 5
2 6 0 8 4 18 6




Using the Gaussian algorithm we bring the augmented matrix to row-echelon
form as follows:

Step 1: r2 ← r2 − 2r1 and r4 ← r4 − 2r1


1 3 −2 0 2 0 0
0 0 −1 −2 0 −3 −1
0 0 5 10 0 15 5
0 0 4 8 0 18 6




Step 2: r2 ← −r2 


1 3 −2 0 2 0 0
0 0 1 2 0 3 1
0 0 5 10 0 15 5
0 0 4 8 0 18 6



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Step 3: r3 ← r3 − 5r2 and r4 ← r4 − 4r2




1 3 −2 0 2 0 0
0 0 1 2 0 3 1
0 0 0 0 0 0 0
0 0 0 0 0 6 2




Step 4: r3 ↔ r4 


1 3 −2 0 2 0 0
0 0 1 2 0 3 1
0 0 0 0 0 6 2
0 0 0 0 0 0 0




Step 5: r3 ← 1
6r3 



1 3 −2 0 2 0 0
0 0 1 2 0 3 1
0 0 0 0 0 1 1

3
0 0 0 0 0 0 0




The leading variables are x1, x3, and x6. The free variables are x2, x4, and x5

It follows from Theorem 4 that one way to solve a linear system is to apply
the elementary row operations to reduce the augmented matrix to a (reduced)
row-echelon form. If the augmented matrix is in reduced row-echelon form then
to obtain the general solution one just has to move all independent variables to
the right side of the equations and consider them as parameters. The dependent
variables are given in terms of these parameters.

Exercise 32
Solve the following linear system.





x1 + 2x2 + x4 = 6
x3 + 6x4 = 7

x5 = 1.

Solution.
The augmented matrix is already in row-echelon form. The free variables are x2

and x4. So let x2 = s and x4 = t. Solving the system starting from the bottom
we find x1 = −2s− t + 6, x3 = 7− 6t, and x5 = 1

If the augmented matrix does not have the reduced row-echelon form but the
row-echelon form then the general solution also can be easily found by using the
method of backward substitution.

Exercise 33
Solve the following linear system





x1 − 3x2 + x3 − x4 = 2
x2 + 2x3 − x4 = 3

x3 + x4 = 1.
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Solution.
The augmented matrix is in row-echelon form. The free variable is x4 = t. Solv-
ing for the leading variables we find, x1 = 11t + 4, x2 = 3t + 1, and x3 = 1− t

The questions of existence and uniqueness of solutions are fundamental questions
in linear algebra. The following theorem provides some relevant information.

Theorem 5
A system of n linear equations in m unknowns can have exactly one solution,
infinitely many solutions, or no solutions at all.

(1) If the reduced augmented matrix has a row of the form (0, 0, · · · , 0, b) where
b is a nonzero constant, then the system has no solutions.
(2) If the reduced augmented matrix has indepedent variables and no rows of the
form (0, 0, · · · , 0, b) with b 6= 0 then the system has infinitely many solutions.
(3) If the reduced augmented matrix has no independent variables and no rows
of the form (0, 0, · · · , 0, b) with b 6= 0, then the system has exactly one solution.

Proof
Suppose first that the reduced augmented matrix has a row of the form (0, · · · , 0, b)
with b 6= 0. That is, 0x1 + 0x2 + ... + 0xm = b. Then the left side is 0 whereas
the right side is not. This cannot happen. Hence, the system has no solutions.
This proves (1).
Now suppose that the reduced augmented matrix has independent variables
and no rows of the form (0, 0, · · · , 0, b) for some b 6= 0. Then these variables are
treated as parameters and hence the system has infinitely many solutions. This
proves (2).
Finally, suppose that the reduced augmented matrix has no row of the form
(0, 0, · · · , 0, b) where b 6= 0 and no indepedent variables then the system looks
like

x1 = c1

x2 = c2

x3 = c3

... . ...
xm = cm

i.e. the system has a unique solution. Thus, (3) is established.

Exercise 34
Find the general solution of the system whose augmented matrix is given by




1 2 −7
−1 −1 1
2 1 5




Solution.
We first reduce the system to row-echelon form as follows.
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Step 1: r2 ← r2 + r1 and r3 ← r3 − 2r1




1 2 −7
0 1 −6
0 −3 19




Step 2: r3 ← r3 + 3r2 


1 2 −7
0 1 −6
0 0 1




The corresponding system is given by




x1 + 2x2 = −7
x2 = −6
0 = 1

Because of the last equation the system is inconsistent

Exercise 35
Find the general solution of the system whose augmented matrix is given by




1 −2 0 0 7 −3
0 1 0 0 −3 1
0 0 0 1 5 −4
0 0 0 0 0 0




Solution.
By adding two times the second row to the first row we find the reduced row-
echelon form of the augmented matrix.




1 0 0 0 1 −1
0 1 0 0 −3 1
0 0 0 1 5 −4
0 0 0 0 0 0




It follows that the free variables are x3 = s and x5 = t. Solving for the leading
variables we find x1 = −1− t, x2 = 1 + 3t, and x4 = −4− 5t

Exercise 36
Determine the value(s) of h such that the following matrix is the augmented
matrix of a consistent linear system

(
1 4 2
−3 h −1

)

Solution.
By adding three times the first row to the second row we find

(
1 4 2
0 12 + h 5

)
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The system is consistent if and only if 12 + h 6= 0; that is, h 6= −12

From a computational point of view, most computer algorithms for solving sys-
tems use the Gaussian elimination rather than the Gauss-Jordan elimination.
Moreover, the algorithm is somehow varied so that to guarantee a reduction in
roundoff error, to minimize storage, and to maximize speed. For instance, many
algorithms do not normalize the leading entry in each row to be 1.

Exercise 37
Find (if possible) conditions on the numbers a, b, and c such that the following
system is consistent





x1 + 3x2 + x3 = a
−x1 − 2x2 + x3 = b
3x1 + 7x2 − x3 = c

Solution.
The augmented matrix of the system is




1 3 1 a
−1 −2 1 b
3 7 −1 c




Now apply Gaussian elimination as follows.

Step 1: r2 ← r2 + r1 and r3 ← r3 − 3r1




1 3 1 a
0 1 2 b + a
0 −2 −4 c− 3a




Step 2: r3 ← r3 + 2r2




1 3 1 a
0 1 2 b + a
0 0 0 c− a + 2b




The system has no solution if c − a + 2b 6= 0. The system has infinitely many
solutions if c− a + 2b = 0. In this case, the solution is given by x1 = 5t− (2a +
3b), x2 = (a + b)− 2t, x3 = t

1.8 Homogeneous Systems of Linear Equations

So far we have been discussing practical and systematic procedures to solve
linear systems of equations. In this section, we will describe a theoretical method
for solving systems. The idea consists of finding the general solution of the
system with zeros on the right-hand side , call it (x1, x2, · · · , xn), and then
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find a particular solution to the given system, say (y1, y2, · · · , yn). The general
solution of the original system is then the sum

(x1, x2, · · · , xn) + (y1, y2, · · · , yn) = (x1 + y1, x2 + y2, · · · , xn + yn).

A homogeneous linear system is any system of the form

a11x1 + a12x2 + · · ·+ a1nxn = 0
a21x1 + a22x2 + · · ·+ a2nxn = 0

........................ ....
am1x1 + am2x2 + · · ·+ amnxn = 0.

Every homogeneous system is consistent, since x1 = 0, x2 = 0, · · · , xn = 0
is always a solution. This solution is called the trivial solution; any other
solution is called nontrivial. By Theorem 5, a homogeneous system has either
a unique solution (the trivial solution) or infinitely many solutions. That is
a homogeneous system is always consistent. The following theorem is a case
where a homogeneous system is assured to have a nontrivial solution.

Theorem 6
Let Ax = 0 be a homogeneous system in m unknowns and n equations.
(1) If rank(A) < m then the system has a nontrivial solution. Hence, by Exer-
cise 14 the system has infinitely many solutions.
(2) If the number of unknowns exceeds the number of equations, i.e. n < m,
then the system has a nontrivial solution.

Proof.
Applying the Gauss-Jordan elimination to the augmented matrix [A|0] we obtain
the matrix [B|0]. The number of nonzero rows of B is equals to rank(A). Suppose
first that rank(A) = r < m. In this case, the system Bx = 0 has r equations in m
unknowns. Thus, the system has m− r independent variables and consequently
the system Bx = 0 has a nontrivial solution. By Theorem 4, the system Ax = 0
has a nontrivial solution. This proves (1). To prove (2), suppose n < m. If the
system has only the trivial solution then by (1) we must have rank(A) ≥ m.
This implies that n < m ≤ rank(A) ≤ n, a contradiction.

Exercise 38
Solve the following homogeneous system using Gauss-Jordan elimination.





2x1 + 2x2 − x3 + x5 = 0
−x1 − x2 + 2x3 − 3x4 + x5 = 0
x1 + x2 − 2x3 − x5 = 0

x3 + x4 + x5 = 0.

Solution.
The reduction of the augmented matrix to reduced row-echelon form is outlined
below. 



2 2 −1 0 1 0
−1 −1 2 −3 1 0
1 1 −2 0 −1 0
0 0 1 1 1 0



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Step 1: r3 ← r3 + r2




2 2 −1 0 1 0
−1 −1 2 −3 1 0
0 0 0 −3 0 0
0 0 1 1 1 0




Step 2: r3 ↔ r4 and r1 ↔ r2




−1 −1 2 −3 1 0
2 2 −1 0 1 0
0 0 1 1 1 0
0 0 0 −3 0 0




Step 3: r2 ← r2 + 2r1 and r4 ← − 1
3r4




−1 −1 2 −3 1 0
0 0 3 −6 3 0
0 0 1 1 1 0
0 0 0 1 0 0




Step 4: r1 ← −r1 and r2 ← 1
3r2




1 1 −2 3 −1 0
0 0 1 −2 1 0
0 0 1 1 1 0
0 0 0 1 0 0




Step 5: r3 ← r3 − r2




1 1 −2 3 −1 0
0 0 1 −2 1 0
0 0 0 3 0 0
0 0 0 1 0 0




Step 6: r4 ← r4 − 1
3r3 and r3 ← 1

3r3




1 1 −2 3 −1 0
0 0 1 −2 1 0
0 0 0 1 0 0
0 0 0 0 0 0




Step 7: r1 ← r1 − 3r3 and r2 ← r2 + 2r3




1 1 −2 0 −1 0
0 0 1 0 1 0
0 0 0 1 0 0
0 0 0 0 0 0



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Step 8: r1 ← r1 + 2r2 


1 1 0 0 1 0
0 0 1 0 1 0
0 0 0 1 0 0
0 0 0 0 0 0




The corresponding system is




x1 + x2 + x5 = 0
x3 + x5 = 0

x4 = 0

The free variables are x2 = s, x5 = t and the general solution is given by the
formula: x1 = −s− t, x2 = s, x3 = −t, x4 = 0, x5 = t

Exercise 39
Solve the following homogeneous system using Gaussian elimination.





x1 + 3x2 + 5x3 + x4 = 0
4x1 − 7x2 − 3x3 − x4 = 0
3x1 + 2x2 + 7x3 + 8x4 = 0

Solution.
The augmented matrix for the system is




1 3 5 1 0
4 −7 −3 −1 0
3 2 7 8 0




We reduce this matrix into a row-echelon form as follows.
Step 1: r2 ← r2 − r3 


1 3 5 1 0
1 −9 −10 −9 0
3 2 7 8 0




Step 2: r2 ← r2 − r1 and r3 ← r3 − 3r1




1 3 5 1 0
0 −12 −15 −10 0
0 − 7 − 8 5 0




Step 3: r2 ← − 1
12r2 


1 3 5 1 0
0 1 5

4
5
6 0

0 −7 −8 5 0




Step 4: r3 ← r3 + 7r2 


1 3 5 1 0
0 1 5

4
5
6 0

0 0 3
4

65
6 0



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Step 5: r3 ← 4
3r3 


1 3 5 1 0
0 1 5

4
5
6 0

0 0 1 130
9 0




We see that x4 = t is the only free variable. Solving for the leading variables
using back substitution we find x1 = 176

9 t, x2 = 155
9 t, and x3 = − 130

9 t

A nonhomogeneous system is a homogeneous system together with a nonzero
right-hand side. Theorem 6 (2) applies only to homogeneous linear systems. A
nonhomogeneous system with more unknowns than equations need not be con-
sistent.

Exercise 40
Show that the following system is inconsistent.

{
x1 + x2 + x3 = 0
2x1 + 2x2 + 2x3 = 4.

Solution.
Multiplying the first equation by −2 and adding the resulting equation to the
second we obtain 0 = 4 which is impossible. So the system is inconsistent

The fundamental relationship between a nonhomogeneous system and its cor-
responding homogeneous system is given by the following theorem.

Theorem 7
Let Ax = b be a linear system of equations. If y is a particular solution of the
nonhomogeneous system Ax = b and W is the solution set of the homogeneous
system Ax = 0 then the general solution of Ax = b consists of elements of the
form y + w where w ∈ W.

Proof.
Let S be the solution set of Ax = b. We will show that S = {y + w : w ∈ W}.
That is, every element of S can be written in the form y + w for some w ∈ W ,
and conversely, any element of the form y + w, with w ∈ W, is a solution of the
nonhomogeneous system, i.e. a member of S. So, let z be an element of S, i.e.
Az = b. Write z = y + (z − y). Then A(z − y) = Az − Ay = b + 0 = b. Thus,
z = y + w with w = z − y ∈ W. Conversely, let z = y + w, with w ∈ W. Then
Az = A(y + w) = Ay + Aw = b + 0 = b. That is z ∈ S.

We emphasize that the above theorem is of theoretical interest and does not
help us to obtain explicit solutions of the system Ax = b. Solutions are obtained
by means of the methods discussed in this chapter, i.e. Gauss elimination,
Gauss-Jordan elimination or by the methods of using determinants to be dis-
cussed in Chapter 3.



1.9. REVIEW PROBLEMS 37

Exercise 41
Show that if a homogeneous system of linear equations in n unknowns has a
nontrivial solution then rank(A) < n, where A is the coefficient matrix.

Solution.
Since rank(A) ≤ n then either rank(A) = n or rank(A) < n. If rank(A) < n
then we are done. So suppose that rank(A) = n. Then there is a matrix B
that is row equivalent to A and that has n nonzero rows. Moreover, B has the
following form 



1 a12 a13 · · · a1n 0
0 1 a23 · · · a2n 0
...

...
...

...
...

0 0 0 · · · 1 0




The corresponding system is triangular and can be solved by back substitution
to obtain the solution x1 = x2 = · · · = xn = 0 which is a contradiction. Thus
we must have rank(A) < n

1.9 Review Problems

Exercise 42
Which of the following equations are not linear and why:
(a) x2

1 + 3x2 − 2x3 = 5.
(b) x1 + x1x2 + 2x3 = 1.
(c) x1 + 2

x2
+ x3 = 5.

Exercise 43
Show that (2s + 12t + 13, s,−s− 3t− 3, t) is a solution to the system

{
2x1 + 5x2 + 9x3 + 3x4 = −1
x1 + 2x2 + 4x3 = 1

Exercise 44
Solve each of the following systems using the method of elimination:
(a) {

4x1 − 3x2 = 0
2x1 + 3x2 = 18

(b) {
4x1 − 6x2 = 10
6x1 − 9x2 = 15

(c) {
2x1 + x2 = 3
2x1 + x2 = 1

Which of the above systems is consistent and which is inconsistent?
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Exercise 45
Find the general solution of the linear system

{
x1 − 2x2 + 3x3 + x4 = −3

2x1 − x2 + 3x3 − x4 = 0

Exercise 46
Find a, b, and c so that the system





x1 + ax2 + cx3 = 0
bx1 + cx2 − 3x3 = 1
ax1 + 2x2 + bx3 = 5

has the solution x1 = 3, x2 = −1, x3 = 2.

Exercise 47
Find a relationship between a,b,c so that the following system is consistent





x1 + x2 + 2x3 = a
x1 + x3 = b
2x1 + x2 + 3x3 = c

Exercise 48
For which values of a will the following system have (a) no solutions? (b) exactly
one solution? (c) infinitely many solutions?





x1 + 2x2 − 3x3 = 4
3x1 − x2 + 5x3 = 2
4x1 + x2 + (a2 − 14)x3 = a + 2

Exercise 49
Find the values of A,B,C in the following partial fraction

x2 − x + 3
(x2 + 2)(2x− 1)

=
Ax + B

x2 + 2
+

C

2x− 1
.

Exercise 50
Find a quadratic equation of the form y = ax2 + bx + c that goes through the
points (−2, 20), (1, 5), and (3, 25).

Exercise 51
For which value(s) of the constant k does the following system have (a) no
solutions? (b) exactly one solution? (c) infinitely many solutions?

{
x1 − x2 = 3
2x1 − 2x2 = k

Exercise 52
Find a linear equation in the unknowns x1 and x2 that has a general solution
x1 = 5 + 2t, x2 = t.
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Exercise 53
Consider the linear system





2x1 + 3x2 − 4x3 + x4 = 5
−2x1 + x3 = 7
3x1 + 2x2 − 4x3 = 3

(a) Find the coefficient and augmented matrices of the linear system.
(b) Find the matrix notation.

Exercise 54
Solve the following system using elementary row operations on the augmented
matrix: 




5x1 − 5x2 − 15x3 = 40
4x1 − 2x2 − 6x3 = 19
3x1 − 6x2 − 17x3 = 41

Exercise 55
Solve the following system.





2x1 + x2 + x3 = −1
x1 + 2x2 + x3 = 0
3x1 − 2x3 = 5

Exercise 56
Which of the following matrices are not in reduced row-ehelon from and why?
(a) 



1 −2 0 0
0 0 0 0
0 0 1 0
0 0 0 1




(b) 


1 0 0 3
0 2 0 −2
0 0 3 0




(c) 


1 0 4
0 1 −2
0 0 0




Exercise 57
Use Gaussian elimination to convert the following matrix into a row-echelon
matrix. 



1 −3 1 −1 0 −1
−1 3 0 3 1 3
2 −6 3 0 −1 2
−1 3 1 5 1 6



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Exercise 58
Use Gauss-Jordan elimination to convert the following matrix into reduced row-
echelon form. 



−2 1 1 15
6 −1 −2 −36
1 −1 −1 −11
−5 −5 −5 −14




Exercise 59
Solve the following system using Gauss-Jordan elimination.





3x1 + x2 + 7x3 + 2x4 = 13
2x1 − 4x2 + 14x3 − x4 = −10
5x1 + 11x2 − 7x3 + 8x4 = 59
2x1 + 5x2 − 4x3 − 3x4 = 39

Exercise 60
Find the rank of each of the following matrices.
(a) 



−1 −1 0 0
0 0 2 3
4 0 −2 1
3 −1 0 4




(b) 


1 −1 3
2 0 4
−1 −3 1




Exercise 61
Choose h and k such that the following system has (a) no solutions, (b) exactly
one solution, and (c) infinitely many solutions.

{
x1 − 3x2 = 1

2x1 − hx2 = k

Exercise 62
Solve the linear system whose augmented matrix is reduced to the following re-
duced row-echelon form




1 0 0 −7 8
0 1 0 3 2
0 0 1 1 −5




Exercise 63
Solve the linear system whose augmented matrix is reduced to the following row-
echelon form 


1 −3 7 1
0 1 4 0
0 0 0 1



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Exercise 64
Solve the linear system whose augmented matrix is given by




1 1 2 8
−1 −2 3 1
3 −7 4 10




Exercise 65
Find the value(s) of a for which the following system has a nontrivial solution.
Find the general solution.





x1 + 2x2 + x3 = 0
x1 + 3x2 + 6x3 = 0
2x1 + 3x2 + ax3 = 0

Exercise 66
Solve the following homogeneous system.





x1 − x2 + 2x3 + x4 = 0
2x1 + 2x2 − x4 = 0
3x1 + x2 + 2x3 + x4 = 0

Exercise 67
Let A be an m× n matrix.
(a) Prove that if y and z are solutions to the homogeneous system Ax = 0 then
y + z and cy are also solutions, where c is a number.
(b) Give a counterexample to show that the above is false for nonhomogeneous
systems.

Exercise 68
Show that the converse of Theorem 6 is false. That is, show the existence of a
nontrivial solution does not imply that the number of unknowns is greater than
the number of equations.

Exercise 69 (Network Flow)
The junction rule of a network says that at each junction in the network the
total flow into the junction must equal the total flows out. To illustrate the use
of this rule, consider the network shown in the accompanying diagram. Find the
possible flows in the network.
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Chapter 2

Matrices

Matrices are essential in the study of linear algebra. The concept of matrices
has become a tool in all branches of mathematics, the sciences, and engineering.
They arise in many contexts other than as augmented matrices for systems of
linear equations. In this chapter we shall consider this concept as objects in
their own right and develop their properties for use in our later discussions.

2.1 Matrices and Matrix Operations

In this section, we discuss several types of matrices. We also examine four op-
erations on matrices- addition, scalar multiplication, trace, and the transpose
operation- and give their basic properties. Also, we introduce symmetric, skew-
symmetric matrices.

A matrix A of size m× n is a rectangular array of the form

A =




a11 a12 ... a1n

a21 a22 ... a2n

... ... ... ...
am1 am2 ... amn




where the aij ’s are the entries of the matrix, m is the number of rows, n is the
number of columns. The zero matrix 0 is the matrix whose entries are all 0.
The n×n identity matrix In is a square matrix whose main diagonal consists
of 1′s and the off diagonal entries are all 0. A matrix A can be represented with
the following compact notation A = (aij). The ith row of the matrix A is

[ai1, ai2, ..., ain]

43
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and the jth column is 


a1j

a2j

...
amj




In what follows we discuss the basic arithmetic of matrices.

Two matrices are said to be equal if they have the same size and their cor-
responding entries are all equal. If the matrix A is not equal to the matrix B
we write A 6= B.

Exercise 70
Find x1, x2 and x3 such that




x1 + x2 + 2x3 0 1
2 3 2x1 + 4x2 − 3x3

4 3x1 + 6x2 − 5x3 5


 =




9 0 1
2 3 1
4 0 5




Solution.
Because corresponding entries must be equal, this gives the following linear
system 




x1 + x2 + 2x3 = 9
2x1 + 4x2 − 3x3 = 1
3x1 + 6x2 − 5x3 = 0

The augmented matrix of the system is



1 1 2 9
2 4 −3 1
3 6 −5 0




The reduction of this matrix to row-echelon form is

Step 1: r2 ← r2 − 2r1 and r3 ← r3 − 3r1




1 1 2 9
0 2 − 7 −17
0 3 −11 −27




Step 2: r2 ↔ r3 


1 1 2 9
0 3 −11 −27
0 2 − 7 −17




Step 3: r2 ← r2 − r3 


1 1 2 9
0 1 −4 −10
0 2 −7 −17



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Step 4: r3 ← r3 − 2r2 


1 1 2 9
0 1 −4 −10
0 0 1 3




The corresponding system is




x1 + x2 + 2x3 = 9
x2 − 4x3 = −10

x3 = 3

Using backward substitution we find: x1 = 1, x2 = 2, x3 = 3

Exercise 71
Solve the following matrix equation for a, b, c, and d

(
a− b b + c
3d + c 2a− 4d

)
=

(
8 1
7 6

)

Solution.
Equating corresponding entries we get the system





a − b = 8
b + c = 1

c + 3d = 7
2a − 4d = 6

The augmented matrix is



1 −1 0 0 8
0 1 1 0 1
0 0 1 3 7
1 0 0 −4 6




We next apply Gaussian elimination as follows.

Step 1: r4 ← r4 − r1 


1 −1 0 0 8
0 1 1 0 1
0 0 1 3 7
0 1 0 −4 −2




Step 2: r4 ← r4 − r2 


1 −1 0 0 8
0 1 1 0 1
0 0 1 3 7
0 0 −1 −4 −3




Step 3: r4 ← r4 + r3 


1 −1 0 0 8
0 1 1 0 1
0 0 1 3 7
0 0 0 −1 4



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Using backward substitution to find: a = −10, b = −18, c = 19, d = −4

Next, we introduce the operation of addition of two matrices. If A and B
are two matrices of the same size, then the sum A + B is the matrix obtained
by adding together the corresponding entries in the two matrices. Matrices of
different sizes cannot be added.

Exercise 72
Consider the matrices

A =
(

2 1
3 4

)
, B =

(
2 1
3 5

)
, C =

(
2 1 0
3 4 0

)

Compute, if possible, A + B, A + C and B + C.

Solution.
We have

A + B =
(

4 2
6 10

)

A + B and B + C are undefined since A and B are of different sizes as well as
A and C

From now on, a constant number will be called a scalar. If A is a matrix
and c is a scalar, then the product cA is the matrix obtained by multiplying
each entry of A by c. Hence, −A = (−1)A. We define, A−B = A + (−B). The
matrix cIn is called a scalar matrix.

Exercise 73
Consider the matrices

A =
(

2 3 4
1 2 1

)
, B =

(
0 2 7
1 −3 5

)

Compute A− 3B.

Solution.
Using the above definitions we have

A− 3B =
(

2 −3 −17
−2 11 −14

)

Let Mmn be the collection of all m × n matrices. This set under the opera-
tions of addition and scalar multiplication satisfies algebraic properties which
will remind us of the system of real numbers. The proofs of these properties
depend on the properties of real numbers. Here we shall assume that the reader
is familiar with the basic algebraic properties of IR. The following theorem list
the properties of matrix addition and multiplication of a matrix by a scalar.
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Theorem 8
Let A,B, and C be m× n and let c, d be scalars. Then

(i) A + B = B + A,
(ii) (A + B) + C = A + (B + C) = A + B + C,
(iii) A + 0 = 0 + A = A,
(iv) A + (−A) = 0,
(v) c(A + B) = cA + cB,
(vi) (c + d)A = cA + dA,
(vii) (cd)A = c(dA),
(viii) ImA = AIn = A.

Proof.
(i) A+B = (aij)+ (bij) = (aij + bij) = (bij +aij) = (bij)+ (aij) = B +A, since
addition of scalars is commutative.
(ii) Use the fact that addition of scalars is associative.
(iii) A + 0 = (aij) + (0) = (aij + 0) = (aij) = A.
We leave the proofs of the remaining properties to the reader

Exercise 74
Solve the following matrix equation.

(
3 2
−1 1

)
+

(
a b
c d

)
=

(
1 0
−1 2

)

Solution.
Adding and then equating corresponding entries we obtain a = −2, b = −2, c =
0, and d = 1

If A is a square matrix then the sum of the entries on the main diagonal is
called the trace of A and is denoted by tr(A).

Exercise 75
Find the trace of the coefficient matrix of the system





− x2 + 3x3 = 1
x1 + 2x3 = 2
−3x1 − 2x2 = 4

Solution.
If A is the coefficient matrix of the system then

A =




0 −1 3
1 0 2
−3 −2 0




The trace of A is the number tr(A) = 0 + 0 + 0 = 0

Two useful properties of the trace of a matrix are given in the following theorem.
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Theorem 9
Let A = (aij) and B = (bij) be two n× n matrices and c be a scalar. Then
(i) tr(A + B) = tr(A) + tr(B),
(ii) tr(cA) = c tr(A).

Proof.
(i) tr(A + B) =

∑n
i=1(aii + bii) =

∑n
i=1 aii +

∑n
i=1 bii = tr(A) + tr(B).

(ii) tr(cA) =
∑n

i=1 caii = c
∑n

i=1 aii = c tr(A).

If A is an m × n matrix then the transpose of A, denoted by AT , is defined
to be the n×m matrix obtained by interchanging the rows and columns of A,
that is the first column of AT is the first row of A, the second column of AT is
the second row of A, etc. Note that, if A = (aij) then AT = (aji). Also, if A is
a square matrix then the diagonal entries on both A and AT are the same.

Exercise 76
Find the transpose of the matrix

A =
(

2 3 4
1 2 1

)
,

Solution.
The transpose of A is the matrix

AT =




2 1
3 2
4 1




The following result lists some of the properties of the transpose of a matrix.

Theorem 10
Let A = (aij), and B = (bij) be two m × n matrices, C = (cij) be an n × n
matrix, and c a scalar. Then
(i) (AT )T = A,
(ii) (A + B)T = AT + BT ,
(iii) (cA)T = cAT ,
(iv) tr(CT ) = tr(C).

Proof.
(i) (AT )T = (aji)T = (aij) = A.
(ii) (A + B)T = (aij + bij)T = (aji + bji) = (aji) + (bji) = AT + BT .
(iii) (cA)T = (caij)T = (caji) = c(aji) = cAT .
(iv) tr(CT ) =

∑n
i=1 cii = tr(C).

Exercise 77
A square matrix A is called symmetric if AT = A. A square matrix A is called
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skew-symmetric if AT = −A.
(a) Show that the matrix

A =




1 2 3
2 4 5
3 5 6




is a symmetric matrix.
(b) Show that the matrix

A =




0 2 3
−2 0 −4
−3 4 0




is a skew-symmetric matrix.
(c) Show that for any square matrix A the matrix S = 1

2 (A + AT ) is symmetric
and the matrix K = 1

2 (A−AT ) is skew-symmetric.
(d) Show that if A is a square matrix, then A = S + K, where S is symmetric
and K is skew-symmetric.
(e) Show that the representation in (d) is unique.

Solution.
(a) A is symmetric since

AT =




0 2 3
−2 0 −4
−3 4 0


 = A

(b) A is skew-symmetric since

AT =




0 −2 −3
2 0 4
3 −4 0


 = −A

(c) Because ST = 1
2 (A + AT )T = 1

2 (A + AT ) then S is symmetric. Similarly,
KT = 1

2 (A − AT )T = 1
2 (AT − A) = − 1

2 (A − AT ) = −K so that K is skew-
symmetric.
(d) S + K = 1

2 (A + AT ) + 1
2 (A−AT ) = A.

(e) Let S′ be a symmetric matrix and K ′ be skew-symmetric such that A =
S′ + K ′. Then S + K = S′ + K ′ and this implies that S − S′ = K −K ′. But
the matrix S−S′ is symmetric and the matrix K ′−K is skew-symmetric. This
equality is true only when S − S′ is the zero matrix. That is S = S′. Hence,
K = K ′

Exercise 78
Let A be an n× n matrix.
(a) Show that if A is symmetric then A and AT have the same main diagonal.
(b) Show that if A is skew-symmetric then the entries on the main diagonal are
0.
(c) If A and B are symmetric then so is A + B.
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Solution.
(a) Let A = (aij) be symmetric. Let AT = (bij). Then bij = aji for all 1 ≤
i, j ≤ n. In particular, when i = j we have bii = aii. That is, A and AT have
the same main diagonal.
(b) Since A is skew-symmetric then aij = −aji. In particular, aii = −aii and
this implies that aii = 0.
(c) Suppose A and B are symmetric. Then (A + B)T = AT + BT = A + B.
That is, A + B is symmetric

Exercise 79
Let A be an m×n matrix and α a real number. Show that if αA = 0 then either
α = 0 or A = 0.

Solution.
Let A = (aij). Then αA = (αaij). Suppose αA = 0. Then αaij = 0 for all
0 ≤ i ≤ m and 0 ≤ j ≤ n. If α 6= 0 then aij = 0 for all indices i and j. In this
case, A = 0

2.2 Properties of Matrix Multiplication

In the previous section we discussed some basic properties associated with ma-
trix addition and scalar multiplication. Here we introduce another important
operation involving matrices-the product.
We have already introduced the concept of matrix multiplication in Section 1.3.
For the sake of completeness we review this concept.
Let A = (aij) be a matrix of size m×n and B = (bij) be a matrix of size n× p.
Then the product matrix is a matrix of size m× p and entries

cij = ai1b1j + ai2b2j + ... + ainbnj ,

that is, cij is obtained by multiplying componentwise the entries of the ith row
of A by the entries of the jth column of B. It is very important to keep in mind
that the number of columns of the first matrix must be equal to the number of
rows of the second matrix; otherwise the product is undefined.
An interesting question associated with matrix multiplication is the following:
If A and B are square matrices then is it always true that AB = BA?
The answer to this question is negative. In general, matrix multiplication is not
commutative, as the following exercise shows.

Exercise 80

A =
(

1 2
3 2

)
, B =

(
2 −1
−3 4

)

Show that AB 6= BA. Hence, matrix multiplication is not commutative.



2.2. PROPERTIES OF MATRIX MULTIPLICATION 51

Solution.
Using the definition of matrix multiplication we find

AB =
( −4 7

0 5

)
, BA =

( −1 2
9 2

)

Hence, AB 6= BA

Exercise 81
Consider the matrices

A =
(

2 1
3 4

)
, B =

(
2 1
3 5

)
, C =

( −1 −2
11 4

)

(a) Compare A(BC) and (AB)C.
(b) Compare A(B + C) and AB + AC.
(c) Compute I2A and AI2, where I2 is the 2× 2 identity matrix.

Solution.
(a)

A(BC) = (AB)C =
(

70 14
235 56

)

(b)

A(B + C) = AB + AC =
(

16 7
59 33

)

(c) AI2 = I2A = A

Exercise 82
Let A be an m× n matrix and B an n× p matrix.

(a) Show that the entries in the jth column of AB are the entries in the product
ABj where Bj is the jth column of B. Thus, AB = [AB1, AB2, · · · , ABp].
(b) Show that the entries in the ith row of AB are the entries of the product
AiB where Ai is the ith row of A. That is,

AB =




A1B
A2B

...
AmB




Solution.
Let Cj be the jth column of AB then

Cj =




a11b1j + a12b2j + · · ·+ a1nbnj

a21b1j + a22b2j + · · ·+ a2nbnj

...
an1b1j + an2b2j + · · ·+ amnbnj



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On the other hand,

ABj =




a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

...
am1 am2 · · · amn







b1j

b2j

...
bnj




=




a11b1j + a12b2j + · · ·+ a1nbnj

a21b1j + a22b2j + · · ·+ a2nbnj

...
am1b1j + am2b2j + · · ·+ amnbnj


 = Cj

(b) Let r1, r2, · · · , rm be the rows of AB. Then

rT
i =





ai1b11 + ai2b21 + · · ·+ ainbn1

ai1b12 + ai2b22 + · · ·+ ainbn2

...
ai1b1p + ai2b2p + · · ·+ ainbnp




If Ai is the ith row of A then

AiB =
[

ai1 ai2 · · · ain

]



b11 b12 · · · b1p

b21 b22 · · · b2p

...
...

...
bn1 bn2 · · · bnp


 = ri

Exercise 83
(a) If B has a column of zeros, show that the same is true of AB for any A.
(b) If A has a row of zeros, show that the same is true of AB for any B.

Solution.
(a) Follows from (a) of the previous exercise.
(b) Follows from (b) of the previous exercise

Exercise 84
Let A be an m × n matrix. Show that if Ax = 0 for all n × 1 matrix x then
A = 0.

Solution.
Suppose the contrary. Then there exist indices i and j such that aij 6= 0. Let x
be the n× 1 matrix whose jth row is 1 and 0 elsewhere. Then the jth entry of
Ax is 0 = aij 6= 0, a contradiction

As the reader has noticed so far, most of the basic rules of arithmetic of real
numbers also hold for matrices but a few do not. In Exercise 80 we have seen
that matrix multiplication is not commutative. The following exercise shows
that the cancellation law of numbers does not hold for matrix product.
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Exercise 85
(a) Consider the matrices

A =
(

1 0
0 0

)
, B =

(
0 0
1 0

)
, C =

(
0 0
0 1

)

Compare AB and AC. Is it true that B = C?
(b) Find two square matrices A and B such that AB = 0 but A 6= 0 and B 6= 0.

Solution.
(a) Note that B 6= C even though AB = AC = 0.
(b) The given matrices satisfy AB = 0 with A 6= 0 and B 6= 0

Matrix multiplication shares many properties of the product of real numbers
which are listed in the following theorem

Theorem 11
Let A be a matrix of size m× n. Then
(a) A(BC) = (AB)C, where B is of size n× p, C of size p× q.
(b) A(B + C) = AB + AC, where B and C are of size n× p.
(c) (B + C)A = BA + CA, where B and C are of size l ×m.
(d) c(AB) = (cA)B = A(cB), where c denotes a scalar.

Proof.
Let A = (aij), B = (bij), C = (cij).
(a) Let AB = (dij), BC = (eij), A(BC) = (fij), and (AB)C = (gij). Then from
the definition of matrix multiplication we have

fij = (ith row of A)(jth column of BC)
= ai1e1j + ai2e2j + · · ·+ ainenj

= ai1(b11c1j + b12c2j + · · ·+ b1pcpj)
+ ai2(b21c1j + b22c2j + · · ·+ b2pcpj)
+ · · ·+ ain(bn1c1j + bn2c2j + · · ·+ bnpcpj)
= (ai1b11 + ai2b21 + · · ·+ ainbn1)c1j

+ (ai1b12 + ai2b22 + · · ·+ ainbn2)c2j

+ · · ·+ (ai1b1p + ai2b2p + · · ·+ ainbnp)cpj

= di1c1j + di2c2j + · · ·+ dipcpj

= (ith row of AB)(jth column of C)
= gij .

(b) Let A(B + C) = (kij), AC = (hij) Then

kij = (ith row of A)(jth column of B + C)
= ai1(b1j + c1j) + ai2(b2j + c2j) + · · ·+ ain(bnj + cnj)
= (ai1b1j + ai2b2j + · · ·+ ainbnj)
+ (ai1c1j + ai2c2j + · · ·+ aincnj)
= dij + hij .
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(c) Similar to (b).
(d) The proof is left for the reader.

In the next theorem we establish a property about the transpose of a matrix.

Theorem 12
Let A = (aij), B = (bij) be matrices of sizes m×n and n×m respectively. Then
(AB)T = BT AT .

proof
Let AB = (cij). Then (AB)T = (cji). Let BT AT = (c′ij).Then

c′ij = (ith row of BT )(jth column of AT )
= aj1b1i + aj2b2i + · · ·+ ajnbni

= cji

This ends a proof of the theorem

Exercise 86
Let A be any matrix. Show that AAT and AT A are symmetric matrices.

Solution.
First note that for any matrix A the matrices AAT and AT A are well-defined.
Since (AAT )T = (AT )T AT = AAT then AAT is symmetric. Similarly, (AT A)T =
AT (AT )T = AT A

Finally, we discuss the powers of a square matrix. Let A be a square ma-
trix of size n × n. Then the non-negative powers of A are defined as follows:
A0 = In, A1 = A, and for k ≥ 2, Ak = (Ak−1)A.

Exercise 87
suppose that

A =
(

1 2
3 4

)

Compute A3.

Solution.
Multiplying the matrix A by itself three times we obtain

A3 =
(

37 54
81 118

)

For the sake of completeness, we mention few words regarding the mathemati-
cal proof by induction which will be used in the next theorem as well as in the
rest of these notes. Let S be a statement that depends on a non-negative inte-
ger n ≥ n0. To prove that S is valid for all n ≥ n0 one has to show the following:

1. Show that S is valid for n0.
2. Supposing that S is valid for n > n0 show that S is valid for n + 1.
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Theorem 13
For any non-negative integers s, t we have
(a) As+t = AsAt

(b) (As)t = Ast.

Proof.
(a) Fix s. Let t = 1. Then by definition above we have As+1 = AsA. Now, we
prove by induction on t that As+t = AsAt. The equality holds for t = 1. As the
induction hypothesis, suppose that As+t = AsAt. Then As+(t+1) = A(s+t)+1 =
As+tA = (AsAt)A = As(AtA) = AsAt+1.
(b) The proof is similar to (a) and is left to the reader.

Exercise 88
Let A and B be two n× n matrices.
(a) Show that tr(AB) = tr(BA).
(b) Show that AB −BA = In is impossible.

Solution.
(a) Let A = (aij) and B = (bij). Then
tr(AB) =

∑n
i=1(

∑n
k=1 aikbki) =

∑n
i=1(

∑n
k=1 bikaki) = tr(BA).

(b) If AB − BA = In then 0 = tr(AB) − tr(BA) = tr(AB − BA) = tr(In) =
n ≥ 1, a contradiction

2.3 The Inverse of a Square Matrix

Most problems in practice reduces to a system with matrix notation Ax = b.
Thus, in order to get x we must somehow be able to eliminate the coefficient
matrix A. One is tempted to try to divide by A. Unfortunately such an operation
has not been defined for matrices. In this section we introduce a special type of
square matrices and formulate the matrix analogue of numerical division. Recall
that the n×n identity square matrix is the matrix In whose main diagonal entries
are 1 and off diagonal entries are 0.
A square matrix A of size n is called invertible or non-singular if there exists
a square matrix B of the same size such that AB = BA = In. In this case
B is called the inverse of A. A square matrix that is not invertible is called
singular.

Exercise 89
Show that the matrix

B =
( −2 1

3
2 − 1

2

)

is the inverse of the matrix

A =
(

1 2
3 4

)

Solution.
Using matrix multiplication one checks that AB = BA = I2
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Exercise 90
Show that the matrix

A =
(

1 0
0 0

)

is singular.

Solution.
Let B = (bij) be a 2 × 2 matrix. If BA = I2 then the (2, 2)-th entry of BA
is zero while the (2, 2)−entry of I2 is 1, which is impossible. Thus, A is singular

In Section 2.5 (See Theorem 20), we will prove that for a square matrix to
be invertible it suffices to prove the existence of a matrix B such that either
AB = In or BA = In. In other words, there is no need to check the double
equality AB = BA = In.
However, it is important to keep in mind that the concept of invertibility is
defined only for square matrices. In other words, it is possible to have a matrix
A of size m× n and a matrix B of size n×m such that AB = Im. It would be
wrong to conclude that A is invertible and B is its inverse.

Exercise 91
Let

A =
(

1 0 0
0 1 0

)
, B =




1 0
0 1
0 0




Show that AB = I2.

Solution.
Simple matrix multiplication shows that AB = I2. However, this does not imply
that B is the inverse of A since BA is undefnied so that the condition BA = I2

fails

Exercise 92
Show that the identity matrix is invertible but the zero matrix is not.

Solution.
Since InIn = In then In is nonsingular and its inverse is In. Now, for any n×n
matrix B we have B0 = 0 6= In so that the zero matrix is not invertible

Now if A is a nonsingular matrix then how many different inverses does it
possess? The answer to this question is provided by the following theorem.

Theorem 14
The inverse of a matrix is unique.
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Proof.
Suppose A has two inverses B and C. We will show that B = C. Indeed,
B = BIn = B(AC) = (BA)C = InC = C.

Since an invertible matrix A has a unique inverse then we will denote it from
now on by A−1.
For an invertible matrix A one can now define the negative power of a square
matrix as follows: For any positive integer n ≥ 1, we define A−n = (A−1)n.
The next theorem lists some of the useful facts about inverse matrices.

Theorem 15
Let A and B be two square matrices of the same size n× n.
(a) If A and B are invertible matrices then AB is invertible and (AB)−1 =
B−1A−1.
(b) If A is invertible then A−1 is invertible and (A−1)−1 = A.
(c) If A is invertible then AT is invertible and (AT )−1 = (A−1)T

Proof.
(a) If A and B are invertible then AA−1 = A−1A = In and BB−1 = B−1B = In.
In This case, (AB)(B−1A−1) = A[B(B−1A−1)] = A[(BB−1)A−1] = A(InA−1) =
AA−1 = In. Similarly, (B−1A−1)(AB) = In. It follows that B−1A−1 is the in-
verse of AB.
(b) Since A−1A = AA−1 = In then A is the inverse of A−1, i.e. (A−1)−1 = A.
(c) Since AA−1 = A−1A = In then by taking the transpose of both sides we
get (A−1)T AT = AT (A−1)T = In. This shows that AT is invertible with inverse
(A−1)T .

Exercise 93
(a) Under what conditions a diagonal matrix is invertible?
(b) Is the sum of two invertible matrices necessarily invertible?

Solution.
(a) Let D = (dii) be a diagonal n×n matrix. Let B = (bij) be an n×n matrix
such that DB = In and let DB = (cij). Then using matrix multiplication we
find cij =

∑n
k=1 dikbkj . If i 6= j then cij = diibij = 0 and cii = diibii = 1.

If dii 6= 0 for all 1 ≤ i ≤ n then bij = 0 for i 6= j and bii = 1
dii

. Thus, if
d11d22 · · · dnn 6= 0 then D is invertible and its inverse is the diagonal matrix
D−1 = ( 1

dii
).

(b) The following two matrices are invertible but their sum , which is the zero
matrix, is not.

A =
(

1 0
0 −1

)
,

( −1 0
0 1

)

Exercise 94
Consider the 2× 2 matrix

A =
(

a b
c d

)
.
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Show that if ad− bc 6= 0 then A−1 exists and is given by

A−1 =
1

ad− bc

(
d −b
−c a

)
.

Solution.
Let

B =
(

x y
z w

)

be a matrix such that BA = I2. Then using matrix multiplication we find
(

ax + cy bx + dy
az + cw bz + dw

)
=

(
1 0
0 1

)

Equating corresponding entries we obtain the following systems of linear equa-
tions in the unknowns x, y, z and w.

{
ax + cy = 1
bx + dy = 0

and {
az + cw = 0
bz + dw = 0

In the first system, using elimination we find (ad−bc)y = −b and (ad−bc)x = d.
Similarly, using the second system we find (ad− bc)z = −c and (ad− bc)w = a.
If ad− bc 6= 0 then one can solve for x, y, z, and w and in this case B = A−1 as
given in the statement of the problem

Finally, we mention here that matrix inverses can be used to solve systems
of linear equations as suggested by the following theorem.

Theorem 16
If A is an n × n invertible matrix and b is a column matrix then the equation
Ax = b has a unique solution x = A−1b.

Proof.
Since A(A−1b) = (AA−1)b = Inb = b then A−1b is a solution to the equation
Ax = b. Now, if y is another solution then y = Iny = (A−1A)y = A−1(Ay) =
A−1b.

Exercise 95
Let A and B be n× n matrices.
(a) Verify that A(In +BA) = (In +AB)A and that (In +BA)B = B(In +AB).
(b) If In+AB is invertible show that In+BA is also invertible and (In+BA)−1 =
In −B(In + AB)−1A.
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Solution.
(a) A(In + BA) = AIn + ABA = InA + ABA = (In + AB). Similar argument
for the second equality.
(b) Suppose In + AB is invertible. Then postmultiplying the second equality
in (a) by −(In + AB)−1A to obtain −(In + BA)B(In + AB)−1A = −BA. Now
add In + BA to both sides to obtain

(In + BA)[In −B(In + AB)−1A] = In

This says that In +BA is invertible and (I +n+BA)−1 = In−B(In +AB)−1A

Exercise 96
If A is invertible and k 6= 0 show that (kA)−1 = 1

kA−1.

Solution.
Suppose that A is invertible and k 6= 0. Then (kA)A−1 = k(AA−1) = kIn. This
implies (kA)( 1

kA−1) = In. Thus, kA is invertible with inverse equals to 1
kA−1

Exercise 97
Prove that if R is an n×n matrix in reduced row-echelon form and with no zero
rows then R = In.

Solution.
Since R has no zero rows then RT has no zero rows as well. Since the first row
of R is nonzero then the leading 1 must be in the (1, 1) position; otherwise,
the first column will be zero and this shows that RT has a zero row which is a
contradiction. By the definition of reduced row-echelon form all entries below
the leading entry in the first column must be 0 and all entries to the right of
the leading entry in the first row are 0. Now, we repeat this argument to the
(n− 1)× (n− 1) matrix obtained by deleting the first row and the first column
of R and so on

2.4 Elementary Matrices

In this section we introduce a special type of invertible matrices, the so-called
elementary matrices, and we discuss some of their properties. As we shall see,
elementary matrices will be used in the next section to develop an algorithm for
finding the inverse of a square matrix.
An n × n elementary matrix is a matrix obtained from the identity matrix
by performing one single elementary row operation.

Exercise 98
Show that the following matrices are elementary matrices
(a)




1 0 0
0 1 0
0 0 1


 ,
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(b)



1 0 0
0 0 1
0 1 0


 ,

(c)



1 0 3
0 1 0
0 0 1




Solution.
We list the operations that produce the given elementary matrices.
(a) r1 ← 1r1.
(b) r2 ↔ r3.
(c) r1 ← r1 + 3r3

Exercise 99
Consider the matrix

A =




1 0 2 3
2 −1 3 6
1 4 4 0




(a) Find the row equivalent matrix to A obtained by adding 3 times the first row
of A to the third row. Call the equivalent matrix B.
(b) Find the elementary matrix E corresponding to the above elementary row
operation.
(c) Compare EA and B.

Solution.
(a)

B =




1 0 2 3
2 −1 3 6
4 4 10 9




(b)

E =




1 0 0
0 1 0
3 0 1




(c) EA = B

The conclusion of the above exercise holds for any matrix of size m× n.

Theorem 17
If the elementary matrix E results from performing a certain row operations on
Im and if A is an m × n matrix, then the product of EA is the matrix that
results when this same row operation is performed on A.
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Proof.
We prove the theorem only for type II operations. Let E be the elementary
matrix of size m × m obtained by adding k times row p of Im to row q. Let
B be the matrix obtained from A by adding k times row p to row q. We must
show that B = EA. Let A = (aij). Then B = (bij), where bij = aij for i 6= q,
and bqj = kapj + aqj . Let EA = (dij). We will show that bij = dij . If i 6= q
then dij = (ith row of E)(jth column of A) = aij = bij . If i = q, then
dqj = (qth row of E)(jth column of A) = kapj + aqj = bqj . It follows that
EA = B. Types I and III are left for the reader

It follows from the above theorem that a matrix A is row equivalent to a ma-
trix B if and only if B = EkEk−1 · · ·E1A, where E1, E2, · · · , Ek are elementary
matrices.
The above theorem is primarily of theoretical interest and will be used for de-
velopping some results about matrices and systems of linear equations. From a
computational point of view, it is preferred to perform row operations directly
rather than multiply on the left by an elementary matrix. Also, this theorem
says that an elementary row operation on A can be achieved by premultiplying
A by the corresponding elementary matrix E.
Given any elementary row operation, there is another row operation ( called its
inverse) that reverse the effect of the first operation. The inverses are described
in the following chart.

Type Operation Inverse operation
I ri ← cri ri ← 1

c ri

II rj ← cri + rj rj ← −cri + rj

III ri ↔ rj ri ↔ rj

The following theorem gives an important property of elementary matrices.

Theorem 18
Every elementary matrix is invertible, and the inverse is an elementary matrix.

Proof.
Let A be any n×n matrix. Let E be an elementary matrix obtained by applying
a row elementary operation ρ on In. By Theorem 17, applying ρ on A produces
a matrix EA. Applying the inverse operation ρ−1 to EA gives F (EA) where F
is the elementary matrix obtained from In by applying the operation ρ−1. Since
inverse row operations cancel the effect of each other, it follows that FEA = A.
Since A was arbitrary, we can choose A = In. Hence, FE = In. A similar
argument shows that EF = In. Hence E is invertible and E−1 = F

Exercise 100
Show the following
(a) A is row equivalent to A.
(b) If A is row equivalent to B then B is row equivalent to A.
(c) If A is row equivalent to B and B is row equivalent to C then A is row
equivalent to C.
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Solution.
(a) Suppose that A is an m×n matrix. Then A = ImA. Since Im is an elemen-
tary matrix then A ∼ A.
(b) Suppose that A and B are two matrices of sizes m× n. If A ∼ B then B =
EkEk−1 · · ·E1A where E1, E2, · · · , Ek are m × m elementary matrices. Since
these matrices are invertible elementary matrices then A = E−1

1 E−1
2 · · ·E−1

k B.
That is, B ∼ A.
(c) Suppose that A ∼ B and B ∼ C. Then B = Ek · · ·E1A and C = FlFl−1 · · ·F1B.
But then we have C = (F )lFl−1 · · ·F1EkEk−1 · · ·E1A. That is, A ∼ C

Exercise 101
Write down the inverses of the following elementary matrices:

E1 =




0 1 0
1 0 0
0 0 1


 , E2 =




1 0 0
0 1 0
0 0 9


 , E3 =




1 0 5
0 1 0
0 0 1




Solution.
(a) E−1

1 = E1.
(b)

E−1
2 =




1 0 0
0 1 0
0 0 1

9




(c)

E−1
3 =




1 0 −5
0 1 0
0 0 1




Exercise 102
If E is an elementary matrix show that ET is also an elementary matrix of the
same type.

Solution.
Suppose that E is the elementary matrix obtained by interchanging rows i and
j of In with i < j. This is equivalent to interchanging columns i and j of In. But
then ET is obtained by interchanging rows i and j of In and so is an elementary
matrix. If E is obtained by multiplying the ith row of In by a nonzero constant
k then this is the same thing as multiplying the ith column of In by k. Thus,
ET is obtained by multiplying the ith row of In by k and so is an elementary
matrix. Finally, if E is obtained by adding k times the ith row of In to the jth
row then ET is obtained by adding k times the jth row of In to the ith row.
Note that if E is of Type I or Type III then ET = E

2.5 An Algorithm for Finding A−1

Before we establish the main results of this section, we recall the reader of the
following method of mathematical proofs. To say that statements p1, p2, · · · , pn
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are all equivalent means that either they are all true or all false. To prove that
they are equivalent, one assumes p1 to be true and proves that p2 is true, then
assumes p2 to be true and proves that p3 is true, continuing in this fashion,
assume that pn−1 is true and prove that pn is true and finally, assume that pn is
true and prove that p1 is true. This is known as the proof by circular argument.
Now, back to our discussion of inverses. The following result establishes re-
lationships between square matrices and systems of linear equations. These
relationships are very important and will be used many times in later sections.

Theorem 19
If A is an n× n matrix then the following statements are equivalent.

(a) A is invertible.
(b) Ax = 0 has only the trivial solution.
(c) A is row equivalent to In.
(d) rank(A) = n.

Proof.
(a) ⇒ (b) : Suppose that A is invertible and x0 is a solution to Ax = 0. Then
Ax0 = 0. Multiply both sides of this equation by A−1 to obtain A−1Ax0 =
A−10, that is x0 = 0. Hence, the trivial solution is the only solution.

(b) ⇒ (c) : Suppose that Ax = 0 has only the trivial solution. Then the
reduced row-echelon form of the augmented matrix has no rows of zeros or free
variables. Hence it must look like



1 0 0 . . . 0 0
0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
...

...
...

0 0 0
... 1 0




If we disregard the last column of the previous matrix we can conclude that A
can be reduced to In by a sequence of elementary row operations, i.e. A is row
equivalent to In.

(c) ⇒ (d) : Suppose that A is row equivalent to In. Then rank(A) = rank(In) =
n.

(d) ⇒ (a) : Suppose that rank(A) = n. Then A is row equivalent to In. That is
In is obtained by a finite sequence of elementary row operations performed on
A. Then by Theorem 17, each of these operations can be accomplished by pre-
multiplying on the left by an appropriate elementary matrix. Hence, obtaining

EkEk−1 . . . E2E1A = In,

where k is the necessary number of elementary row operations needed to reduce
A to In. Now, by Theorem 18 each Ei is invertible. Hence, EkEk−1 . . . E2E1 is
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invertible and A−1 = EkEk−1 . . . E2E1.

Using the definition, to show that an n × n matrix A is invertible we find a
matrix B of the same size such that AB = In and BA = In. The next theorem
shows that one of these equality is enough to assure invertibilty.

Theorem 20
If A and B are two square matrices of size n×n such that AB = I then BA = In

and B−1 = A.

Proof
Suppose that Bx = 0. Multiply both sides by A to obtain ABx = 0. That
is, x = 0. This shows that the homogenenous system Bx = 0 has only the
trivial solution so by Theorem 9 we see that B is invertible, say with inverse
C. Hence, C = InC = (AB)C = A(BC) = AIn = A so that B−1 = A. Thus,
BA = BB−1 = In.

As an application of Theorem 19, we describe an algorithm for finding A−1.
We perform elementary row operations on A until we get In; say that the prod-
uct of the elementary matrices is EkEk−1 . . . E2E1. Then we have

(EkEk−1 . . . E2E1)[A|In] = [(EkEk−1 . . . E2E1)A|(EkEk−1 . . . E2E1)In]
= [In|A−1]

We ask the reader to carry the above algorithm in solving the following problems.

Exercise 103
Find the inverse of

A =




1 2 3
2 5 3
1 0 8




Solution.
We first construct the matrix




1 2 3 | 1 0 0
2 5 3 | 0 1 0
1 0 8 | 0 0 1




Applying the above algorithm to obtain

Step 1: r2 ← r2 − 2r1 and r3 ← r3 − r1




1 2 3 | 1 0 0
0 1 −3 | −2 1 0
0 −2 5 | −1 0 1



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Step 2: r3 ← r3 + 2r2




1 2 3 | 1 0 0
0 1 −3 | −2 1 0
0 0 −1 | −5 2 1




Step 3: r1 ← r1 − 2r2




1 0 9 | 5 −2 0
0 1 −3 | −2 1 0
0 0 −1 | −5 2 1




Step 4: r2 ← r2 − 3r3 and r1 ← r1 + 9r3




1 0 0 | −40 16 9
0 1 0 | 13 −5 −3
0 0 −1 | − 5 2 1




Step 5: r3 ← −r3 


1 0 0 | −40 16 9
0 1 0 | 13 −5 −3
0 0 1 | 5 −2 −1




It follows that

A−1 =



−40 16 9
13 −5 −3
5 −2 −1




Exercise 104
Show that the following homogeneous system has only the trivial solution.

x1 + 2x2 + 3x3 = 0
2x1 + 5x2 + 3x3 = 0
x1 + 8x3 = 0.

Solution.
The coefficient matrix of the given system is invertible by the previous exercise.
Thus, by Theorem 19 the system has only the trivial solution

The following result exhibit a criterion for checking the singularity of a square
matrix.

Theorem 21
If A is a square matrix with a row consisting entirely of zeros then A is singular.

Proof.
The reduced row-echelon form will have a row of zeros. So the rank of the co-
efficient matrix of the homogeneous system Ax = 0 is less than n. By Theorem
5, Ax = 0 has a nontrivial solution and as a result of Theorem 19 the matrix A
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must be singular.

How can we tell when a square matrix A is singular? i.e., when does the algo-
rithm of finding A−1 fail? The answer is provided by the following theorem

Theorem 22
An n× n matrix A is singular if and only if A is row equivalent to a matrix B
that has a row of zeros.

Proof.
Suppose first that A is singular. Then by Theorem 19, A is not row equivalent
to In. Thus, A is row equivalent to a matrix B 6= In which is in reduced echelon
form. By Theorem 19, B must have a row of zeros.
Conversely, suppose that A is row equivalent to matrix B with a row con-
sisting entirely of zeros. Then B is singular by Theorem 251. Now, B =
EkEk−1 . . . E2E1A. If A is nonsingular then B is nonsingular, a contradiction.
Thus, A must be singular

The following theorem establishes a result of the solvability of linear systems
using the concept of invertibility of matrices.

Theorem 23
An n × n square matrix A is invertible if and only if the linear system Ax = b
is consistent for every n× 1 matrix b.

Proof.
Suppose first that A is invertible. Then for any n×1 matrix b the linear system
Ax = b has a unique solution, namely x = A−1b.
Conversely, suppose that the system Ax = b is solvable for any n× 1 matrix b.
In particular, Axi = ei, 1 ≤ i ≤ n, has a solution, where ei is the ith column of
In. Construct the matrix

C =
(

x1 x2 · · · xn

)

Then

AC =
(

Ax1 Ax2 · · · Axn

)
=

(
e1 e2 · · · en

)
= In.

Hence, by Theorem 20, A is non-singular

Exercise 105
Solve the following system by using the previous theorem





x1 + 2x2 + 3x3 = 5
2x1 + 5x2 + 3x3 = 3
x1 + 8x3 = 17
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Solution.
Using Exercise 103 and Theorem 23 we have




x1

x2

x3


 =



−40 16 9
13 −5 −3
5 −2 −1







5
3
17




=




1
−1
2




Exercise 106
If P is an n×n matrix suxh that PT P = In then the matrix H = In− 2PPT is
called the Householder matrix. Show that H is symmetric and HT H = In.

Solution.
Taking the transpose of H we have HT = IT

n − 2(PT )T PT = H. That is, H is
symmetric. On the other hand, HT H = H2 = (In − 2PPT )2 = In − 4PPT +
4(PPT )2 = In − 4PPT + 4P (PT P )PT = In − 4PPT + 4PPT = In

Exercise 107
Let A and B be two square matrices. Show that AB is nonsingular if and only
if both A and B are nonsingular.

Solution.
Suppose that AB is nonsingular. Then (AB)−1AB = AB(AB)−1 = In. Suppose
that A is singular. Then A has a row consisting of 0. Then AB has a row
consisting of 0 (Exercise 90) but then AB is singular according to Theorem 251,
a contradiction. Since (AB)−1AB = In then by Theorem 20, B is nonsingular.
The converse is just Theorem 15 (a)

2.6 Review Problems

Exercise 108
Compute the matrix

3
(

2 1
−1 0

)T

− 2
(

1 −1
2 3

)

Exercise 109
Find w, x, y, and z.




1 2 w
2 x 4
y −4 z


 =




1 2 −1
2 −3 4
0 −4 5



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Exercise 110
Determine two numbers s and t such that the following matrix is symmetric.

A =




2 s t
2s 0 s + t
3 3 t




Exercise 111
Let A be a 2× 2 matrix. Show that

A = a

(
1 0
0 0

)
+ b

(
0 1
0 0

)
+ c

(
0 0
1 0

)
+ d

(
0 0
0 1

)

Exercise 112
Let A =

[
1 1 −1

]
, B =

[
0 1 2

]
, C =

[
3 0 1

]
. If rA+sB+ tC =

0 show that s = r = t = 0.

Exercise 113
Show that the product of two diagonal matrices is again a diagonal matrix.

Exercise 114
Let A be an arbitrary matrix. Under what conditions is the product AAT de-
fined?

Exercise 115
(a) Show that AB = BA if and only if (A−B)(A + B) = A2 −B2.
(b) Show that AB = BA if and only if (A + B)2 = A2 + 2AB + B2.

Exercise 116
Let A be a matrix of size m × n. Denote the columns of A by C1, C2, · · · , Cn.
Let x be the n × 1 matrix with entries x1, x2, · · · , xn. Show that Ax = x1C1 +
x2C2 + · · ·+ xnCn.

Exercise 117
Let A be an m× n matrix. Show that if yA = 0 for all y ∈ IRm then A = 0.

Exercise 118
An n× n matrix A is said to be idempotent if A2 = A.
(a) Show that the matrix

A =
1
2

(
1 1
1 1

)

is idempotent
(b) Show that if A is idempotent then the matrix (In −A) is also idempotent.
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Exercise 119
The purpose of this exercise is to show that the rule (ab)n = anbn does not hold
with matrix multiplication. Consider the matrices

A =
(

2 −4
1 3

)
, B =

(
3 2
−1 5

)

Show that (AB)2 6= A2B2.

Exercise 120
Show that AB = BA if and only if AT BT = BT AT .

Exercise 121
Suppose AB = BA and n is a non-negative integer.
(a) Use induction to show that ABn = BnA.
(b) Use induction and (a) to show that (AB)n = AnBn.

Exercise 122
Let A and B be symmetric matrices. Show that AB is symmetric if and only if
AB = BA.

Exercise 123
Show that tr(AAT ) is the sum of the squares of all the entries of A.

Exercise 124
(a) Find two 2× 2 singular matrices whose sum in nonsingular.
(b) Find two 2× 2 nonsingular matrices whose sum is singular.

Exercise 125
Show that the matrix

A =




1 4 0
2 5 0
3 6 0




is singular.

Exercise 126
Let

A =
(

1 2
1 3

)

Find A−3.

Exercise 127
Let

A−1 =
(

2 −1
3 5

)

Find A.
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Exercise 128
Let A and B be square matrices such that AB = 0. Show that if A is invertible
then B is the zero matrix.

Exercise 129
Find the inverse of the matrix

A =
(

sin θ cos θ
− cos θ sin θ

)

Exercise 130
Which of the following are elementary matrices?
(a) 


1 1 0
0 0 1
0 1 0




(b) (
1 0
−5 1

)

(c) 


1 0 0
0 1 9
0 0 1




(d) 


2 0 0 2
0 1 0 0
0 0 1 0
0 0 0 1




Exercise 131
Let A be a 4×3 matrix. Find the elementary matrix E, which as a premultiplier
of A, that is, as EA, performs the following elementary row operations on A :
(a) Multiplies the second row of A by -2.
(b) Adds 3 times the third row of A to the fourth row of A.
(c) Interchanges the first and third rows of A.

Exercise 132
For each of the following elementary matrices, describe the corresponding ele-
mentary row operation and write the inverse.
(a)

E =




0 0 1
0 1 0
1 0 0




(b)

E =




1 0 0
−2 1 0
0 0 1



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(c)

E =




1 0 0
0 1 0
0 0 5




Exercise 133
Consider the matrices

A =




3 4 1
2 −7 −1
8 1 5


 , B =




8 1 5
2 −7 −1
3 4 1


 , C =




3 4 1
2 −7 −1
2 −7 3




Find elementary matrices E1, E2, E3, and E4 such that
(a)E1A = B, (b)E2B = A, (c)E3A = C, (d)E4C = A.

Exercise 134
Determine if the following matrix is invertible.




1 6 4
2 4 −1
−1 2 5




Exercise 135
For what values of a does the following homogeneous system have a nontrivial
solution? {

(a− 1)x1 + 2x2 = 0
2x1 + (a− 1)x2 = 0

Exercise 136
Find the inverse of the matrix




1 1 1
0 2 3
5 5 1




Exercise 137
What conditions must b1, b2, b3 satisfy in order for the following system to be
consistent? 




x1 + x2 + 2x3 = b1

x1 + x3 = b2

2x1 + x2 + 3x3 = b3

Exercise 138
Prove that if A is symmetric and nonsingular than A−1 is symmetric.

Exercise 139
If

D =




4 0 0
0 −2 0
0 0 3




find D−1.
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Exercise 140
Prove that a square matrix A is nonsingular if and only if A is a product of
elementary matrices.

Exercise 141
Prove that two m× n matrices A and B are row equivalent if and only if there
exists a nonsingular matrix P such that B = PA.

Exercise 142
Let A and B be two n × n matrices. Suppose A is row equivalent to B. Prove
that A is nonsingular if and only if B is nonsingular.

Exercise 143
Show that the product of two lower (resp. upper) triangular matrices is again
lower (resp. upper) triangular.

Exercise 144
Show that a 2× 2 lower triangular matrix is invertible if and only if a11a22 6= 0
and in this case the inverse is also lower triangular.

Exercise 145
Let A be an n × n matrix and suppose that the system Ax = 0 has only the
trivial solution. Show that Akx = 0 has only the trivial solution for any positive
integer k.

Exercise 146
Show that if A and B are two n× n matrices then A ∼ B.

Exercise 147
Show that any n×n invertible matrix A satisfies the property (P): If AB = AC
then B = C.

Exercise 148
Show that an n × n matrix A is invertible if and only if the equation yA = 0
has only the trivial solution.

Exercise 149
Let A be an n× n matrix such that An = 0. Show that In −A is invertible and
find its inverse.

Exercise 150
Let A = (aij(t)) be an m × n matrix whose entries are differentiable functions
of the variable t. We define dA

dt = (daij

dt ). Show that if the entries in A and B
are differentiable functions of t and the sizes of the matrices are such that the
stated operations can be performed, then
(a) d

dt (kA) = k dA
dt .

(b) d
dt (A + B) = dA

dt + dB
dt .

(c) d
dt (AB) = dA

dt B + AdB
dt .
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Exercise 151
Let A be an n×n invertible matrix with entries being differentiable functions of
t. Find a formula for dA−1

dt .

Exercise 152 (Sherman-Morrison formula)
Let A be an n × n invertible matrix. Let u, v be n × 1 matrices such that
vT A−1u + 1 6= 0. Show that
(a) (A + uvT )(A−1 − A−1uvT A−1

1+vT A−1u
) = In.

(b) Deduce from (a) that A is invertible.

Exercise 153
Let x = (x1, x2, · · ·xm)T be an m × 1 matrix and y = (y1, y2, · · · , yn)T be an
n× n matrix. Construct the m× n matrix xyT .

Exercise 154
Show that a triangular matrix A with the property AT = A−1 is always diagonal.
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Chapter 3

Determinants

With each square matrix we can associate a real number called the determi-
nant of the matrix. Determinants have important applications to the theory of
systems of linear equations. More specifically, determinants give us a method
(called Cramer’s method) for solving linear systems. Also, determinant tells us
whether or not a matrix is invertible.

3.1 Definition of the Determinant

Determinants can be used to find the inverse of a matrix and to determine if
a linear system has a unique solution. Throughout this chapter we use only
square matrices.

Let us first recall from probability theory the following important formula known
as the multiplication rule of counting: If a choice consists of k steps, of which
the first can be made in n1 ways, for each of these the second step can be made
in n2 ways, · · · , and for each of these the kth can be made in nk ways, then the
choice can be made in n1n2 · · ·nk ways.

Exercise 155
If a new-car buyer has the choice of four body styles, three engines, and ten
colors, in how many different ways can s/he order one of these cars?

Solution.
By the multiplication rule of counting, there are (4)(3)(10) = 120 choices

A permutation of the set S = {1, 2, . . . , n} is an arrangement of the ele-
ments of S in some order without omissions or repetitions. We write σ =
(σ(1)σ(2) · · ·σ(n)).
In terms of functions, a permutation is a function on S with range equals to
S. Thus, any σ on S possesses an inverse σ−1, that is σ ◦ σ−1 = σ−1 ◦ σ = id

75
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where id = (123 · · ·n). So if σ = (613452) then σ−1 = (263451).(Show that
σ ◦ σ−1 = σ−1 ◦ σ = id).

Exercise 156
Let σ = (24513) and τ = (41352) be permutations in S5. Find
(a) σ ◦ τ and τ ◦ σ,
(b) σ−1.

Solution.
(a) Using the definition of composition of two functions we find, σ(τ(1)) =
σ(4) = 1. A similar argument for σ(τ(2)), etc. Thus, σ ◦ τ = (12534) and
τ ◦ σ = (15243).
(b) Since σ(4) = 1 then σ−1(1) = 4. Similarly, σ−1(2) = 1, etc. Hence,
σ−1 = (41523)

Let Sn denote the set of all permutations on S. How many permutations are
there in Sn? We have n positions to be filled by n numbers. For the first posi-
tion, there are n possibilities. For the second there are n − 1 possibilities, etc.
Thus, according to the multiplication rule of counting there are

n(n− 1)(n− 2) . . . 2.1 = n!

permutations.

Is there a way to list all the permutations of Sn? The answer is yes and one can
find the permutations by using a permutation tree which we describe in the
following exercise

Exercise 157
List all the permutations of S = {1, 2, 3, 4}.
Solution.

1
↙ ↓ ↘
2 3 4

↙↘ ↙↘ ↙↘
3 4 2 4 2 3

2
↙ ↓ ↘
1 3 4

↙↘ ↙↘ ↙↘
3 4 1 4 1 3

3
↙ ↓ ↘
1 2 4

↙↘ ↙↘ ↙↘
2 4 1 4 1 2

4
↙ ↓ ↘
1 2 3

↙↘ ↙↘ ↙↘
2 3 1 3 1 2

An inversion is said to occur whenever a larger integer precedes a smaller
one. If the number of inversions is even (resp. odd) then the permutation is
said to be even (resp. odd). We define the sign of a permutation to be a
function sgn with domain Sn and range {−1, 1} such that sgn(σ) = −1 if σ is
odd and sgn(σ) = +1 if σ is even.

Exercise 158
Classify each of the permutations in S6 as even or odd.
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(i) (613452).
(ii) (2413).
(iii) (1234).
(iv) id = (123456).

Solution.
(i) sgn((613452)) = +1 since there are 8 inversions, namely, (61), (63), (64), (65),
(62), (32), (42), and (52).
(ii) sgn((2413)) = −1. The inversions are: (21), (41), (43).
(iii) sgn((1234)) = +1. There are 0 inversions.
(iv) sgn(id) = +1

The following two theorems are of theoretical interest.

Theorem 24
Let τ and σ be two elements of Sn. Then sgn(τ ◦ σ) = sgn(τ)sgn(σ). Hence,
the composition of two odd or even permutations is always even.

Proof.
Define the polynomial in n indeterminates g(x1, x2, · · · , xn) = Πi<j(xi − xj).
For any permutation σ ∈ Sn we define σ(g) = Πi<j(xσ(i) − xσ(j)). We will
show that for any σ ∈ Sn one has σ(g) = sgn(σ)g. Clearly, σ(g) = (Πi<j(xi −
xj))(Πi>j(xi − xj)). But for i > j one can write xi − xj = −(xj − xi), with
(xj−xi) being a factor of g. Let k be the number of factors of the form (xi−xj)
with i > j. Then σ(g) = (−1)kg. It follows that if k is even then σ(g) = g and
if k is odd σ(g) = −g.
Now, let 1 ≤ i < j ≤ n be such that σ(i) > σ(j). Since Range(σ) = {1, 2, · · · , n}
then there exit i∗, j∗ ∈ {1, 2, · · · , n} such that σ(i∗) = i and σ(j∗) = j. Since
i < j then σ(j∗) > σ(i∗). Thus for every pair (i, j) with i < j and σ(i) > σ(j)
there is a factor of σ(g) of the form (xσ(j∗) − xσ(i∗)) with σ(j∗) > σ(i∗). If
σ is even (resp. odd) then the number of (i, j) with the property i < j and
σ(i) > σ(j) is even (resp. odd). This implies that k is even ( resp. odd). Thus,
σ(g) = g if σ is even and σ(g) = −g if σ is odd.
Finally, for any σ, τ ∈ Sn we have

sgn(σ ◦ τ)g = (σ ◦ τ)g = σ(τ(g)) = σ(sgn(τ)g) = (sgn(σ))(sgn(τ))g.

Since g was arbitrary then sgn(σ ◦ τ) = sgn(σ)sgn(τ). This concludes a proof
of the theorem

Theorem 25
For any σ ∈ Sn, we have sgn(σ) = sgn(σ−1).

proof.
We have σ ◦ σ−1 = id. By Theorem 24 we have sgn(σ)sgn(σ−1) = 1 since id is
even. Hence, σ and σ−1 are both even or both odd

Let A be an n × n matrix. An elementary product from A is a product
of n entries from A, no two of which come from the same row or same column.
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Exercise 159
List all elementary products from the matrices
(a)

(
a11 a12

a21 a22

)
,

(b)



a11 a12 a13

a21 a22 a23

a31 a32 a33




Solution.
(a) The only elementary products are a11a22, a12a21.
(b) An elementary product has the form a1∗a2∗a3∗. Since no two factors come
from the same column, the column numbers have no repetitions; consequently
they must form a permutation of the set {1, 2, 3}. The 3! = 6 permutations yield
the following elementary products:
a11a22a33, a11a23a32, a12a23a31, a12a21a33, a13a21a32, a13a22a31

Let A be an n × n matrix. Consider an elementary product of entries of A.
For the first factor, there are n possibilities for an entry from the first row.
Once selected, there are n− 1 possibilities for an entry from the second row for
the second factor. Continuing, we find that there are n! elementary products.
They are the products of the form a1σ(1)a2σ(2) . . . anσ(n), where σ is a permuta-
tion of {1, 2, . . . , n}, i.e. a member of Sn.

Let A be an n × n matrix. Then we define the determinant of A to be the
number

|A| =
∑

sgn(σ)a1σ(1)a2σ(2) . . . anσ(n)

where the sum is over all permutations σ of {1, 2, . . . , n}.

Exercise 160
Find |A| if
(a)

A =
(

a11 a12

a21 a22

)
,

(b)

A =




a11 a12 a13

a21 a22 a23

a31 a32 a33



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Solution.
By using the definition of a determinant and Exercise 159 we obtain
(a) |A| = a11a22 − a21a12.
(b) |A| = a11a22a33−a11a23a32 +a12a23a31−a12a21a33 +a13a21a32−a13a22a31

Exercise 161
Find all values of λ such that |A| = 0.
(a)

A =
(

λ− 1 −2
1 λ− 4

)
,

(b)

A =




λ− 6 0 0
0 λ −1
0 4 λ− 4




Solution.
(a) Using Exercise 160 (a) we find |A| = (λ− 3)(λ− 2) = 0. Therefore, λ = 3 or
λ = 2.
(b) By Exercise 160 (b) we have |A| = (λ− 2)2(λ− 6) = 0 and this yields λ = 2
or λ = 6

Exercise 162
Prove that if a square matrix A has a row of zeros then |A| = 0.

Solution.
Suppose that the ith row of A consists of 0. By the definition of the determinant
each elementary product will have one factor belonging to the ith row. Thus,
each elementary product is zero and consequently |A| = 0

3.2 Evaluating Determinants by Row Reduction

In this section we provide a simple procedure for finding the determinant of a
matrix. The idea is to reduce the matrix into row-echelon form which in this
case is a triangular matrix. Recall that a matrix is said to be triangular if it is
upper triangular, lower triangular or diagonal. The following theorem provides
a formula for finding the determinant of a triangular matrix.

Theorem 26
If A is an n× n triangular matrix then |A| = a11a22 . . . ann.

Proof.
Assume that A is lower triangular. We will show that the only elementary
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product that appears in the formula of |A| is a11a22 · · · ann. To see this, consider
a typical elementary product

a1σ(1)a2σ(2) · · · anσ(n). (3.1)

Since a12 = a13 = · · · = a1n = 0 then for the above product to appear we
must have σ(1) = 1. But then σ(2) 6= 1 since no two factors come from the
same column. Hence, σ(2) ≥ 2. Further, since a23 = a24 = · · · = a2n = 0 we
must have σ(2) = 2 in order to have (3.1). Continuing in this fashion we obtain
σ(3) = 3, · · · , σ(n) = n. That is, |A| = a11a22 · · · ann. The proof for an upper
triangular matrix is similar.

Exercise 163
Compute |A|.
(a)

A =




1 2 3
0 4 5
0 0 6


 ,

(b)

A =




1 0 0
2 3 0
4 5 6


 ,

Solution.
(a) Since A is triangular then |A| = (1)(4)(6) = 24.
(b) |A| = (1)(3)(6) = 18

Exercise 164
Compute the determinant of the identity matrix In.

Solution.
Since the identity matrix is triangular with entries equal to 1 on the main diag-
onal then |In| = 1

The following theorem is of practical use. It provides a technique for evalu-
ating determinants by greatly reducing the labor involved. We shall show that
the determinant can be evaluated by reducing the matrix to row-echelon form.
Before proving the next theorem, we make the following remark. Let τ be a
permutation that interchanges only two numbers i and j with i < j. That is,
τ(k) = k if k 6= i, j and τ(i) = j, τ(j) = i. We call such a permutation a trans-
position. In this case, τ = (12 · · · j(i + 1)(i + 2) · · · (j− 1)i(j + 1) · · ·n). Hence,
there are 2(j − i − 1) + 1 inversions, namely, (j, i + 1), · · · , (j, j − 1), (j, i), (i +
1, i), (i+2, i), · · · , (j−1, i). This means that τ is odd. Now, for any permutation
σ ∈ Sn we have sgn(τ ◦ σ) = sgn(τ)sgn(σ) = −sgn(σ).(See Theorem 24)
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Theorem 27
Let A be an n× n matrix.
(a) Let B be the matrix obtained from A by multiplying a row by a scalar c.
Then |B| = c|A|.
(b) Let B be the matrix obtained from A by interchanging two rows of A. Then
|B| = −|A|.
(c) If a square matrix has two identical rows then its determinant is zero.
(d) Let B be the matrix obtained from A by adding c times a row to another
row. Then |B| = |A|.

Proof.
(a) Multiply row r of A = (aij) by a scalar c. Let B = (bij) be the resulting
matrix. Then bij = aij for i 6= r and brj = carj . Using the definition of a
determinant we have

|B| =
∑

σ∈Sn
sgn(σ)b1σ(1)b2σ(2) · · · brσ(r) · · · bnσ(n)

=
∑

σ∈Sn
sgn(σ)a1σ(1)a2σ(2) · · · c(arσ(r)) · · · anσ(n)

= c
∑

σ∈Sn
sgn(σ)a1σ(1)a2σ(2) · · · arσ(r) · · · anσ(n) = c|A|.

(b) Interchange rows r and s of A with r < s. Let B = (bij) be the resulting
matrix. Let τ be the transposition that interchanges the numbers r and s. Then
bij = aiτ(j). Using the definition of determinant we have

|B| =
∑

σ∈Sn
sgn(σ)b1σ(1)b2σ(2) · · · bnσ(n)

=
∑

σ∈Sn
sgn(σ)a1τ◦σ(1)a2τ◦σ(2) · · · anτ◦σ(n)

= −∑
σ∈Sn

sgn(τ ◦ σ)a1τ◦σ(1)a2τ◦σ(2) · · · anτ◦σ(n)

= −∑
δ∈Sn

sgn(δ)a1δ(1)a2δ(2) · · · anδ(n) = −|A|.

Note that as σ runs through all the elements of Sn, τ ◦ σ runs through all the
elements of Sn as well. This ends a proof of (b).
(c) Suppose that rows r and s of A are equal. Let B be the matrix obtained
from A by interchanging rows r and s. Then B = A so that |B| = |A|. But by
(b), |B| = −|A|. Hence, |A| = −|A|, 2|A| = 0 and hence |A| = 0.
(d) Let B = (bij) be obtained from A by adding to each element of the sth row
of A c times the corresponding element of the rth row of A. That is, bij = aij if
i 6= s and bsj = carj + asj . Then

|B| =
∑

σ∈Sn
sgn(σ)b1σ(1)b2σ(2) · · · bsσ(s) · · · bnσ(n)

=
∑

σ∈Sn
sgn(σ)a1σ(1)a2σ(2) · · · (carσ(s) + asσ(s)) · · · anσ(n)

=
∑

σ∈Sn
sgn(σ)a1σ(1)a2σ(2) · · · arσ(r) · · · asσ(s) · · · anσ(n)

+ c(
∑

σ∈Sn
sgn(σ)a1σ(1)a2σ(2) · · · arσ(r) · · · arσ(s) · · · anσ(n)).

The first term in the last expression is |A|. The second is c times the deter-
minant of a matrix with two identical rows, namely, rows r and s with entries
(ar1, ar2, · · · , arn). By (c), this quantity is zero. Hence, |B| = |A|.

Exercise 165
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Use Theorem 27 to evaluate the determinant of the following matrix

A =




0 1 5
3 −6 9
2 6 1




Solution.
We use Gaussian elimination as follows.

Step 1: r1 ↔ r2 ∣∣∣∣∣∣

3 −6 9
0 1 5
2 6 1

∣∣∣∣∣∣
= −|A|

Step 2: r1 ← r1 − r3 ∣∣∣∣∣∣

1 −12 8
0 1 5
2 6 1

∣∣∣∣∣∣
= −|A|

Step 3: r3 ← r3 − 2r1 ∣∣∣∣∣∣

1 −12 8
0 1 5
0 30 −15

∣∣∣∣∣∣
= −|A|

Step 4: r3 ← r3 − 30r2

∣∣∣∣∣∣

1 −12 8
0 1 5
0 0 −165

∣∣∣∣∣∣
= −|A|

Thus,

|A| = −
∣∣∣∣∣∣

1 −12 8
0 1 5
0 0 −165

∣∣∣∣∣∣
= 165

Exercise 166
Show that if a square matrix has two proportional rows then its determinant is
zero.

Solution.
Suppose that A is a square matrix such that row j is k times row i with k 6= 0.
By adding − 1

k rj to ri then the ith row will consist of 0. By Thereom 27 (c),
|A| = 0

Exercise 167
Show that if A is an n× n matrix and c is a scalar then |cA| = cn|A|.

Solution.
The matrix cA is obtained from the matrix A by multiplying the rows of A by
c 6= 0. By mutliplying the first row of cA by 1

c we obtain |B| = 1
c |cA| where B
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is obtained from the matrix A by multiplying all the rows of A, except the first
one, by c. Now, divide the second row of B by 1

c to obtain |B′| = 1
c |B|, where

B′ is the matrix obtained from A by multiplying all the rows of A, except the
first and the second, by c. Thus, |B′| = 1

c2 |cA|. Repeating this process, we find
|A| = 1

cn |cA| or |cA| = cn|A|
Exercise 168
(a) Let E1 be the elementary matrix corresponding to type I elementary row
operation. Find |E1|.
(b) Let E2 be the elementary matrix corresponding to type II elementary row
operation. Find |E2|.
(c) Let E3 be the elementary matrix corresponding to type III elementary row
operation. Find |E3|.

Solution.
(a) The matrix E1 is obtained from the identity matrix by multiplying a row of
In by a nonzero scalar c. In this case,|E1| = c|In| = c.
(b) E2 is obtained from In by adding a multiple of a row to another row. Thus,
|E2| = |In| = 1.
(c) The matrix E3 is obtained from the matrix In by interchanging two rows.
In this case, |E3| = −|In| = −1

Exercise 169
Find, by inspection, the determinant of the following matrix.

A =




3 −1 4 −2
6 −2 5 2
5 8 1 4
−9 3 −12 6




Solution.
Since the first and the fourth rows are proportional then the determinant is zero
by Exercise 166

3.3 Properties of the Determinant

In this section we shall derive some of the fundamental properties of the de-
terminant. One of the immediate consequences of these properties will be an
important determinant test for the invertibility of a square matrix.

Theorem 28
Let A = (aij) be an n× n square matrix. Then |AT | = |A|.
Proof.
Since A = (aij) then AT = (aji). Using the definition of determinant we have

|AT | =
∑

σ∈Sn
sgn(σ)aσ(1),1aσ(2),2 · · · aσ(n),n



84 CHAPTER 3. DETERMINANTS

Now, since σ is a permutation then aσ(1),1aσ(2),2 · · · aσ(n),n = a1k1a2k2 · · · ankn
,

where σ(ki) = i, 1 ≤ i ≤ n. We claim that τ = (k1k2 · · · kn) = σ−1. Indeed, let
τ(i) = ki for 1 ≤ i ≤ n. Then (σ ◦ τ)(i) = σ(τ(i)) = σ(ki) = i, i.e. σ ◦ τ = id.
Hence, τ = σ−1.
Next, by Theorem 25, sgn(τ) = sgn(σ) and therefore

|AT | =
∑

σ∈Sn
sgn(τ)a1,τ(1)a2,τ(2) · · · an,τ(n)

=
∑

τ∈Sn
sgn(τ)a1,τ(1)a2,τ(2) · · · an,τ(n) = |A|.

This ends a proof of the theorem

It is worth noting here that Theorem 28 says that every property about de-
terminants that contains the word ”row” in its statement is also true when the
word ”column” is substituted for ”row”.

Exercise 170
Prove that if two columns of a square matrix are proportional then the matrix
has determinant equals to zero.

Solution.
If A is a square matrix with two proportional columns then AT has two pro-
portional rows. By Exercise 166 and Theorem 28 we have |A| = |AT | = 0

Exercise 171
Show that if A is matrix with a column consisting of 0 then |A| = 0.

Solution.
If A has a column consisting entirely of 0 then AT has a row consisitng entirely
of 0. By Theorem 28 and Exercise 162 we have |A| = |AT | = 0

Next, we prove that the determinant of the product of two matrices is the
product of determinants and that A is invertible if and only if A has nonzero
determinant. The next result relates the determinant of a product of a matrix
with an elementary matrix.

Theorem 29
If E is an elementary matrix then |EA| = |E||A|.

Proof.
If E is an elementary matrix of type I then |E| = c and by Theorem 27
|EA| = c|A| = |E||A|. If E is an elementary matrix of type II, then |E| = 1
and |EA| = |A| = |E||A|. Finally, if E is an elementary matrix of type III then
|E| = −1 and |EA| = −|A| = |E||A|

By induction one can extend the above result.
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Theorem 30
If B = E1E2 · · ·EnA, where E1, E2, · · · , En are elementary matrices, then |B| =
|E1||E2| · · · |En||A|.
Proof.
This follows from Theorem 29. Indeed, |B| = |E1(E2 · · ·EnA)| = |E1||E2(E3 · · ·EnA)| =
· · · = |E1||E2| · · · |En||A|

Next we establish a condition for a matrix to be invertible.

Theorem 31
If A is an n× n matrix then A is nonsingular if and only if |A| 6= 0.

Proof
If A is nonsingular then A is row equivalent to In (Theorem 19). That is,
A = EkEk−1 · · ·E1In. By Theorem 30 we have |A| = |Ek| · · · |E1||In| 6= 0 since
if E is of type I then |E| = c 6= 0; if E is of type II then |E| = 1, and if E is of
type III then |E| = −1.
Now, suppose that |A| 6= 0. If A is singular then by Theorem 22, A is row
equivalent to a matrix B that has a row of zeros. Also, B = EkEk−1 · · ·E1A.
By Theorem 30, 0 = |B| = |Ek||Ek−1| · · · |A| 6= 0, a contradiction. Hence, A
must be nonsingular.

The following result follows from Theorems 19 and 31.

Theorem 32
The following statements are all equivalent:
(i) A is nonsingular.
(ii) |A| 6= 0.
(iii) rank(A) = n.
(iv) A is row equivalent to In.
(v) The homogeneous systen Ax = 0 has only the trivial solution.

Exercise 172
Prove that |A| = 0 if and only if Ax = 0 has a nontrivial solution.

Solution.
If |A| = 0 then according to Theorem 32 the homogeneous system Ax = 0 must
have a nontrivial solution. Conversely, if the homogeneous system Ax = 0 has
a nontrivial solution then A must be singular by Theorem 32. By Theorem 32
(a), |A| = 0

Theorem 33
If A and B are n× n matrices then |AB| = |A||B|.
Proof.
If A is singular then AB is singular and therefore |AB| = 0 = |A||B| since |A| =
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0. So assume that A is nonsingular. Then by Theorem 32, A = EkEk−1 · · ·E1In.
By Theorem 30 we have |A| = |Ek||Ek−1| · · · |E1|. Thus, |AB| = |EkEk−1 · · ·E1B| =
|Ek||Ek−1| · · · |E1||B| = |A||B|.

Exercise 173
Is it true that |A + B| = |A|+ |B|?

Solution.
No. Consider the following matrices.

A =
(

1 0
0 −1

)
, B =

( −1 0
0 1

)

Then |A + B| = |0| = 0 and |A|+ |B| = −2

Exercise 174
Show that if A is invertible then |A−1| = 1

|A| .

Solution.
If A is invertible then A−1A = In. Taking the determinant of both sides we find
|A−1||A| = 1. That is, |A−1| = 1

|A| . Note that since A is invertible then |A| 6= 0

Exercise 175
Let A and B be two similar matrices, i.e. there exists a nonsingular matrix P
such that A = P−1BP. Show that |A| = |B|.

Solution.
Using Theorem 33 and Exercise 174 we have, |A| = |P−1BP | = |P−1||B||P | =
1
|P | |B||P | = |B|. Note that since P is nonsingular then |P | 6= 0

3.4 Finding A−1 Using Cofactor Expansions

In Section 3.2 we discussed the row reduction method for computing the de-
terminant of a matrix. This method is well suited for computer evaluation of
determinants because it is systematic and easily programmed. In this section
we introduce a method for evaluating determinants that is useful for hand com-
putations and is important theoretically. Namely, we will obtain a formula for
the inverse of an invertible matrix as well as a formula for the solution of square
systems of linear equations.
Let A = (aij) be an n×n matrix. Let Mij be the (n−1)× (n−1) submatrix of
A obtained by deleting the ith row and the jth column of A. The determinant
of Mij is called the minor of the entry aij . The number Cij = (−1)i+j |Mij |
is called the cofactor of the entry aij .
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Exercise 176
Let

A =




3 1 −4
2 5 6
1 4 8




Find the minor and the cofactor of the entry a32 = 4.

Solution.
The minor of the entry a32 is

|M32| =
∣∣∣∣

3 −4
2 6

∣∣∣∣ = 26

and the cofactor is C32 = (−1)3+2|M32| = −26

Note that the cofactor and the minor of an entry differ only in sign. A quick way
for determining whether to use the + or − is to use the following checkboard
array 


+ − + − · · ·
− + − + · · ·
...

...
...

...
...




In order to prove the main result of this section, we first prove the following

Theorem 34
Let A = (aij), A′ = (a′ij), and A′′ = (a′′ij) be n × n matrices such that aij =
a′ij = a′′ij if i 6= r and a′′rj = arj + a′rj . Then

|A′′| = |A|+ |A′|.

The same result holds for columns.

Proof.
Using the definition of determinant we have

|A′′| =
∑

σ∈Sn
sgn(σ)a′′1σ(1)a

′′
2σ(2) · · · a′′rσ(r) · · · a′′nσ(n)

=
∑

σ∈Sn
sgn(σ)a′′1σ(1)a

′′
2σ(2) · · · (arσ(r) + a′rσ(r) · · · a′′nσ(n)

=
∑

σ∈Sn
sgn(σ)a′′1σ(1)a

′′
2σ(2) · · · arσ(r) · · · a′′nσ(n)

+
∑

σ∈Sn
sgn(σ)a′′1σ(1)a

′′
2σ(2) · · · a′rσ(r) · · · a′′nσ(n)

=
∑

σ∈Sn
sgn(σ)a1σ(1)a2σ(2) · · · arσ(r) · · · anσ(n)

+
∑

σ∈Sn
sgn(σ)a′1σ(1)a

′
2σ(2) · · · a′rσ(r) · · · a′nσ(n)

= |A|+ |A′|.

Since |AT | = |A| the same result holds for columns.
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Exercise 177
Prove the following identity without evaluating the determinants .

∣∣∣∣∣∣

a1 b1 a1 + b1 + c1

a2 b2 a2 + b2 + c2

a3 b3 a3 + b3 + c3

∣∣∣∣∣∣
=

∣∣∣∣∣∣

a1 b1 c1

a2 b2 c2

a3 b3 c3

∣∣∣∣∣∣
Solution.
By the previous theorem and Exercise 170 we have
∣∣∣∣∣∣

a1 b1 a1 + b1 + c1

a2 b2 a2 + b2 + c2

a3 b3 a3 + b3 + c3

∣∣∣∣∣∣
=

∣∣∣∣∣∣

a1 b1 a1

a2 b2 a2

a3 b3 a3

∣∣∣∣∣∣
+

∣∣∣∣∣∣

a1 b1 b1

a2 b2 b2

a3 b3 b3

∣∣∣∣∣∣
+

∣∣∣∣∣∣

a1 b1 c1

a2 b2 c2

a3 b3 c3

∣∣∣∣∣∣

=

∣∣∣∣∣∣

a1 b1 c1

a2 b2 c2

a3 b3 c3

∣∣∣∣∣∣
The following result is known as the Laplace expansion of |A| along a row
(respectively a column).

Theorem 35
If aij denotes the ijth entry of A and Cij is the cofactor of the entry aij then
the expansion along row i is

|A| = ai1Ci1 + ai2Ci2 + · · ·+ ainCin.

The expansion along column j is given by

|A| = a1jC1j + a2jC2j + · · ·+ anjCnj .

Proof.
We prove the first formula. The second formula follows from the first because
of the fact that |AT | = |A|. Let r1, r2, · · · , rn denote the rows of A. By Theorem
34 we have

|A| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

r1

r2

...∑n
j=1 aijej

...
rn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
∑n

j=1 aij

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

r1

r2

...
ej

...
rn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
where ej is the 1× n matrix with 1 at the jth position and zero elsewhere. We
will show that ∣∣∣∣∣∣∣∣∣∣∣∣∣∣

r1

r2

...
ej

...
rn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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is just the cofactor of the entry aij .
By Theorem 27 (d) we have

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 a12 · · · a1j · · · a1n

a21 a22 · · · a2j · · · a2n

...
...

...
...

...
...

0 0 · · · 1 · · · 0
...

...
...

...
...

...
an1 an2 · · · anj · · · ann

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 a12 · · · 0 · · · a1n

a21 a22 · · · 0 · · · a2n

...
...

...
...

...
...

0 0 · · · 1 · · · 0
...

...
...

...
...

...
an1 an2 · · · 0 · · · ann

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Now, move the ith row to the first row using (i−1) successive row interchanges.
Then, move the jth column to the first using (j − 1) successive column inter-
changes. Thus, we have

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

r1

r2

...
ej

...
rn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= (−1)i+j

∣∣∣∣
1 01×(n−1)

0(n−1)×1 Mij

∣∣∣∣

where Mij is the (n− 1)× (n− 1) matrix obtained from A by deleting the ith
row and the jth column of A.
Let E1, E2, · · · , Ek be (n−1)×(n−1) elementary matrices such that EkEk−1 · · ·E1Mij =
Cij is an upper triangular matrix. Then the matrices E′

1, E
′
2, · · · , E′

k are n× n
elementary matrices such that

∣∣∣∣E′
kE′

k−1 · · ·E′
1

(
1 01×(n−1)

0(n−1)×1 Mij

)∣∣∣∣ =
∣∣∣∣

1 01×(n−1)

0(n−1)×1 Cij

∣∣∣∣

where

E′
i =

(
1 01×(n−1)

0(n−1)×1 Ei

)

Therefore,
∣∣∣∣

1 01×(n−1)

0(n−1)×1 Mij

∣∣∣∣ =
|Cij |

|Ek||Ek−1 · · · |E1| = |Mij |.

Hence, ∣∣∣∣∣∣∣∣∣∣∣∣∣∣

r1

r2

...
ej

...
rn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= (−1)i+j |Mij | = Cij
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This ends a proof of the theorem

Remark
In general, the best strategy for evaluating a determinant by cofactor expansion
is to expand along a row or a column having the largest number of zeros.

Exercise 178
Find the determinant of each of the following matrices.
(a)

A =




0 0 a13

0 a22 a23

a31 a32 a33




(b)

A =




0 0 0 a14

0 0 a23 a24

0 a32 a33 a34

a41 a42 a43 a44




Solution.
(a) Expanding along the first column we find

|A| = −a31a22a13.

(b) Again, by expanding along the first column we obtain

|A| = a41a32a23a34

Exercise 179
Use cofactor expansion along the first column to find |A| where

A =




3 5 −2 6
1 2 −1 1
2 4 1 5
3 7 5 3




Solution.
Expanding along the first column we find

|A| = 3C11 + C21 + 2C31 + 3C41

= 3|M11| − |M21|+ 2|M31| − 3|M41|
= 3(−54) + 78 + 2(60)− 3(18) = −18

If A is an n× n square matrix and Cij is the cofactor of the entry aij then the
transpose of the matrix




C11 C12 . . . C1n

C21 C22 . . . C2n

...
...

...
Cn1 Cn2 . . . Cnn




is called the adjoint of A and is denoted by adj(A).
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Exercise 180
Let

A =




3 2 −1
1 6 3
2 −4 0


 ,

Find adj(A).

Solution.
We first find the matrix of cofactors of A.




C11 C12 C13

C21 C22 C23

C31 C32 C33


 =




12 6 −16
4 2 16

12 −10 16




The adjoint of A is the transpose of this cofactor matrix.

adj(A) =




12 4 12
6 2 −10

−16 16 16




Our next goal is to find another method for finding the inverse of a nonsingular
square matrix. To this end, we need the following result.

Theorem 36
For i 6= j we have

ai1Cj1 + ai2Cj2 + . . . + ainCjn = 0.

Proof.
Let B be the matrix obtained by replacing the jth row of A by the ith row
of A. Then B has two identical rows and therefore |B| = 0(See Theorem 27
(c)). Expand |B| along the jth row. The elements of the jth row of B are
ai1, ai2, . . . , ain. The cofactors are Cj1, Cj2, . . . , Cjn. Thus

0 = |B| = ai1Cj1 + ai2Cj2 + . . . + ainCjn

This concludes a proof of the theorem

The following theorem states that the product A · adj(A) is a scalar matrix.

Theorem 37 If A is an n× n matrix then A · adj(A) = |A|In.

Proof.
The (i, j) entry of the matrix

A.adj(A) =




a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

...
an1 an2 . . . ann







C11 C21 . . . Cn1

C12 C22 . . . Cn2

...
...

...
C1n C2n . . . Cnn



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is given by the sum

ai1Cj1 + ai2Cj2 + . . . + ainCjn = |A|

if i = j and 0 if i 6= j. Hence,

A.adj(A) =




|A| 0 . . . 0
0 |A| . . . 0
...

...
...

0 0 . . . |A|


 = |A|In.

This ends a proof of the theorem

The following theorem provides a way for finding the inverse of a matrix us-
ing the notion of the adjoint.

Theorem 38
If |A| 6= 0 then A is invertible and A−1 = adj(A)

|A| . Hence, adj(A) = A−1|A|.

Proof.
By Theorem 37 we have that A(adj(A)) = |A|In. If |A| 6= 0 then A(adj(A)

|A| ) = In.

By Theorem 20, A is invertible with inverse A−1 = adj(A)
|A| .

Exercise 181
Let

A =




3 2 −1
1 6 3
2 −4 0




Use Theorem 38 to find A−1.

Solution.
First we find the determinant of A given by |A| = 64. By Theorem 38

A−1 =
1
|A|adj(A) =




3
16

1
16

3
16

3
32

1
32 − 5

32
− 1

4
1
4

1
4




In the next theorem we discuss three properties of the adjoint matrix.

Theorem 39
Let A and B denote invertible n× n matrices. Then,

(a) adj(A−1) = (adj(A))−1.
(b) adj(AT ) = (adj(A))T .
(c) adj(AB) = adj(B)adj(A).
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Proof.
(a) Since A(adj(A)) = |A|In then adj(A) is invertible and (adj(A))−1 = A

|A| =
(A−1)−1|A−1| = adj(A−1).

(b) adj(AT ) = (AT )−1|AT | = (A−1)T |A| = (adj(A))T .

(c) We have adj(AB) = (AB)−1|AB| = B−1A−1|A||B| = (B−1|B|)(A−1|A|) =
adj(B)adj(A).

Exercise 182
Show that if A is singular then A.adj(A) = 0.

Solution.
If A is singular then |A| = 0. But then A · adj(A) = |A|In = 0

3.5 Cramer’s Rule

Cramer’s rule is another method for solving a linear system of n equations in n
unknowns. This method is reasonable for inverting, for example, a 3× 3 matrix
by hand; however, the inversion method discussed before is more efficient for
larger matrices.

Theorem 40
Let Ax = b be a matrix equation with A = (aij), x = (xi), b = (bi). Then we
have the following matrix equation




|A|x1

|A|x2

...
|A|xn


 =




|A1|
|A2|

...
|An|




where Ai is the matrix obtained from A by replacing its ith column by b. It fol-
lows that

(1) If |A| 6= 0 then the above system has a unique solution given by

xi =
|Ai|
|A| ,

where 1 ≤ i ≤ n.
(2) If |A| = 0 and |Ai| 6= 0 for some i then the system has no solution.
(3) If |A| = |A1| = . . . = |An| = 0 then the system has an infinite number of
solutions.

Proof.
We have the following chain of equalities

|A|x = |A|(Inx)
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= (|A|In)x
= adj(A)Ax

= adj(A)b

The ith entry of the vector |A|x is given by

|A|xi = b1C1i + b2C2i + . . . + bnCni.

On the other hand by expanding |Ai| along the ith column we find that

|Ai| = C1ib1 + C2ib2 + . . . + Cnibn.

Hence
|A|xi = |Ai|.

Now, (1), (2), and (3) follow easily. This ends a proof of the theorem

Exercise 183
Use Cramer’s rule to solve




−2x1 + 3x2 − x3 = 1
x1 + 2x2 − x3 = 4
−2x1 − x2 + x3 = −3.

Solution.
By Cramer’s rule we have

A =



−2 3 −1
1 2 −1
−2 −1 1


 , |A| = −2.

A1 =




1 3 −1
4 2 −1
−3 −1 1


 , |A1| = −4.

A2 =



−2 1 −1
1 4 −1
−2 −3 1


 , |A2| = −6.

A3 =



−2 3 1
1 2 4
−2 −1 −3


 , |A3| = −8.

Thus, x1 = |A1|
|A| = 2, x2 = |A2|

|A| = 3, x3 = |A3|
|A| = 4

Exercise 184
Use Cramer’s rule to solve





5x1 − 3x2 − 10x3 = −9
2x1 + 2x2 − 3x3 = 4
−3x1 − x2 + 5x3 = 1.
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Solution.
By Cramer’s rule we have

A =




5 −3 −10
2 2 − 3
−3 −1 5


 , |A| = −2.

A1 =



−9 −3 −10
4 2 − 3
1 −1 5


 , |A1| = 66.

A2 =




5 −9 −10
2 4 − 3
−3 1 5


 , |A2| = −16.

A3 =




5 −3 −9
2 2 4
−3 −1 1


 , |A3| = 36.

Thus, x1 = |A1|
|A| = −33, x2 = |A2|

|A| = 8, x3 = |A3|
|A| = −18

Exercise 185
Let ABC be a triangle such that dist(A,B) = c, dist(A, C) = b, dist(B,C) = a,
the angle between AB and AC is α, between BA and BC is β, and that between
CA and CB is γ.
(a) Use trigonometry to show that





b cos γ + c cos β = a
c cosα + a cos γ = b
a cosβ + b cosα = c

(b) Use Cramer’s rule to express cosα, cosβ, and cos γ in terms of a, b, and c.

Solution.
(a) Let A1 be the leg of the perpendicular to BC through A. Then the triangles
A1AB and A1AC are right triangles. In this case, we have cos β = dist(B,A1)

c
or dist(B, A1) = c cos β. Simlarly, dist(C,A1) = b cos γ. But a = dist(B,A1) +
dist(C,A1) = b cos γ + c cosβ. Similar argument for the remaining two equali-
tites.
(b)

A =




0 c b
c 0 a
b a 0


 , |A| = 2abc.

A1 =




a c b
b 0 a
c a 0


 , |A1| = a(c2 + b2)− a3.
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A2 =




0 a b
c b a
b c 0


 , |A2| = b(a2 + c2)− b3.

A3 =




0 c a
c 0 b
b a c


 , |A3| = c(a2 + b2)− c3.

Thus, cos α = |A1|
|A| = c2+b2−a2

2bc , cos β = |A2|
|A| = a2+c2−b2

2ac , cos γ = |A3|
|A| = a2+b2−c2

2ab

3.6 Review Problems

Exercise 186
(a) Find the number of inversions in the permutation (41352).
(b) Is this permutation even or odd?

Exercise 187
Evaluate the determinant of each of the following matrices
(a)

A =
(

3 5
−2 4

)

(b)

A =



−2 7 6
5 1 −2
3 8 4




Exercise 188
Find all values of t for which the determinant of the following matrix is zero.

A =




t− 4 0 0
0 t 0
0 3 t− 1




Exercise 189
Solve for x

∣∣∣∣
x −1
3 1− x

∣∣∣∣ =

∣∣∣∣∣∣

1 0 −3
2 x −6
1 3 x− 5

∣∣∣∣∣∣

Exercise 190
Evaluate the determinant of the following matrix

A =




1 2 3
4 5 6
0 0 0



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Exercise 191
Evaluate the determinant of the following matrix.

∣∣∣∣∣∣∣∣∣∣

2 7 −3 8 3
0 −3 7 5 1
0 0 6 7 6
0 0 0 9 8
0 0 0 0 4

∣∣∣∣∣∣∣∣∣∣
Exercise 192
Use the row reduction technique to find the determinant of the following matrix.

A =




2 5 −3 −2
−2 −3 2 −5
1 3 −2 2
−1 −6 4 3




Exercise 193
Given that ∣∣∣∣∣∣

a b c
d e f
g h i

∣∣∣∣∣∣
= −6,

find
(a) ∣∣∣∣∣∣

d e f
g h i
a b c

∣∣∣∣∣∣
,

(b) ∣∣∣∣∣∣

3a 3b 3c
−d −e −f
4g 4h 4i

∣∣∣∣∣∣
(c) ∣∣∣∣∣∣

a + g b + h c + i
d e f
g h i

∣∣∣∣∣∣
(d) ∣∣∣∣∣∣

−3a −3b −3c
d e f

g − 4d h− 4e i− 4f

∣∣∣∣∣∣
Exercise 194
Determine by inspection the determinant of the following matrix.




1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
2 4 6 8 10



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Exercise 195
Find the determinant of the 1× 1 matrix A = (3).

Exercise 196
Let A be a 3× 3 matrix such that |2A| = 6. Find |A|.

Exercise 197
Show that if n is any positive integer then |An| = |A|n.

Exercise 198
Show that if A is an n× n skew-symmetric and n is odd then |A| = 0.

Exercise 199
Show that if A is orthogonal, i.e. AT A = AAT = In then |A| = ±1. Note that
A−1 = AT .

Exercise 200
If A is a nonsingular matrix such that A2 = A, what is |A|?

Exercise 201
True or false: If

A =




1 0 0
1 2 0
3 1 0




then rank(A) = 3. Justify your answer.

Exercise 202
Find out, without solving the system, whether the following system has a non-
trivial solution 




x1 − 2x2 + x3 = 0
2x1 + 3x2 + x3 = 0
3x1 + x2 + 2x3 = 0

Exercise 203
For which values of c does the matrix

A =




1 0 −c
−1 3 1
0 2c −4




have an inverse.

Exercise 204
If |A| = 2 and |B| = 5, calculate |A3B−1AT B2|.

Exercise 205
Show that |AB| = |BA|.
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Exercise 206
Show that |A + BT | = |AT + B| for any n× n matrices A and B.

Exercise 207
Let A = (aij) be a triangular matrix. Show that |A| 6= 0 if and only if aii 6= 0,
for 1 ≤ i ≤ n.

Exercise 208
Express ∣∣∣∣

a1 + b1 c1 + d1

a2 + b2 c2 + d2

∣∣∣∣
as a sum of four determinants whose entries contain no sums.

Exercise 209
Let

A =




3 −2 1
5 6 2
1 0 −3




(a) Find adj(A).
(b) Compute |A|.
Exercise 210
Find the determinant of the matrix

A =




3 0 0 0
5 1 2 0
2 6 0 −1
−6 3 1 0




Exercise 211
Find the determinant of the following Vandermonde matrix.

A =




1 1 1
a b c
a2 b2 c2




Exercise 212
Let A be an n× n matrix. Show that |adj(A)| = |A|n−1.

Exercise 213
If

A−1 =




3 0 1
0 2 3
3 1 −1




find adj(A).

Exercise 214
If |A| = 2, find |A−1 + adj(A)|.
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Exercise 215
Show that adj(αA) = αn−1adj(A), where n is a positive integer.

Exercise 216
Consider the matrix

A =




1 2 3
2 3 4
1 5 7




(a) Find |A|.
(b) Find adj(A).
(c) Find A−1.

Exercise 217
Prove that if A is symmetric then adj(A) is also symmetric.

Exercise 218
Prove that if A is a nonsingular triangular matrix then A−1 is also triangular.

Exercise 219
Let A be an n× n matrix.
(a) Show that if A has integer entries and |A| = 1 then A−1 has integer entries
as well.
(b) Let Ax = b. Show that if the entries of A and b are integers and |A| = 1
then the entries of x are also integers.

Exercise 220
Show that if Ak = 0 for some positive integer k then A is singular.

Exercise 221
Use Cramer’s Rule to solve





x1 + 2x3 = 6
−3x1 + 4x2 + 6x3 = 30
−x1 − 2x2 + 3x3 = 8

Exercise 222
Use Cramer’s Rule to solve





5x1 + x2 − x3 = 4
9x1 + x2 − x3 = 1
x1 − x2 + 5x3 = 2



Chapter 4

The Theory of Vector
Spaces

In Chapter 2, we saw that the operations of addition and scalar multiplication
on the set Mmn of m×n matrices possess many of the same algebraic properties
as addition and scalar multiplication on the set IR of real numbers. In fact, there
are many other sets with operations that share these same properties. Instead
of studying these sets individually, we study them as a class.
In this chapter, we define vector spaces to be sets with algebraic operations
having the properties similar to those of addition and scalar multiplication on
IR and Mmn. We then establish many important results that apply to all vector
spaces, not just IR and Mmn.

4.1 Vectors in Two and Three Dimensional Spaces

Many Physical quantities are represented by vectors. For examples, the velocity
of a moving object, displacement, force of gravitation, etc. In this section we
discuss the geometry of vectors in two and three dimensional spaces, discuss
the arithmetic operations of vectors and study some of the properties of these
operations. As we shall see later in this chapter, the present section will provide
us with an example of a vector space, a concept that will be defined in the next
section, that can be illustrated geometrically.
A vector in space is a directed segment with a tail, called the initial point,
and a tip, called the terminal point. A vector will be denoted by ~v and scalars
by greek letters α, β, · · · Finally, we point out that most of the results of this
section hold for vectors in IR2.

Two vectors ~v and ~w are said to be equivalent if they have the same length
and the same direction. We write ~v = ~w.

Since we can always draw a vector with initial point O that is equivalent to

101
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a given vector then from now on we assume that the vectors have all the same
initial point O unless indicated otherwise. The coordinates (x, y, z) of the ter-
minal point of a vector ~v are called the components of ~v and we write

~v = (x, y, z).

In terms of components, two vectors ~v = (x, y, z) and ~w = (x′, y′, z′) are equiv-
alent if and only if x = x′, y = y′, and z = z′.
Given two vectors ~v = (x1, y1, z1) and ~w = (x2, y2, z2), we define the sum ~v + ~w
to be the vector

~v + ~w = (x1 + x2, y1 + y2, z1 + z2).

Geometrically, the ~v + w is the diagonal of the parallelogram with sides the
vectors ~v and ~w.
We define the negative vector −~v to be the vector

−~v = (−x1,−y1,−z1)

and we define

~v − ~w = ~v + (−~w) = (x1 − x2, y1 − y2, z1 − z2).

Assuming that ~v and ~w have the same initial point, the vector ~v − ~w is the
vector with initial point the terminal point of ~w and its terminal point is the
terminal point of ~v.
If α is a scalar we define α~v to be the vector

α~v = (αx1, αy1, αz1).

With the above definitions, every vector ~u = (x, y, z) can be expressed as a
combination of the three vectors ~i = (1, 0, 0),~j = (0, 1, 0), and ~k = (0, 0, 1).
That is

~u = x~i + y~j + z~k.

Exercise 223
Given two points P1(x1, y1, z1) and P2(x2, y2, z2), find the components of the
vector −−−→P1P2.

Solution.
The vector −−−→P1P2 is the difference of the vectors −−→OP1 and −−→OP2 so−−−→
P1P2 = −−→

OP2 −−−→OP1 = (x2, y2, z2)− (x1, y1, z1) = (x2 − x1, y2 − y1, z2 − z1)

Exercise 224
Let ~u = (1, 2, 3), ~v = (2,−3, 1), and ~w = (3, 2,−1).

(a) Find the components of the vector ~u− 3~v + 8~w.
(b) Find scalars c1, c2, c3 such that

c1~u + c2~v + c3 ~w = (6, 14,−2).
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Solution.
(a) ~u − 3~v + 8~w = (1, 2, 3) − 3(2,−3, 1) + 8(3, 2,−1) = (1, 2, 3) − (6,−9, 3) +
(24, 16,−8) = (19, 27,−8).
(b) We have (c1, 2c1, 3c1)+(2c2,−3c2, c2)+(3c3, 2c3,−c3) = (c1+2c2+3c3, 2c1−
3c2 + 2c3, 3c1 + c2 − c3) = (6, 14,−2). This yields the linear system





c1 + 2c2 + 3c3 = 6
2c1 − 3c2 + 2c3 = 14
3c1 + c2 − c3 = −2

The augmented matrix of the system is



1 2 3 6
2 −3 2 14
3 1 −1 −2




The reduction of this matrix to row-echelon form is

Step 1: r2 ← r2 − 2r1 and r3 ← r3 − 3r1




1 2 3 6
0 −7 − 4 2
0 −5 −10 −20




Step 2: r2 ← 2r2 − 3r3




1 2 3 6
0 1 22 64
0 −5 −10 −20




Step 3: r3 ← r3 + 5r2 


1 2 3 6
0 1 22 64
0 0 100 300




Step 4: r3 ← 1
100r3 


1 2 3 6
0 1 22 64
0 0 1 3




The corresponding system is




c1 + 2c2 + 3c3 = 6
c2 + 22c3 = 64

c3 = 3

Solving the above triangular system to obtain: c1 = 1, c2 = −2, c3 = 3

The basic properties of vector addition and scalar multiplication are collected
in the following theorem.
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Theorem 41
If ~u,~v, and ~w are vectors and α, β are scalars then the following properties hold.

(a) ~u + ~v = ~v + ~u.
(b) (~u + ~v) + ~w = ~u + (~v + ~w).
(c) ~u +~0 = ~u, where ~0 = (0, 0, 0).
(d) ~u + (−~u) = ~0.
(e) α(β~u) = (αβ)~u.
(f) α(~u + ~v) = α~u + α~v.
(g) (α + β)~u = α~u + β~u.
(h) 1~u = ~u.

Proof.
The prove of this theorem uses the properties of addition and scalar multipli-
cation of real numbers. We prove (a). The remaining properties can be proved
easily. Suppose that ~u = (x1, y1, z1) and ~v = (x2, y2, z2). Then using the fact
that the addition of real numbers is commutative we have

~u + ~v = (x1, y1, z1) + (x2, y2, z2)
= (x1 + x2, y1 + y2, z1 + z2)
= (x2 + x1, y2 + y1, z2 + z1)
= (x2, y2, z2) + (x1, y1, z1)
= ~v + ~u

This ends the proof of (a)

Exercise 225
(a) Let ~u = (x1, y1, z1). Show that the length of ~u, known as the norm of ~u, is
given by the expression

||~u|| =
√

x2
1 + y2

1 + z2
1 .

(b) Given two points P1(x1, y1, z1) and P2(x2, y2, z2) show that the distance be-
tween these points is given by the formula

||−−−→P1P2|| =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2.

Solution.
(a) Let ~u = −−→

OP. Let Q be the orthogonal projection of P onto the xy-plane.
Then by the Pythagorean Theorem we have

||−−→OQ||2 + ||−−→PQ||2 = ||−−→OP ||2

But ||−−→OQ||2 = x2
1 + y2

1 and ||−−→PQ||2 = z2
1 . Thus,

||~u||2 = x2
1 + y2

1 + z2
1

Now take the square root of both sides.
(b) By Exercise 223, −−−→P1P2 = (x2 − x1, y2 − y1, z2 − z1). Hence, by part (a) we
have

||−−−→P1P2|| =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2
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Exercise 226
Show that if ~u is a non zero vector then the length of the vector ~u

||~u|| is 1.

Solution.
If ~u = (x, y, z) then ~u

||~u|| = ( x
||~u|| ,

y
||~u|| ,

z
||~u|| ). Hence,

|| ~u

||~u|| || =
√

x2

||~u||2 +
y2

||~u||2 +
z2

||~u||2 = 1

Exercise 227
Suppose that an xyz−coordinate system is translated to obtain a new system
x′y′z′ with origin the point O′(k, l, m). Let P be a point in the space. Suppose
that (x, y, z) are the coordinates of P in xyz−system and (x′, y′, z′) are the
coordinates of P in the x′y′z′− system. Show that x′ = x − k, y′ = y − l, z′ =
z −m.

Solution.
By Exercise 223,

−−→
O′P = (x−k, y− l, z−m) = (x′, y′, z′). Thus, x′ = x−k, y′ =

y − l, z′ = z −m

Next, we shall discuss a way for multiplying vectors. If ~u and ~v are two vectors
in the space and θ is the angle between them we define the inner product
(sometimes called scalar product or dot product) of ~u and ~v to be the num-
ber

< ~u,~v >= ||~u||||~v|| cos θ 0 ≤ θ ≤ π.

The following theorem lists the most important properties of the dot product.

Theorem 42
Let ~u = (x1, y1, z1), ~v = (x2, y2, z2) and ~w = (x3, y3, z3) be vectors and α be a
scalar. Then
(a) < ~u,~v >= x1x2 + y1y2 + z1z2.
(b) < ~u, ~u >= ||~u||2.
(c) < ~u,~v >=< ~v, ~u > .
(d) < ~u,~v + ~w >=< ~u,~v > + < ~u, ~w > .
(e) α < ~u,~v >=< α~u,~v >=< ~u, α~v > .
(f) < ~u, ~u >= 0 if and only if ~u = ~0.

Proof.
(a) Let −−→OP = ~u = (x1, y1, z1) and −−→OQ = ~v = (x2, y2, z2). Let θ be the angle
between them. Then −−→PQ = (x2 − x1, y2 − y1, z2 − z1). By the law of cosines we
have

||−−→PQ||2 = ||−−→OP ||2 + ||−−→OQ||2 − 2||−−→OP ||||−−→OQ|| cos θ
= ||~u||2 + ||~v||2 − 2||~u||||~v|| cos θ.
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But ||−−→PQ|| = ||~u− ~v||. Hence,

< ~u,~v > = ||~u||||~v|| cos θ
= 1

2 (||~u||2 + ||~v||2 − ||~u− ~v||2)
= 1

2 (x2
1 + y2

1 + z2
1 + x2

2 + y2
2 + z2

2 − (x2 − x1)2 − (y2 − y1)2 − (z2 − z1)2)
= x1x2 + y1y2 + z1z2.

(b) < ~u, ~u >= ||~u||2 = x2
1 + y2

1 + z2
1 .

(c) < ~u,~v >= x1x2 + y1y2 + z1z2 = x2x1 + y2y1 + z2z1 =< ~v, ~u > .
(d) < ~u,~v + ~w >= x1(x2 + x3) + y1(y2 + y3) + z1(z2 + z3) = (x1x2 + y1y2 +
z1z2) + (x1x3 + y1y3 + z1z3) =< ~u,~v > + < ~u, ~w > .
(e) α < ~u,~v >= α(x1x2 + y1y2 + z1z2) = (αx1)x2 + (αy1)y2 + (αz1)z2 =<
α~u,~v > .
(f) If < ~u, ~u >= 0 then x2

1 + y2
1 + z2

1 = 0 and this implies that x1 = y1 = z1 = 0.
That is, ~u = ~0. The converse is straightforward.

Exercise 228
Consider the vectors ~u = (2,−1, 1) and ~v = (1, 1, 2). Find < ~u,~v > and the
angle θ between these two vectors.

Solution.
Using the above theorem we find

< ~u,~v >= (2)(1) + (−1)(1) + (1)(2) = 3.

Also, ||~u|| = ||~v|| = √
6. Hence,

cos θ =
3
6

=
1
2

This implies that θ = π
3 radians.

Exercise 229
Two vectors are said to be orthogonal if < ~u,~v >= 0. Show that the two vectors
~u = (2,−1, 1) and ~v = (1, 1,−1) are orthogonal.

Solution.
Indeed, < ~u,~v >= (2)(1) + (−1)(1) + (1)(−1) = 0

Next, we discuss the decomposition of a vector into a sum of two vectors. To be
more precise, let ~u and ~w be two vectors with the same initial point Q and with
~w being horizontal. From the tip of ~u drop a perpendicular to the line through
~w, and construct the vector ~u1 from Q to the foot of this perpendicular. Next
form the vector ~u2 = ~u− ~u1. Clearly, ~u = ~u1 + ~u2, where ~u1 is parallel to ~w and
~u2 is perpendicular to ~w. We call ~u1 the orthogonal projection of ~u on ~w
and we denote it by proj~w~u.
The following theorem gives formulas for calculating ~u1 and ~u2.
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Theorem 43
For any two vectors ~u and ~w 6= 0 we have ~u1 = <~u,~w>

||~w||2 ~w and ~u2 = ~u− <~u,~w>
||~w||2 ~w.

Proof.
Since ~u1 is parallel to ~w then there is a scalar t such that ~u1 = t~w. Thus,
< ~u, ~w >=< t~w + ~u2, ~w >= t||~w||2+ < ~u2, ~w > . But ~u2 and ~w are orthogonal
so that the second term on the above equality is zero. Hence, t = <~u,~w>

||~w||2 . It

follows that ~u1 = t~w = <~u,~w>
||~w||2 ~w

Exercise 230
Let ~u = (2,−1, 3) and ~w = (4,−1, 2). Find ~u1 and ~u2.

Solution.
We have: < ~u, ~w >= 15 and ||~w||2 = 21. Thus, ~u1 = ( 20

7 ,− 5
7 , 10

7 ) and ~u2 =
~u− ~u1 = (− 6

7 ,− 2
7 , 11

7 )

Exercise 231
Given a vector ~v = (a, b, c) in IR3. The angles α, β, γ between ~v and the unit
vectors ~i,~j, and ~k, respectively, are called the direction angles of ~v and the
numbers cosα, cosβ, and cos γ are called the direction cosines of ~v.
(a) Show that cos α = a

||~v|| .
(b) Find cosβ and cos γ.
(c) Show that ~v

||~v|| = (cos α, cos β, cos γ).
(d) Show that cos2 α + cos2 β + cos2 γ = 1.

Solution.
(a) cos α = <~v,~i>

||~v||||~i|| = a
||~v|| .

(b) By repeating the arithmetic of part (a) one finds cos β = b
||~v|| and cos γ =

c
||~v|| .

(c) ~v
||~v|| = ( a

||~v|| ,
b
||~v|| ,

c
||~v|| ) = (cos α, cos β, cos γ).

(d) cosα2 + cos β2 + cos γ2 = || ~v
||~v|| ||2 = 1

Exercise 232
An interesting application of determinants and vectors is the construction of a
vector orthogonal to two given vectors.

(a) Given two vectors ~u = (x1, y1, z1) and ~v = (x2, y2, z2) then we define the
cross product of ~u and ~v to be the vector

~u× ~v =

∣∣∣∣∣∣

~i ~j ~k
x1 y1 z1

x2 y2 z2

∣∣∣∣∣∣

Find the components of the vector ~u× ~v.
(b) Find ~u× ~v, where ~u = (1, 2,−2), ~v = (3, 0, 1).
(c) Show that < ~u, ~u× ~v >= 0 and < ~v, ~u× ~v >= 0. Hence, ~u× ~v is orthogonal
to both ~u and ~v
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Solution.
(a) Evaluating the determinant defining ~u×~v we find ~u×~v = (y1z2−y2z1, x2z1−
x1z2, x1y2 − x2y1).
(b) Substituting in (a) we find ~u× ~v = (2,−7,−6).
(c) Indeed, < ~u, ~u×~v >= x1(y1z2−y2z1)+y1(x2z1−x1z2)+z1(x1y2−x2y1) = 0.
Similarly, < ~v, ~u× ~v >= 0

4.2 Vector Spaces, Subspaces, and Inner Prod-
uct Spaces

The properties listed in Theorem 41 of the previous section generalizes to IRn,
the Euclidean space to be discussed below. Also, these properties hold for the
collection Mmn of all m× n matrices with the operation of addition and scalar
multiplication. In fact there are other sets with operations satisfying the condi-
tions of Theorem 41. Thus, it make sense to study the group of sets with these
properties. In this section, we define vector spaces to be sets with algebraic
operations having the properties similar to those of addition and scalar multi-
plication on IRn and Mmn.

Let n be a positive integer. Let IRn be the collection of elements of the form
(x1, x2, . . . , xn), where the xis are real numbers. Define the following operations
on IRn :

(a) Addition: (x1, x2, . . . , xn) + (y1, y2, . . . , yn) = (x1 + y1, . . . , xn + yn)
(b) Multiplication of a vector by a scalar:

α(x1, x2, . . . , xn) = (αx1, αx2, . . . , αxn).

The basic properties of addition and scalar multiplication of vectors in IRn are
listed in the following theorem.

Theorem 44
The following properties hold, for u, v, w in IRn and α, β scalars:

(a) u + v = v + u
(b) u + (v + w) = (u + v) + w
(c) u + 0 = 0 + u = u where 0 = (0, 0, . . . , 0)
(d) u + (−u) = 0
(e) α(u + v) = αu + αv
(f) (α + β)u = αu + βu
(g) α(βu) = (αβ)u
(h) 1u = u.

Proof.
This is just a generalization of Theorem 41
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The set IRn with the above operations and properties is called the Euclidean
space.

A vector space is a set V together with the following operations:
(i) Addition: If u, v ∈ V then u + v ∈ V. We say that V is closed under
addition.
(ii) Multiplication of an element by a scalar: If α ∈ IR and u ∈ V then αu ∈ V .
That is, V is closed under scalar multiplication.
(iii) These operations satisfy the properties (a) - (h) of Theorem 44.

Exercise 233
Let F (IR) be the set of functions f : IR → IR. Define the operations

(f + g)(x) = f(x) + g(x)

and
(αf)(x) = αf(x).

Show that F (IR) is a vector space under these operations.

Solution.
The proof is based on the properties of the vector space IR.
(a) (f + g)(x) = f(x) + g(x) = g(x) + f(x) = (g + f)(x) where we have used
the fact that the addition of real numbers is commutative.
(b) [(f + g)+h](x) = (f + g)(x)+h(x) = (f(x)+ g(x))+h(x) = f(x)+ (g(x)+
h(x)) = f(x) + (g + h)(x) = [f + (g + h)](x).
(c) Let 0 be the zero function. Then for any f ∈ F (IR) we have (f + 0)(x) =
f(x) + 0(x) = f(x) = (0 + f)(x).
(d) [f + (−f)](x) = f(x) + (−f(x)) = f(x)− f(x) = 0 = 0(x).
(e) [α(f + g)](x) = α(f + g)(x) = αf(x) + αg(x) = (αf + αg)(x).
(f) [(α + β)f ](x) = (α + β)f(x) = αf(x) + βf(x) = (αf + βf)(x).
(g) [α(βf)](x) = α(βf)(x) = (αβ)f(x) = [(αβ)f ](x)
(h)(1f)(x) = 1f(x) = f(x).
Thus, F (IR) is a vector space

Exercise 234
Let Mmn be the collection of all m × n matrices. Show that Mmn is a vector
space using matrix addition and scalar multiplication.

Solution.
This follows from Theorem 8

Exercise 235
Let V = {(x, y) : x ≥ 0, y ≥ 0}. Show that the set V fails to be a vector space
under the standard operations on IR2.
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Solution.
For any (x, y) ∈ V with x, y > 0 we have −(x, y) 6∈ V. Thus, V is not a vector
space

The following theorem exhibits some properties which follow directly from the
axioms of the definition of a vector space and therefore hold for every vector
space.

Theorem 45
Let V be a vector space, u a vector in V and α is a scalar. Then the following
properties hold:

(a) 0u = 0.
(b) α0 = 0
(c) (−1)u = −u
(d) If αu = 0 then α = 0 or u = 0.

Proof.
(a) For any scalar α ∈ IR we have 0u = (α + (−α))u = αu + (−α)u =
αu + (−(αu)) = 0.
(b) Let u ∈ V. Then α0 = α(u + (−u)) = αu + α(−u) = αu + (−(αu)) = 0.
(c) u + (−u) = u + (−1)u = 0. So that −u = (−1)u.
(d) Suppose αu = 0. If α 6= 0 then α−1 exists and u = 1u = (α−1α)u =
α−1(αu) = α−10 = 0.

Now, it is possible that a vector space in contained in a larger vector space.
A subset W of a vector space V is called a subspace of V if the following two
properties are satisfied:

(i) If u, v are in W then u + v is also in W.
(ii) If α is a scalar and u is in W then αu is also in W.

Every vector space V has at least two subspaces:V itself and the subspace
consisting of the zero vector of V. These are called the trivial subspaces of V.

Exercise 236
Show that a subspace of a vector space is itself a vector space.

Solution.
All the axioms of a vector space hold for the elements of a subspace

The following exercise provides a criterion for deciding whether a subset S of a
vector space V is a subspace of V.

Exercise 237
Show that W is a subspace of V if and only if αu + v ∈ W for all u, v ∈ W and
α ∈ IR.
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Solution.
Suppose that W is a subspace of V. If u, v ∈ W and α ∈ IR then αu ∈ W and
therefore αu + v ∈ W. Conversely, suppose that for all u, v ∈ W and α ∈ IR
we have αu + v ∈ IR. In particular, if α = 1 then u + v ∈ W. If v = 0 then
αu + v = αu ∈ W. Hence, W is a subspace

Exercise 238
Let M22 be the collection of 2 × 2 matrices. Show that the set W of all 2 × 2
matrices having zeros on the main diagonal is a subspace of M22.

Solution.
The set W is the set

W =
{(

0 a
b 0

)
: a, b ∈ IR

}

Clearly, the 2× 2 zero matrix belongs to W. Also,

α

(
0 a
b 0

)
+

(
0 a′

b′ 0

)
=

(
0 αa + a′

αb + b′ 0

)
∈ W

Thus, W is a subspace of M22

Exercise 239
Let D([a, b]) be the collection of all differentiable functions on [a, b]. Show that
D([a, b]) is a subspace of the vector space of all functions defined on [a, b].

Solution.
We know from calculus that if f, g are differentiable functions on [a, b] and
α ∈ IR then αf + g is also differentiable on [a, b]. Hence, D([a, b]) is a subspace
of F ([a, b])

Exercise 240
Let A be an m × n matrix. Show that the set S = {x ∈ IRn : Ax = 0} is a
subspace of IRn.

Solution.
See Exercise 67 (a)

Vector spaces are important in defining spaces with some kind of geometry.
For example, the Euclidean space IRn. Such spaces are called inner product
spaces, a notion that we discuss next.
Recall that if ~u = (x1, y1, z1) and ~v = (x2, y2, z2) are two vectors in IR3 then
the inner product of ~u and ~v is given by the formula

< ~u,~v >= x1x2 + y1y2 + z1z2.

We have seen that the inner product satisfies the following axioms:
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(I1) < ~u,~v >=< ~v, ~u > (symmetry axiom)
(I2) < ~u,~v + ~w >=< ~u,~v > + < ~u, ~w > (additivity axiom)
(I3) < α~u,~v >= α < ~u,~v > (homogeneity axiom)
(I4) < ~u, ~u >≥ 0 and < ~u, ~u >= 0 if and only if ~u = ~0.

We say that IR3 with the inner product operation is an inner product space. In
general, a vector space with a binary operation that satisfies axioms (I1) - (I4)
is called an inner product space.
Some important properties of inner products are listed in the following theorem.

Theorem 46
In an inner product space the following properties hold:

(a) < 0, u >=< u, 0 >= 0.
(b) < u + v, w >=< u, w > + < v, w > .
(c) < u,αv >= α < u, v > .

Proof.
(a) < 0, u >=< u + (−u), u >=< u, u + (−u) >=< u, u > + < u,−u >=<
u, u > + < −u, u >=< u, u > − < u, u >= 0. Similarly, < u, 0 >= 0.
(b) < u + v, w >=< w, u + v >=< w, u > + < w, v >=< u,w > + < v, w > .
(c) < u, αv >=< αv, u >= α < v, u >= α < u, v > .

We shall now prove a result that will enable us to give a definition for the
cosine of an angle between two nonzero vectors in an inner product space. This
result has many applications in mathematics.

Theorem 47
If u and v are vectors in an inner product space then

< u, v >2≤< u, u >< v, v > .

This is known as the Cauchy-Schwarz inequality.

Proof.
If < u, u >= 0 or < v, v >= 0 then either u = 0 or v = 0. In this case,
< u, v >= 0 and the inequality holds. So suppose that < u, u > 6= 0 and
< v, v > 6= 0. Then < u

||u|| ,
v
||v|| >≤ 1. Since, || u

||u|| || = || v
||v|| || = 1 then it suffices

to show that < u, v >≤ 1 for all u, v of norm 1.
We have,

0 ≤ < u− v, u− v >
= < u, u > + < v, v > −2 < u, v >

This implies that 2 < u, v >≤ ||u||2 + ||v||2 = 1+1 = 2. That is, < u, v >≤ 1.

Exercise 241 (Normed Vector Spaces)
Let V be an inner product space. For u in V define ||u|| =< u, u >

1
2 . Show

that the norm function ||.|| satisfies the following axioms:
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(a) ||u|| ≥ 0.
(b) ||u|| = 0 if and only if u = 0.
(c) ||αu|| = |α|||u||.
(d) ||u + v|| ≤ ||u||+ ||v||. (Triangle Inequality)

Solution.
(a) Follows from I4.
(b) Follows from I4.
(c) ||αu||2 =< αu, αu >= α2 < u, u > and therefore ||αu|| = |α| < u, u >

1
2 =

|α|||u||.
(d) ||u + v||2 =< u + v, u + v >=< u, u > +2 < u, v > + < v, v >≤< u, u >

+2 < u, u >
1
2 < v, v >

1
2 + < v, v >= ||u||2 + 2||u||||v|| + ||v||2 = (||u|| + ||v||)2.

Now take the square root of both sides

Exercise 242
The purpose of this exercise is to provide a matrix formula for the dot product
in IRn. Let

~u =




u1

u2

...
un


 , ~v =




v1

v2

...
vn




be two vectors in IRn. Show that < ~u,~v >= ~vT ~u.

Solution.
On one hand, we have < ~u,~v >= u1v1 + u2v2 + · · ·unvn. On the other hand,

~vT ~u =
(

v1 v2 · · · vn

)



u1

u2

...
un


 = u1v1 + u2v2 + · · ·+ unvn

Exercise 243
Show that < A, B >= tr(ABT ), where tr is the trace function, is an inner
product in Mmn.

Solution.
(a) < A,A >= sum of the squares of the entries of A and therefore is non-
negative.
(b) < A, A >= 0 if and only if

∑n
i=1

∑n
k=1 a2

ik = 0 and this is equivalent to
A = 0.
(c) < A,B >= tr(ABT ) = tr((ABT )T ) = tr(BAT ) =< B,A > .
(d) < A,B+C >= tr(A(B+C)T ) = tr(ABT +ACT ) = tr(ABT )+tr(ACT ) =<
A,B > + < A,C > .
(e) < αA,B >= tr(αABT ) = αtr(ABT ) = α < A, B > . Thus, Mmn is an inner
product space
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Exercise 244
Show that < p, q >= a0b0 + a1b1 + · · · + anbn defines an inner product in Pn,
the vector space of all polynomials of degree n.

Solution.
(a) < p, p >= a2

0 + a2
1 + · · ·+ a2

n ≥ 0.
(b) < p, p >= 0 if and only if a2

0 + a2
1 + · · · + a2

n = 0 and this is equivalent to
a0 = a1 = · · · = an = 0.
(c) < p, q >= a0b0 + a1b1 + · · ·+ anbn = b0a0 + b1a1 + · · ·+ bnan =< q, p > .
(d) < αp, q >= αa0b0 + αa1b1 + · · · + αanbn = α(a0b0 + a1b1 + · · · + anbn) =
α < p, q > .
(e) < p, q + r >= a0(b0 + c0) + a1(b1 + c1) + · · ·+ an(bn + cn) = a0b0 + a0c0 +
a1b1 + a1c1 + · · ·+ anbn + ancn =< p, q > + < p, r > .
Therefore, Pn is an inner product space

4.3 Linear Independence

The concepts of linear combination, spanning set, and basis for a vector space
play a major role in the investigation of the structure of any vector space. In
this section we introduce and discuss the first two concepts and the third one
will be treated in the next section.
The concept of linear combination will allow us to generate vector spaces from
a given set of vectors in a vector space .
Let V be a vector space and v1, v2, · · · , vn be vectors in V. A vector w ∈ V is
called a linear combination of the vectors v1, v2, . . . , vn if it can be written in
the form

w = α1v1 + α2v2 + . . . + αnvn

for some scalars α1, α2, . . . , αn.

Exercise 245
Show that the vector ~w = (9, 2, 7) is a linear combination of the vectors ~u =
(1, 2,−1) and ~v = (6, 4, 2) whereas the vector ~w′ = (4,−1, 8) is not.

Solution.
We must find numbers s and t such that

(9, 2, 7) = s(1, 2,−1) + t(6, 4, 2)

This leads to the system




s + 6t = 9
2s + 4t = 2
−s + 2t = 7

Solving the first two equations one finds s = −3 and t = 2 both values satisfy
the third equation.
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Turning to (4,−1, 8), the question is whether s and t can be found such that
(4,−1, 8) = s(1, 2,−1) + t(6, 4, 2). Equating components gives





s + 6t = 4
2s + 4t = −1
−s + 2t = 8

Solving the first two equations one finds s = − 11
4 and t = 9

8 and these values
do not satisfy the third equation. That is the system is inconsistent

The process of forming linear combinations leads to a method of constructing
subspaces, as follows.

Theorem 48
Let W = {v1, v2, . . . , vn} be a subset of a vector space V. Let span(W ) be the col-
lection of all linear combinations of elements of W. Then span(W ) is a subspace
of V.

Proof.
Let u, v ∈ W. Then there exist scalar α1, α2, · · · , αn and β1, β2, · · · , βn such
that u = α1v1 + α2v2 + · · · + αnvn and v = β1v1 + β2v2 + · · ·βnvn. Thus,
u + v = (α1 + β1)v1 + (α2 + β2)v2 + · · · + (αn + βn)vn ∈ span(W ) and αu =
(αα1)v1 + (αα2)v2 + · · · + (ααn)vn ∈ Span(W ). Thus, span(W ) is a subspace
of V.

Exercise 246
Show that Pn = span{1, x, x2, · · · , xn}.

Solution.
If p(x) ∈ Pn then there are scalars a0, a1 · · · , an such that p(x) = a0 + a1x +
· · ·+ anxn ∈ span{1, x, · · · , xn}

Exercise 247
Show that IRn = span{e1, e2, · · · , en} where ei is the vector with 1 in the ith
component and 0 otherwise.

Solution.
We must show that if u ∈ IRn then u is a linear combination of the e′is. Indeed,
if u = (x1, x2, · · · , xn) ∈ IRn then

u = x1e1 + x2e2 + · · ·+ xnen

Hence u lies in span{e1, e2, · · · , en}

If every element of V can be written as a linear combination of elements of
W then we have V = span(W ) and in this case we say that W is a span of V
or W generates V.
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Exercise 248
(a)Determine whether ~v1 = (1, 1, 2), ~v2 = (1, 0, 1) and ~v3 = (2, 1, 3) span IR3.

(b) Show that the vectors ~i = (1, 0, 0),~j = (0, 1, 0), and ~k = (0, 0, 1) span IR3.

Solution.
(a) We must show that an arbitrary vector ~v = (a, b, c) in IR3 is a linear com-
bination of the vectors ~v1, ~v2, and ~v3. That is ~v = s~v1 + t ~v2 + w~v3. Expressing
this equation in terms of components gives





s + t + 2w = a
s + + w = b
2s + t + 3w = c

The problem is reduced of showing that the above system is consistent. This
system will be consistent if and only if the coefficient matrix A

A =




1 1 2
1 0 1
2 1 3




is invertible. Since |A| = 0 then the system is inconsistent and therefore
IR3 6= span{~v1, ~v2, ~v3}.
(b) See Exercise 247

As you have noticed by now, to show that n vectors in IRn span IRn it suf-
fices to show that the matrix whose columns are the given vectors is invertible.

Exercise 249
Show that P, the vector space of all polynomials, cannot be spanned by a finite
set of polynomials.

Solution.
Suppose that P = span{1, x, x2, · · · , xn} for some positive integer n. But then
the polynomial p(x) = 1 + x + x2 + · · · + xn + xn+1 is in P but not in
span{1, x, x2, · · · , xn}, a contradiction. Thus, P cannot be spanned by a finite
set of polynomials

Exercise 250
Show that span{0, v1, v2, · · · , vn} = span{v1, v2, · · · , vn}.

Solution.
If v ∈ span{0, v1, v2, · · · , vn} then v = α00 + α1v1 + · · · + αnvn = α1v1 +
α2v2 + · · ·+αnvn ∈ span{v1, v2, · · · , vn}. Conversely, if v ∈ span{v1, v2, · · · , vn}
then v = α1v1 + α2v2 + · · · + αnvn = 1(0) + α1v1 + α2v2 + · · · + αnvn ∈
span{0, v1, v2, · · · , vn}

Next, we introduce a concept which guarantees that any vector in the span
of a set S has only one representation as a linear combination of vectors in S.
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Spanning sets with this property play a fundamental role in the study of vector
spaces as we shall see in the next section.
If v1, v2, . . . , vn are vectors in a vector space with the property that

α1v1 + α2v2 + . . . + αnvn = 0

holds only for α1 = α2 = . . . = αn = 0 then the vectors are said to be linearly
independent. If there are scalars not all 0 such that the above equation holds
then the vectors are called linearly dependent.

Exercise 251
Show that the set S = {1, x, x2, · · · , xn} is a linearly independent set in Pn.

Solution.
Suppose that a0+a1x+a2x

2+· · ·+anxn = 0 for all x ∈ IR. By the Fundamental
Theorem of Algebra, a polynomial of degree n has at most n roots. But by the
above equation, every real number is a root of the equation. This forces the
numbers a0, a1, · · · , an to be 0

Exercise 252
Let u be a nonzero vector. Show that {u} is linearly independent.

Solution.
Suppose that αu = 0. If α 6= 0 then we can multiply both sides by α−1 and
obtain u = 0. But this contradicts the fact that u is a nonzero vector

Exercise 253
(a) Show that the vectors ~v1 = (1, 0, 1, 2), ~v2 = (0, 1, 1, 2), and ~v3 = (1, 1, 1, 3)
are linearly independent.
(b) Show that the vectors ~v1 = (1, 2,−1), ~v2 = (1, 2,−1), and ~v3 = (1,−2, 1) are
linearly dependent.

Solution.
(a) Suppose that s, t, and w are real numbers such that s~v1 = t ~v2 + w~v3 = 0.
Then equating components gives





s + w = 0
t + w = 0

s + t + w = 0
2s + 2t + 3w = 0

The second and third equation leads to s = 0. The first equation gives w = 0 and
the second equation gives t = 0. Thus, the given vectors are linearly independent.
(b) These vectors are linearly dependent since ~v1 + ~v2 − 2~v3 = 0

Exercise 254
Show that the polynomials p1(x) = 1 − x, p2(x) = 5 + 3x − 2x2, and p3(x) =
1 + 3x− x2 are linearly dependent vectors in P2.
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Solution.
Indeed, 3p1(x)− p2(x) + 2p3(x) = 0

Exercise 255
Show that the unit vectors e1, e2, · · · , en in IRn are linearly independent.

Solution.
Suppose that x1e1 + x2e2 + · · · + xnen = (0, 0, · · · , 0). Then (x1, x2, · · · , xn) =
(0, 0, · · · , 0) and this leads to x1 = x2 = · · · = xn = 0. Hence the vectors
e1, e2, · · · , en are linearly independent

The following theorem provides us with a criterion for deciding whether a set
of vectors is linearly dependent.

Theorem 49
The vectors v1, v2, . . . , vn are linearly dependent if and only if there is at least
one vector that is a linear combination of the remaining vectors.

Proof.
Suppose that v1, v2, · · · , vn are linearly dependent then there exist scalars α1, α2,
· · · , αn not all zeros such that α1v1+α2v2+· · ·+αnvn = 0. Suppose that αi 6= 0.
Dividing through by this scalar we get vi = −α1

αi
v1−· · ·− αi−1

αi
vi−1− αi+1

αi
vi+1−

αn

αi
vn.

Conversely, suppose that one of the vectors v1, v2, · · · , vn is a linear combination
of the remaining vectors. Say, vi = α1v1+ · · ·+αi−1vi−1+αi+1vi+1+ · · ·+αnvn.
Then α1v1 + · · ·+ αi−1vi−1 + (−1)vi + · · ·+ αnvn = 0 with the coefficient of vi

being −1. Thus, the vectors v1, v2, · · · , vn are linearly dependent. This ends a
proof of the theorem

Exercise 256
Let S = {v1, v2, . . . , vn} be a set of vectors in a vector space V. Show that if one
of the vectors is zero, then the set is linearly dependent.

Solution.
Suppose for the sake of argument that v1 = 0. Then 1v1 + 0v2 + · · ·+ 0vn = 0
with coefficients of v1, v2, · · · , vn not all 0. Thus, the set {v1, v2, · · · , vn} is lin-
early dependent

A criterion for linear independence is established in the following theorem.

Theorem 50
Nonzero vectors v1, v2, · · · , vn are linearly independent if and only if one of them,
say vi, is a linear combination of the preceding vectors:

vi = α1v1 + α2v2 + · · ·+ αi−1vi−1. (4.1)
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Proof.
Suppose that (4.1) holds. Then α1v1 +α2v2 + · · ·+αi−1vi−1 +(−1)vi +0vi+1 +
· · ·+ 0vn = 0. Thus, v1, v2, · · · , vn are linearly dependent.
Conversely, suppose that v1, v2, · · · , vn are linearly dependent. Then there ex-
ist scalars not all zero such that α1v1 + α2v2 + · · · + αnvn = 0. Let i be the
largest index such that αi 6= 0. Then, α1v1 + α2v2 + · · · + αivi = 0. Thus,
vi = −∑i−1

k=1
αk

αi
vk

We conclude this section with a theorem which will found to be very useful
in later sections.

Theorem 51
Let S1 and S2 be finite subsets of a vector space V such that S1 is a subset of S2.

(a) If S1 is linearly dependent then so is S2.
(b) If S2 is linearly independent then so is S1.

Proof.
Without loss of generality we may assume that S1 = {v1, v2, · · · , vn} and S2 =
{v1, v2, · · · , vn, vn+1}.
(a) Suppose that S1 is a linearly dependent set. We want to show that S2 is also
linearly dependent. By the assumption on S1 there exist scalars α1, α2, · · · , αn

not all 0 such that
α1v1 + α2v2 + · · ·+ αnvn = 0.

But this implies that

α1v1 + α2v2 + · · ·+ αnvn + 0vn+1 = 0

with αi 6= 0 for some i. That is, S2 is linearly dependent.
(b) Now, suppose that S2 is a linearly independent set. We want to show that
S1 is also linearly independent. Indeed, if

α1v1 + α2v2 + · · ·+ αnvn+ = 0

then
α1v1 + α2v2 + · · ·+ αnvn + 0vn+1 = 0.

Since S2 is linearly independent then α1 = α2 = · · · = αn = 0. But this shows
that S1 is linearly independent.

Exercise 257
Let A be an n×m matrix in reduced row-echelon form. Prove that the nonzero
rows of A, viewed as vectors in IRm, form a linearly independent set of vectors.

Solution.
Let S1 = {v1, v2, · · · , vk} be the set of nonzero rows of a reduced row-echelon
n × m matrix A. Then S1 ⊂ {e1, e2 · · · , em}. Since the set {e1, e2, · · · , em} is
linearly independent then by Theorem 51 (b), S1 is linearly independent
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4.4 Basis and Dimension

In this section we continue the study of the structure of a vector space by de-
termining a set of vectors that completely describes the vector space.
Let S = {v1, v2, . . . , vn} be a subset of a vector space V . We say that S is a
basis for V if

(i) S is linearly independent set.
(ii) V = span(S).

Exercise 258
Let ei be the vector of IRn whose ith component is 1 and zero otherwise. Show
that the set S = {e1, e2, . . . , en} is a basis for IRn. This is called the standard
basis of IRn.

Solution.
By Exercise 247, we have IRn = span{e1, e2, · · · , en}. By Exercise 255, the
vectors e1, e2, · · · , en are linearly independent. Thus {e1, e2, · · · , en} is a basis
of IR3

Exercise 259
Show that {1, x, x2, · · · , xn} is a basis of Pn.

Solution.
By Exercise 246, Pn = span{1, x, x2, · · · , xn} and by Exercise 251, the set
S = {1, x, x2, · · · , xn} is linearly independent. Thus, S is a basis of Pn

If S = {v1, v2, . . . , vn} is a basis for V then we say that V is a finite dimen-
sional space of dimension n. We write dim(V ) = n. A vector space which is not
finite dimensional is said to be infinite dimensional vector space. We define
the zero vector space to have dimension zero. The vector spaces Mmn, IRn, and
Pn are finite-dimensional spaces whereas the space P of all polynomials and the
vector space of all real-valued functions defined on IR are inifinite dimensional
vector spaces.
Unless otherwise specified, the term vector space shall always mean a finite-
dimensional vector space.

Exercise 260
Determine a basis and the dimension for the solution space of the homogeneous
system





2x1 + 2x2 − x3 + + x5 = 0
−x1 − x2 + 2x3 − 3x4 + x5 = 0
x1 + x2 − 2x3 − x5 = 0

x3 + x4 + x5 = 0



4.4. BASIS AND DIMENSION 121

Solution.
By Exercise 38, we found that x1 = −s − t, x2 = s, x3 = −t, x4 = 0, x5 = t.
So if S is the vector space of the solutions to the given system then S =
{(−s−t, s,−t, 0, t) : s, t ∈ IR} = {s(−1, 1, 0, 0, 0)+t(−1, 0,−1, 0, 1) : s, t ∈ IR} =
span{(−1, 1, 0, 0, 0), (−1, 0,−1, 0, 1)}. Moreover, if s(−1, 1, 0, 0, 0)+t(−1, 0,−1, 0, 1) =
(0, 0, 0, 0, 0) then s = t = 0. Thus the set {(−1, 1, 0, 0, 0), (−1, 0,−1, 0, 1)} is a
basis for the solution space of the homogeneous system

The following theorem will indicate the importance of the concept of a basis
in investigating the structure of vector spaces. In fact, a basis for a vector space
V determines the representation of each vector in V in terms of the vectors in
that basis.

Theorem 52
If S = {v1, v2, . . . , vn} is a basis for V then any element of V can be written in
one and only one way as a linear combination of the vectors in S.

Proof.
Suppose v ∈ V has the following two representations v = α1v1+α2v2+· · ·+αnvn

and v = β1v1 + β2v2 + · · ·+ βnvn. We want to show that αi = βi for 1 ≤ i ≤ n.
But this follows from (α1−β1)v1 + (α2−β2)v2 + · · ·+ (αn−βn)vn = 0 and the
fact that S is a linearly independent set.

We wish to emphasize that if a spanning set for a vector space is not a ba-
sis then a vector may have different representations in terms of the vectors in
the spanning set. For example let

S =
{(

1
2

)
,

(
2
1

)
,

(
1
3

)}

then the vector (
1
1

)

has the following two different representations
(

1
1

)
=

1
3

(
1
2

)
+

1
3

(
2
1

)
+ 0

(
1
3

)

and (
1
1

)
= −4

3

(
1
2

)
+

2
3

(
2
1

)
+

(
1
3

)

The following theorem indicates how large a linearly independent set can be in
a finite-dimensional vector space.

Theorem 53
If S = {v1, v2, . . . , vn} is a basis for a vector space V then every set with more
than n vectors of V is linearly dependent.
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Proof.
Let S′ = {w1, w2, . . . , wm} be any subset of V with m > n vectors. Since S is
a basis then we can write

wi = ai1v1 + ai2v2 + . . . + ainvn,

where 1 ≤ i ≤ m. Now, suppose that

α1w1 + α2w2 + . . . + αmwm = 0.

Then this implies

(α1a11 + α2a21 + · · ·+ αmam1)v1 + (α1a12 + α2a22 + · · ·+ αmam2)v2

+ · · ·+ (α1a1n + α2a2n + . . . + αmamn)vn = 0.

Since S is linearly independent then we have

α1a11 + α2a21 + . . . + αmam1 = 0
α1a12 + α2a22 + . . . + αmam2 = 0

...
α1a1n + α2a2n + . . . + αmamn = 0

But the above homogeneous system has more unknowns then equations and
therefore it has nontrivial solutions (Theorem 6). Thus, S′ is linearly depen-
dent

An immediate consequence of the above theorem is the following

Theorem 54
Suppose that V is a vector space of dimension n. If S is a subset of V of m
linearly independent vectors then m ≤ n.

Proof.
If not, i.e. m > n then by Theorem 53 S is linearly dependent which is a con-
tradiction.

We wish to emphasize here that a basis (when it exists) needs not be unique.

Exercise 261
Show that

S =
{(

1
−1

)
,

(
3
2

)}

is a basis of IR2.

Solution.
Suppose that

s

(
1
−1

)
+ t

(
3
2

)
=

(
0
0

)
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Then this leads to the equations s+3t = 0 and −s+2t = 0. Solving this system
we find s = t = 0. Thus, we have shown that S is linearly independent. Next, we
show that every vector in IR2 lies in the span of S. Indeed, if v = (a, b)T ∈ IR2

we must show that there exist scalars s and t such that

s

(
1
−1

)
+ t

(
3
2

)
=

(
a
b

)

That is the coefficient matrix of this system

A =
(

1 3
−1 2

)

is invertible. Since |A| = 5 then the given system is consistent. This shows that
IR2 = spanS. Hence, S is a basis of IR2. Thus, we have found a basis for IR2

which is different than the standard basis

A vector space can have different bases; however, all of them have the same
number of elements as indicated by the following theorem.

Theorem 55
Let V be a finite dimensionsl space. If S = {v1, v2, · · · , vn} and S′ = {w1, · · · , wm}
are two bases of V then n = m. That is, any two bases for a finite dimensional
vector space have the same number of vectors.

Proof.
Since S is a basis of V and S′ is a linearly independent susbet of V then by
Theorem 53 we must have m ≤ n. Now interchange the roles of S and S′ to
obtain n ≤ m. Hence, m = n

Next, we consider the following problem: If S is a span of a finite dimensional
vector space then is it possible to find a subset of S that is a basis of V ? The
answer to this problem is given by the following theorem.

Theorem 56
If S = {v1, v2, · · · , vn} spans a vector space V then S contains a basis of V and
dim(V ) ≤ n.

Proof.
Either S is linearly independent or linearly dependent. If S is linearly indepen-
dent then we are finished. So assume that S is linearly dependent. Then there is
a vector vi which is a linear combination of the preceding vectors in S (Theorem
50). Thus, V = spanS = spanS1 where S1 = {v1, v2, · · · , vi−1, vi+1, · · · , vn}.
Now we repeat the argument. If S1 is linearly independent then S1 is a basis of
V. Otherwise delete a vector of S1 which is a linear combination of the preceding
vectors and obtain a subset S2 of S1 that spans V. Continue this process. If a
basis is encountered at some stage, we are finished. If not, we ultimately reach
V = span{vl} for some l. Since {vl} is also linearly independent then {vl} is a
basis of V.
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Exercise 262
Let S = {(1, 2), (2, 4), (2, 1), (3, 3), (4, 5)}

(a) Show that IR2 = spanS.
(b) Find a subset S′ of S such that S′ is a basis of IR2.

Solution.
(a) Note that (2, 4) = (1, 2) and (3, 3) = (2, 1)+(1, 2) and (4, 5) = (2, 1)+2(1, 2).
Thus, spanS = span{(1, 2), (2, 1)}. Now, for any vector (x, y) ∈ IR2 we must
show the existence of two numbers a and b such that (x, y) = a(1, 2) + b(2, 1).
This is equivalent to showing that the system

{
a + 2b = x
2a + b = y

is consistent. The coefficient matrix of the system is

A =
(

1 2
2 1

)

This matrix is invertible since |A| = −3. Thus the system is consistent and
therefore IR2 = spanS.
(b) S′ = {(1, 2), (2, 1)}

We now prove a theorem that we shall have occasion to use several times in
constructing a basis containing a given set of linearly independent vectors.

Theorem 57
If S = {v1, v2, . . . , vr} is a set of r linearly independent vectors in a n-dimensional
vector space V and r < n then there exist n − r vectors vr+1, · · · , vn such that
the enlarged set S′ = S ∪ {vr+1, · · · , vn} a basis for V.

Proof.
Since V is of dimension n and S is a linearly independent set then r ≤ n by The-
orem 57. If span(S) = V then S is a basis of V and by Theorem 55, r = n. So
suppose span(S) 6= V, i.e. r < n. Then,, there is a vector vr+1 ∈ V which is not
a linear combination of the vectors of S. In this case, the set {v1, v2, · · · , vr, vr+1}
is linearly independent. As long as span{v1, v2, · · · , vr, vr+1} 6= V we continue
the expansion as above. But the number of linearly independent vectors in the
expansion of S can not exceed n according to Theorem 58. That is, the process
will terminate in a finite number of steps

It follows from the above theorem that a finite-dimensional nonzero vector space
always has a finite basis.

Exercise 263
Construct a basis for IR3 that contains the vector (1, 2, 3).
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Solution.
Since the vector (1, 0, 0) is not a multiple of the vector (1, 2, 3) then the set
{(1, 2, 3), (1, 0, 0)} is linearly independent. Since dim(IR3) = 3 then this set is
not a basis of IR3 and therefore cannot span IR3. Next, we see that the vector
(0, 1, 0) is not a linear combination of {(1, 2, 3), (1, 0, 0)}. That is, (0, 1, 0) =
s(1, 2, 3) + t(1, 0, 0) for some scalars s, t ∈ IR. This leads to the system





s + t = 0
2s = 1
3s = 0

Because of the last two equations this system is inconsistent. Thus the set
S′ = {(1, 2, 3), (1, 0, 0), (0, 1, 0)} is linearly independent. By Theorem 58 below,
S′ is a basis of IR3

In general, to show that a set of vectors S is a basis for a vector space V
we must show that S spans V and S is linearly independent. However, if we
happen to know that V has dimension equals to the number of elements in S
then it suffices to check that either linear independence or spanning- the re-
maining condition will hold automatically. This is the content of the following
two theorems.

Theorem 58
If S = {v1, v2, . . . , vn} is a set of n linearly independent vectors in a n-dimensional
vector space V, then S is a basis for V.

Proof.
Since S is a linearly independent set then by Theorem 57 we can extend S to a
basis W of V. By Theorem 55, W must have n vectors. Thus, S = W and so S
is a basis of V.

Theorem 59
If S = {v1, v2, . . . , vn} is a set of n vectors that spans an n-dimensional vector
space V, then S is a basis for V.

Proof.
Suppose that V is of dimension n and S is a span of V. If S is linearly independent
then S is a basis and we are done. So, suppose that S is linearly dependent.
Then by Theorem 49 there is a vector in S which can be written as a linear
combination of the remaining vectors. By rearrangement, we can assume that
vn is a linear combination of v1, v2, · · · , vn−1. Hence, span{v1, v2, · · · , vn} =
span{v1, v2, · · · , vn−1}. Now, we repeat this process until the spanning set is
linearly independent. But in this case the basis will have a number of elements
< n and this contradicts Theorem 55

Exercise 264
Show that if V is a finite dimensional vector space and W is a subspace of V
then dim(W ) ≤ dim(V ).
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Solution.
If W = {0} then dim(W ) = 0 ≤ dim(V ). So suppose that W 6= {0} and let 0 6=
u1 ∈ W. If W = span{u1} then dim(W ) = 1 If W 6= span{u1} then there exists
a vector u2 ∈ W and u 6∈ span{u1}. In this case, {u1, u2} is linearly independent.
If W = span{u1, u2} then dim(W ) = 2. If not, repeat the process to find u3 ∈ W
and u3 6∈ span{u1, u2}. Then {u1, u2, u3} is linearly independent. Continue in
this way. The process must terminate because the vector space cannot have
more than dim(V ) linearly independent vectors. Hence W has a basis of at
most dim(V ) vectors

Exercise 265
Show that if W is a subspace of a finite dimensional vector space V and dim(W ) =
dim(V ) then W = V.

Solution.
Suppose dim(W ) = dim(V ) = m. Then any basis {u1, w2, · · · , um} of W is an
independent set of m vectors in V and so is a basis of V by Theorem 59. In
particular V = span{u1, u2, · · · , um} = W

Next, we discuss an example of an infinite dimensional vector space. We have
stated previously that the vector space F (IR) is an infinite dimensional vector
space. We are now in a position to prove this statement. We must show that
every finite subset of F (IR) fails to be a spanning set of F (IR). We prove this
by contradiction.
Suppose that S = {f1, f2, · · · , fn} spans F (IR). Without loss of generality we
may assume that 0 6∈ S. By Theorem 56 there exists a subset S′ of S such that
S′ is a basis of F (IR). Hence, dim(S′) ≤ n. The set {1, x, · · · , xn} is contained
in F (IR) and is linearly independent and contains n + 1 elements. This violates
Theorem 53.

In the remainder of this section we consider inner product spaces.
A set of vectors {v1, v2, . . . , vn} of an inner product space is said to be or-
thonormal if the following two conditions are met

(i) < vi, vj >= 0, for i 6= j.
(ii) < vi, vi >= 1 for 1 ≤ i ≤ n.

Exercise 266
(a) Show that the vectors ~v1 = (0, 1, 0), ~v2 = ( 1√

2
, 0, 1√

2
), ~v3 = ( 1√

2
, 0,− 1√

2
) form

an orthonormal set in IR3 with the Euclidean inner product.
(b) If S = {v1, v2, . . . , vn} is a basis of an inner product space and S is orthonor-
mal then S is called an orthonormal basis. Show that if S is an orthonormal
basis and u is any vector then

u =< u, v1 > v1+ < u, v2 > v2 + . . . + < u, vn > vn.

(c) Show that if S = {v1, v2, . . . , vn} is an orthogonal set of nonzero vectors in
an inner product space then S is linearly independent.
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(d) Use part (b) to show that if S = {v1, v2, · · · , vn} is an orthonormal basis of
an inner product space V then every vector u can be written in the form

u = w1 + w2

where w1 belongs to the span of S and w2 is orthogonal to the span of S. w1

is called the orthogonal projection of u on the span of S and is denoted by
projspan(S)u = w1.

Solution.
(a) It is easy to check that < ~v1, ~v1 >=< ~v2, ~v2 >=< ~v3, ~v3 >= 0 and <
~v1, ~v2 >=< ~v1, ~v3 >=< ~v2, ~v3 >= 0. Thus, {~v1, ~v2, ~v3} is an orthonormal set.
(b) Since S is a basis of an inner product V. For u ∈ V we have u = α1v1 +
α2v2 + · · ·+ αnvn. For 1 ≤ i ≤ n we have < u, vi >= αi since S is orthonormal.
(c) We must show that if α1v1+α2v2+· · ·+αnvn = 0 then α1 = α2 = · · · = αn =
0. Then for 1 ≤ i ≤ n we have 0 =< vi, 0 >=< vi, α1v1 + α2v2 + · · ·+ αnvn >=
α1 < v1, vi > + · · · + αi−1 < vi, vi−1 > +αi < vi, vi > + · · · + αn < vi, vn >=
αi||vi||2. Since vi 6= 0 then ||vi|| > 0. Hence. αi = 0.
(d) Indeed, if u ∈ V then u = w1 + w2 where w1 =< u, v1 > v1+ < u, v2 >
v2 + · · ·+ < u, vn > vn ∈ span(S) and w2 = u − w1. Moreover, < w2, vi >=<
u − w1, vi >=< u, vi > − < w1, vi >=< u, vi > − < u, vi >= 0, 1 ≤ i ≤ n.
Thus w2 is orthogonal to span(S)

Exercise 267 (Gram-Schmidt)
The purpose of this exercise is to show that every nonzero finite dimensional
inner product space with basis {u1, u2, . . . , un} has an orthonormal basis.

(a) Let v1 = u1
||u1|| . Show that ||v1|| = 1.

(b) Let W1 = span{v1}. Recall that projW1u2 =< u2, v1 > v1. Let v2 =
u2−<u2,v1>v1
||u2−<u2,v1>v1|| . Show that ||v2|| = 1 and < v1, v2 >= 0.

(c) Let W2 = span{v1, v2} and projW2u3 =< u3, v1 > v1+ < u3, v2 > v2.
Let

v3 =
u3− < u3, v1 > v1− < u3, v2 > v2

||u3− < u3, v1 > v1− < u3, v2 > v2|| .

Show that ||v3|| = 1 and < v1, v3 >=< v2, v3 >= 0.

Solution.
(a) || u1

||u1|| ||2 =< u1
||u1|| ,

u1
||u1|| >= <u1,u1>

||u1||2 = ||u1||2
||u1||2 = 1.

(b) The proof that ||v2|| = 1 is similar to (a). On the other hand, < v1, v2 >=<<

u2, v1 > v1,
u2−<u2,v1>v1
||u2−<u2,v1>v1|| >= <u2,v1>2

u2−<u2,v1>v1
− <u2,v1>2

u2−<u2,v1>v1
= 0.

(c) Similar to (c)

Continuing the process of the above exercise we obtain an orthonormal set of
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vectors {v1, v2, . . . , vn}. By the previous exercise this set is linearly independent.
By Theorem 58, {v1, v2, . . . , vn} is a basis of V and consequently an othonormal
basis.

4.5 Transition Matrices and Change of Basis

In this section we introduce the concept of coordinate vector in a given basis
and then find the relationship between two coordinate vectors of the same vector
with respect to two different bases.
From Theorem 52, it follows that if S = {v1, v2, . . . , vn} is a basis for a vector
space V and u is a vector in V then u can be written uniquely in the form

u = αv1 + α2v2 + . . . + αnvn.

The scalars α1, α2, . . . , αn are called the coordinates of u relative to the
basis S and we call the matrix

[u]S =




α1

α2

...
αn




the coordinate matrix of u relative to S.

Exercise 268
Let u and v be two vectors in V and S = {v1, v2, · · · , vn} be a basis of V. Show
that
(a) [u + v]S = [u]S + [v]S .
(b) [αu]S = α[u]S , where α is a scalar.

Solution.
(a) Let u = α1v1 + α2v2 + · · ·+ αnvn and v = β1v1 + β2v2 + · · ·+ βnvn. Then
u + v = (α1 + β1)v1 + (α2 + β2)v2 + · · ·+ (αn + βn)vn. It follows that

[u + v]S =




α1 + β1

α2 + β2

...
αn + βn


 =




α1

α2

...
αn


 +




β1

β2

...
βn


 = [u]S + [v]S

(b) Since αu = αα1v1 + αα2v2 + · · ·+ ααnvn then

[αu]S =




αα1

αα2

...
ααn


 = α




α1

α2

...
αn


 = α[u]S

Exercise 269
Let S = {v1, v2, · · · , vn} be a basis of V. Define the function T : V −→ IRn given
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by Tv = [v]S .
(a) Show that T (αu + v) = αTu + Tv.
(b) Show that if Tu = Tv then u = v.
(c) Show that for any w ∈ IRn there exists a v ∈ V such that Tv = w.

Solution.
(a) T (αu + v) = [αu + v]S = [αu]S + [v]S = α[u]S + [v]S = αTu + Tv.
(b) Suppose that u = α1v1 +α2v2 + · · ·+αnvn and v = β1v1 +β2v2 + · · ·+βnvn.
If Tu = Tv then αi = βi for 1 ≤ i ≤ n. Hence, u = v.
(c) If w ∈ IRn then w = (α1, α2, · · · , αn). Let u = α1v1 + α2v2 + · · ·+ αnvn ∈ V
and Tu = w

If S′ = {u1, u2, . . . , un} is another basis for V then we can write

u1 = c11v1 + c12v2 + . . . c1nvn

u2 = c21v1 + c22v2 + . . . c2nvn

...
...

un = cn1v1 + cn2v2 + . . . cnnvn.

The matrix

Q =




c11 c21 . . . cn1

c12 c22 . . . cn2

...
...

c1n c2n . . . cnn




is called the transition matrix from S′ to S. Note that the jth column of Q is
just [uj ]S .

Exercise 270
Let ~v1 = (0, 1, 0)T , ~v2 = (− 4

5 , 0, 3
5 )T , ~v3 = ( 3

5 , 0, 4
5 )T .

(a) Show that S = {~v1, ~v2, ~v3} is a basis of IR3.
(b) Find the coordinate matrix of the vector ~u = (1, 1, 1)T relative to the basis
S.

Solution.
By Theorem 58, it suffices to show that S is linearly independent. This can
be accomplished by showing that the determinant of the matrix with columns
~v1, ~v2, ~v3 is invertible. Indeed,

∣∣∣∣∣∣

0 − 4
5

3
5

1 0 0
0 3

5
4
5

∣∣∣∣∣∣
= 1

(b) We have ~u = ~v1 − 1
5 ~v2 + 7

5 ~v3. Therefore,

[~u]S =




1
− 1

5
7
5



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Exercise 271
Consider the following two bases of P2: S = {x− 1, x + 1} and S′ = {x, x− 2}.
Find the transition matrix from S to S′.

Solution.
Writing the elements of S in terms of the elements of S′ we find x − 1 =
x
2 + 1

2 (x − 2) and x + 1 = 3
2x − 1

2 (x − 2). Hence, the transition matrix from S
to S′ is the matrix

P =
(

1
2

1
2

3
2 − 1

2

)

The next theorem provides a relationship between the coordinate matrices of a
vector with respect to two different bases.

Theorem 60
With the above notation we have [u]S = Q[u]S′

Proof.
Suppose

[u]S′ =




β1

β2

...
βn




That is, u = β1u1 +β2u2 + · · ·+βnun. Now, writting the ui in terms of the vi we
find that u = (β1c11 +β2c21 + · · ·+βncn1)v1 +(β1c12 +β2c22 + · · ·+βncn2)v2 +
· · ·+ (β1c1n + β2c2n + · · · cnn)vn. That is, [u]S = Q[u]S′ .

Exercise 272
Consider the vectors ~v1 = (1, 0)T , ~v2 = (0, 1)T , ~u1 = (1, 1)T , and ~u2 = (2, 1)T .
(a) Show that S = {~v1, ~v2} and S′ = { ~u1, ~u2} are bases of IR2.
(b) Find the transition matrix Q from S′ to S.
(c) Find [~v]S given that

[~v]S′ =
( −3

5

)

Solution.
(a) Since dim(IR2) = 2 then it suffices to show that S and S′ are linearly
independent. Indeed, finding the determinant of the matrix with columns ~v1

and ~v2 we get ∣∣∣∣
1 0
0 1

∣∣∣∣ = 1

Thus, S is linearly independent. Similar proof for S′.
(b) It is easy to check that ~u1 = ~v1 + ~v2 and ~u2 = 2~v1 + ~v2. Thus, the transition
matrix Q from S′ to S is the matrix

Q =
(

1 1
2 1

)
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(c) By Theorem 60 we have [~v]S = Q[~v]S′ =
(

1 1
2 1

)( −3
5

)
=

(
7
2

)

We next show that Q is nonsingular and its inverse is the transition P ma-
trix from S to S′.

Theorem 61
The matrix Q is invertible and its inverse is the transition matrix from S to S′.

Proof.
Let P be the transition matrix from S to S′. Then by Theorem 60 we have
[u]S′ = P [u]S . Since [u]S = Q[u]S′ then [u]S = QP [u]S . Let x ∈ IRn. Then
x = [u]S for some vector u ∈ V. Thus, QPx = x, i.e. (QP − In)x = 0. Since this
is true for arbitrary x then by Exercise 84 we must have QP = In. By Theorem
20, Q is invertible and Q−1 = P.

Exercise 273

Consider the two bases S = {~v1, ~v2} and S′ = { ~u1, ~u2} where ~v1 =
(

1
0

)
, ~v2 =

(
0
1

)
, ~u1 =

(
1
1

)
, and ~u2 =

(
2
1

)
.

(a) Find the transition matrix P from S to S′.
(b) Find the transition matrix Q from S′ to S.

Solution.
(a) Expressing the vectors of S in terms of the vectors of S′ we find ~v1 = − ~u1+ ~u2

and ~v2 = 2 ~u1 − ~u2. Thus the transition matrix from S to S′ is the matrix

P =
( −1 2

2 −1

)

(b) We have already found the matrix Q in the previous exercise

The next theorem shows that the transition matrix from one orthonormal basis
to another has the property PT = P−1. That is, PPT = PT P = In. In this
case we call P an orthogonal matrix.

Theorem 62
If P is the transition matrix from one orthonormal basis S to another orthonor-
mal basis S′ for an inner product space V then P−1 = PT .

Proof.
Suppose P = (bij) is the transition matrix from the orthonormal basis S =
{u1, u2, · · · , un} to the orthonormal basis S′ = {v1, v2, · · · , vn}. We will show
that PPT = In. Indeed, for 1 ≤ i ≤ n we have

vi = bi1u1 + bi2u2 + · · ·+ binun.
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Thus, < vi, vj >=< bi1u1 + bi2u2 + · · ·+ binun, bj1u1 + bj2u2 + · · ·+ bjnun >=
bi1bj1 + bi2bj2 + · · ·+ binbjn since S is an orthonormal set. Thus, < vi, vj >=<
ci, cj > where c1, c2, · · · , cn are the columns of P. On the other hand, if PPT =
(dij) then dij =< vi, vj > . Since v1, v2, · · · , vn are orthonormal then PPT = In.
That is P is orthogonal

The following result provides a tool for proving that a matrix is orthogonal.

Theorem 63
Let A be an n× n matrix. Then the following are equivalent:
(a) A is orthogonal.
(b) The rows of A form an orthonormal set.
(c) The columns of A form an orthonormal set.

Proof.
Let {r1, r2, · · · , rn}, {c1, c2, · · · , cn} denote the rows ond columns of A respec-
tively.
(a) ⇔ (b): We will show that if AAT = (bij) then bij =< ri, rj > . Indeed, from
the definition of matrix multiplication we have

bij = (ith row of A)(jth column of AT )
= ai1aj1 + ai2aj2 + · · ·+ ainajn

= < ri, rj >

AAT = In if and only if bij = 0 if i 6= j and bii = 1. That is, AAT = In if and
only if < ri, rj >= 0 for i 6= j and < ri, ri >= 1.
(a) ⇔ (c): If AT A = (dij) then one can easily show that dij =< cj , ci > . Thus,
AT A = In if and only if dij = 0 for i 6= j and dii = 1. Hence, AT A = In if and
only if < cj , ci >= 0 for i 6= j and < ci, ci >= 1.

Exercise 274
Show that the matrix

A =
1√
2

(
1 −1
1 1

)

is orthogonal.

Solution.
We will show that this matrix is orthogonal by using the definition. Indeed,
using matrix multiplication we find

AAT =

(
1√
2

− 1√
2

1√
2

1√
2

)(
1√
2

− 1√
2

1√
2

1√
2

)
= I2

Exercise 275
(a) Show that if A is orthogonal then AT is also orthogonal.
(b) Show that if A is orthogonal then |A| = ±1.
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Solution.
(a)Suppose that A is orthogonal. Then AT = A−1. Taking the transpose of
both sides of this equality we find (AT )T = (A−1)T = (AT )−1. That is, AT is
orthogonal.
(b) Since A is orthogonal then AAT = In. Taking the determinant of both sides
of this equality to obtain |AAT | = |A||AT | = |A|2 = 1 since |AT | = |A| and
|In| = 1. Hence, |A| = ±1

4.6 The Rank of a matrix

In this section we study certain vector spaces associated with matrices. We shall
also attach a unique number to a matrix that gives us information about the
solvability of linear systems and the invertibility of matrices.
Let A = (aij) be an m× n matrix. For 1 ≤ i ≤ m, the ith row of A is the 1× n
matrix

ri = (ai1, ai2, . . . , ain)

and for 1 ≤ j ≤ n the jth column of A is the m× 1 matrix

cj =




a1j

a2j

...
amj




The subspace span{r1, r2, . . . , rm} of IRn is called the row space of A and the
subspace span{c1, c2, . . . , cn} of IRm is called the column space of A.
The following theorem will lead to techniques for computing bases for the row
and column spaces of a matrix.

Theorem 64
Elementary row operations do not change the row space of a matrix. That is,
the row spaces of two equivalent matrices are equal.

Proof.
It suffices to show that if B is the matrix obtained from A by applying a row
operation then

span{r1, r2, . . . , rm} = span{r′1, r′2, . . . , r′m}

where r′1, r
′
2, . . . , r

′
m are the rows of B.

If the row operation is a row interchange then A and B have the same rows and
consequently the above equality holds.
If the row operation is multiplication of a row by a nonzero scalar, for in-
stance, r′i = αri then we get r′j = rj for j 6= i. Hence, r′j is an element of
span{r1, r2, . . . , rm} for j 6= i. . Moreover, r′i = 0r1 + . . . 0ri−1 + αri + 0ri+1 +
. . .+0rm is also an element of span{r1, r2, . . . , rm}. Hence, span{r′1, r′2, . . . , r′m}
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is a subset of span{r1, r2, . . . , rm}. On the other hand, for j 6= i we have rj = r′j
and therefore rj ∈ span{r′1, r′2, . . . , r′m}. But ri = 0r′1 + 0r′2 + . . . + 0r′i−1 +
1
αr′i + 0r′i+1 + . . . + 0r′m which is an element of span{r′1, r′2, . . . , r′m}. Hence,
span{r1, r2, . . . , rm} is contained in span{r′1, r′2, . . . , r′m}.
Similar argument holds when the elementary row operation is an addition of a
multiple of one row to another

It follows from the above theorem that the row space of a matrix A is not
changed by reducing the matrix to a row-echelon form B. It turns out that
the nonzero rows of B form a basis of the row space of A as indicated by the
following theorem.

Theorem 65
The nonzero row vectors in a row-echelon form of a matrix form a basis for the
row space of A.

Proof.
If B is the matrix in echelon form that is equivalent to A. Then by Theorem 64,
span{r1, r2, · · · , rm} = span{r′1, r′2, · · · , r′p} where r′1, r

′
2, · · · , r′p are the nonzero

rows of B with p ≤ m. We will show that S = {r′1, r′2, · · · , r′p} is a linearly
independent set. Suppose not, i.e. S = {r′p, r′p−1, · · · , r′1} is linearly dependent.
Then by Theorem 50, one of the rows, say r′i is a linear combination of the
preceding rows:

r′i = αi+1r
′
i+1 + αi+2r

′
i+2 + · · ·+ α1r

′
p. (4.2)

Suppose that the leading 1 of r′i occurs at the jth column. Since the matrix
is in echelon form, the jth component of r′i+1r

′
i+2, · · · , r′i are all 0 and so the

jth component of (4.2) is αi+10 + αi+20 + · · · + αp0 = 0. But this contradicts
the assumption that the jth component of r′i is 1. Thus, S must be linearly
independent

Exercise 276
Find a basis for the space spanned by the vectors v1 = (1,−2, 0, 0, 3), v2 =
(2,−5,−3,−2, 6), v3 = (0, 5, 15, 10, 0), and v4 = (2, 6, 18, 8, 6).

Solution.
The space spanned by the given vectors is the row space of the matrix



1 −2 0 0 3
2 −5 −3 −2 6
0 5 15 10 0
2 6 18 8 6




The reduction of this matrix to row-echelon form is as follows.

Step 1: r2 ← r2 − 2r1 and r4 ← r4 − 2r1


1 −2 0 0 3
0 −1 −3 −2 0
0 5 15 10 0
0 10 18 8 0



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Step 2: r3 ← r3 + 5r2 and r4 ← r4 + 10r2




1 −2 0 0 3
0 −1 − 3 − 2 0
0 0 0 0 0
0 0 −12 −12 0




Step 3: r2 ← −r2 and r3 ↔ − 1
12r4




1 −2 0 0 3
0 1 3 2 0
0 0 1 1 0
0 0 0 0 0




Thus, the vectors (1,−2, 0, 0, 3), (0, 1, 3, 2, 0), and (0, 0, 1, 1, 0) form a basis of
the vector space spanned by the given vectors

Exercise 277
Find a basis for the row space of the matrix

A =




1 2 0 0 0 2
−1 −2 1 3 0 −1
2 4 1 3 1 9
1 2 1 3 0 3




Solution.
The reduction of this matrix to row-echelon form is as follows.

Step 1: r2 ← r2 + r1, r3 ← r3 − 2r1 and r4 ← r4 − r1

A =




1 2 0 0 0 2
0 0 1 3 0 1
0 0 1 3 1 5
0 0 1 3 0 1




Step 2: r3 ← r3 − r2 and r4 ← r4 − r2

A =




1 2 0 0 0 2
0 0 1 3 0 1
0 0 0 0 1 4
0 0 0 0 0 0




Thus a basis for the vector spanned by the rows of the given matrix consists of
the vectors (1, 2, 0, 0, 0, 2), (0, 0, 1, 3, 0, 1), and (0, 0, 0, 0, 1, 4)

In the next theorem we list some of the properties of the row and column
spaces.
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Theorem 66
Let A be an m× n matrix, U a p×m matrix, and V an n× q matrix. Then
(a) the row space of UA is a subset of the row space of A. The two spaces are
equal whenever U is nonsingular.
(b) The column space of AV is contained in the solumn space of A. Equality
holds when V is nonsingular.

Proof.
(a) Let Ui = (ui1, ui2, · · · , uim) denote the ith row of U. If r1, r2, · · · , rm denote
the rows of A then the ith row of UA is

UiA = (ui1, ui2, · · · , uim)




r1

r2

· · ·
rm


 = ui1r1 + ui2r2 + · · ·+ uimrm

This shows that each row of UA is in the row space of A. Hence, the row space
of UA is contained in the row space of A. If U is invertible then the row space
of A is equal to the row space of U−1(UA) which in turn is a subset of the row
space of UA. This ends a proof of (a).
(b) Similar to (a)

Next, we will show that a matrix A is row equivalent to a unique reduced
row-echelon matrix. First, we prove the following

Theorem 67
If A and B are two reduced row-echelon matrices with the same row space then
the leading 1 of A and B occur in the same position.

Proof.
Suppose that the leading 1 of the first row of A occurs in column j1 and that
of B in column k1. We will show that j1 = k1. Suppose j1 < k1. Then the
j1th column of B is zero. Since the first row of A is in the span of the rows
of B then the (1, j1)th entry of A is a linear combination of the entries of
the j1th column of B. Hence, 1 = α1b1j1 + α2b2j1 + · · · + αmbmj1 = 0 since
b1j1 = b2j2 = · · · = bmj1 = 0. (Remember that the j1th column of B is zero).
But this is a contradiction. Hence, j1 ≥ k1. Interchanging the roles of A and B
to obtain k1 ≥ j1. Hence, j1 = k1.
Next, let A′ be the matrix obtained by deleting the first row of A and B′ the
matrix obtained by deleting the first row of B. Then clearly A′ and B′ are in
reduced echelon form. We will show that A′ and B′ have the same row space.
Let R1, R2, · · · , Rm denote the rows of B. Let r = (a1, a2, · · · , an) be any row
of A′. Since r is also a row of A then we can find scalars d1, d2, · · · , dm such
that r = d1R1 + d2R2 + · · · + dmRm. Since A is in reduced row echelon form
and r is not the first row of A then aj1 = ak1 = 0. Furthermore, since B is in
reduced row echelon form all the entries of the k1th column of B are zero except
b1k1 = 1. Thus,

0 = ak1 = d1b1k1 + d2b2k1 + · · ·+ dmbmk1 .
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That is, d1 = 0. Hence, r is in the row space of B′. Since r was arbitrary then
the row space of A′ is contained in the row space of B′. Interchanging the roles
of A′ and B′ to obtain that the row space of B′ is contained in the row space
of A′. Hence, A′ and B′ have the same row space. Repeating the argument
earlier, we see that the leading 1 in the first row of A′ and the leading 1 in the
first row of B′ have the same position. Now, the theorem follows by induction

Theorem 68
Reduced row-echelon matrices have the same row space if and only if they have
the same nonzero rows. Hence, every matrix is row equivalent to a unique
reduced row-echelon matrix.

Proof.
Let A = (aij) and B = (bij) be two reduced row-echelon matrices. If A and B
have the same nonzero rows then they have the same row space.
Conversely, suppose that A and B have the same row space. Let r1, r2, · · · , rs

be the nonzero rows of B. Let Ri be the ith nonzero row of A. Then there exist
scalars α1, α2, · · · , αs such that

Ri = α1r1 + α2r2 + · · ·+ αsrs. (4.3)

We will show that Ri = ri or equivalently αi = 1 and αk = 0 for k 6= i. Suppose
that the leading 1 of Ri occurs at the ji column. Then by (4.3) we have

1 = α1b1ji + α2b2ji + · · ·+ αsbsji . (4.4)

By Theorem 67, biji = 1 and bkji = 0 for k 6= i. Hence, αi = 1.
It remains to show that αk = 0 for k 6= i. So suppose that k 6= i. Suppose the
leading 1 of Rk occurs in the jkth column. By (4.3) we have

aijk
= α1b1jk

+ α2b2jk
+ · · ·+ αsbsjk

. (4.5)

Since B is in reduced row-echelon form then bkjk
= 1 and bijk

= 0 for i 6= k.
Hence, αk = aijk

. Since, the leading 1 of Rk occurs at the jk column then by
Theorem 67 we have akjk

= 1 and aijk
= 0 for i 6= k. Hence, αk = 0, for k 6= i.

Remark
A procedure for finding a basis for the column space of a matrix A is described
as follows: From A we construct the matrix AT . Since the rows of AT are the
columns of A, then the row space of AT and the column space of A are identical.
Thus, a basis for the row space of AT will yield a basis for the column space of
A. We transform AT into a row-reduced echelon matrix B. The nonzero rows
of B form a basis for the row space of AT . Finally, the nonzero columns of BT

form a basis for the column space of A.
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Exercise 278
Find a basis for the column space of the matrix

A =




1 2 0 0 0 2
−1 −2 1 3 0 −1
2 4 1 3 1 9
1 2 1 3 0 3




Solution.
The columns of A are the rows of the transpose matrix.




1 −1 2 1
2 −2 4 2
0 1 1 1
0 3 3 3
0 0 1 0
2 −1 9 3




The reduction of this matrix to row-echelon form is as follows.

Step 1: r2 ← r2 − 2r1 and r6 ← r6 − 2r1




1 −1 2 1
0 0 0 0
0 1 1 1
0 3 3 3
0 0 1 0
0 1 5 1




Step 2: r2 ↔ r6 


1 −1 2 1
0 1 5 1
0 1 1 1
0 3 3 3
0 0 1 0
0 0 0 0




Step 3: r3 ← r3 − r2 and r4 ← r4 − 3r2




1 −1 2 1
0 1 5 1
0 0 − 4 0
0 0 −12 0
0 0 1 0
0 0 0 0



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Step 4: r4 ← r4 + 12r5 and r3 ← − 1
4




1 −1 2 1
0 1 5 1
0 0 1 0
0 0 0 0
0 0 1 0
0 0 0 0




Step 5: r5 ← r5 − r3 


1 −1 2 1
0 1 5 1
0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0




thusS {(1,−1, 2, 1), (0, 1, 5, 1), (0, 0, 1, 0)} is a basis for the row space of AT , and







1
−1
2
1


 ,




0
1
5
1


 ,




0
0
1
0








is a basis for the column space of A

Next, we shall establish the relationship between the dimensions of the row
space and the column space of a matrix.

Theorem 69
If A is any m × n matrix, then the row space and the column space of A have
the same dimension.

Proof.
Let r1, r2, . . . , rm be the row vectors of A where

ri = (ai1, ai2, . . . , ain).

Let r be the dimension of the row space. Suppose that {v1, v2, . . . , vr} is a basis
for the row space of A where

vi = (bi1, bi2, . . . , bin).

By definition of a basis we have

r1 = c11v1 + c12v2 + . . . c1rvr

r2 = c21v1 + c22v2 + . . . c2rvr

...
...

rm = cm1v1 + cm2v2 + . . . cmrvr.
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Equating entries of these vector equations to obtain

a1j = c11b1j + c12b2j + . . . c1rbrj

a2j = c21bij + c22b2j + . . . c2rbrj

...
...

amj = cm1b1j + cm2b2j + . . . cmrbrj .

or equivalently



a1j

a2j

...
amj


 = b1j




c11

c21

...
cm1


 + b2j




c12

c22

...
cm2


 + . . . + brj




c1r

c2r

...
cmr




where 1 ≤ j ≤ n. It follows that the columns of A are linear combinations of
r vectors and consequently the dimension of the column space is less than or
equal to the dimension of the row space. Now interchanging row and column we
get that the dimension of the row space is less than or equal to the dimension
of the column space.

The dimension of the row space or the column space of a matrix A is called
the rank of A and is denoted by rank(A). It follows from Theorem 69 that
rank(A) = rank(AT ). Also, by Theorem 65 the rank of A is equal to the num-
ber of nonzero rows in the row-echelon matrix equivalent to A.

Remark
Recall that in Section 1.6 it was asserted that no matter how a matrix is reduced
(by row operations) to a matrix R in row-echelon form, the number of nonzero
rows of R is always the same (and was called the rank of A.) Theorem 69 shows
that this assertion is true and that the two notions of rank agree.

Exercise 279
Find the rank of the matrix

A =




1 0 1 1
3 2 5 1
0 4 4 −4




Solution.
The transpose of the matrix A is the matrix




1 3 0
0 2 4
1 5 4
1 1 −4




The reduction of this matrix to row-echelon form is as follows.
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Step 1: r3 ← r3 − r1 and r4 ← r4 − r1




1 3 0
0 2 4
0 2 4
0 −2 −4




Step 2: r4 ← r4 + r2 and r3 ← r3 − r2




1 3 0
0 2 4
0 0 0
0 0 0




Step 3: r2 ← 1
2r2 



1 3 0
0 1 2
0 0 0
0 0 0




Thus {(1, 3, 0), (0, 1, 2)} form a basis for the row space of AT or equivalently







1
3
0


 ,




0
1
2








form a basis for the column space of A and hence rank(A) = 2

Theorem 70
If A is an m× n matrix U and V invertible matrices of size m×m and n× n
respectively. Then rank(A) = rank(UA) = rank(AV ).

Proof.
Follows from the definition of rank and Theorem 66

The following theorem shades information about the invertibility of a square
matrix as well as the question of existence of solutions to linear systems.

Theorem 71
If A is an n× n matrix then the following statements are equivalent

(a) A is row equivalent to In.
(b) rank(A) = n.
(c) The rows of A are linearly independent.
(d) The columns of A are linearly independent.

Proof.
(a) ⇒ (b) : Since A is row equivalent to In and In is a matrix in reduced echelon
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form then the rows of In are linearly independent . Since the row space of A
is the span of n vectors then the row space is n-dimensional vector space and
consequently rank(A) = n.

(b) ⇒ (c) : Since rank(A) = n then the dimension of the row space is n.
Hence, by Theorem 58 the rows of A are linearly independent.

(c) ⇒ (d) : Assume that the row vectors of A are linearly independent then
the dimension of row space is n and consequently the dimension of the column
space is n. By Theorem 58, the columns of A are linearly independent.

(d) ⇒ (a) : Assume the columns of A are linearly independent. Then the
dimension of the row space of A is n. Thus, the reduced row echelon form of
A has n non-zero rows. Since A is a square matrix the reduced echelon matrix
must be the identity matrix. Hence A is row equivalent to In.

Now consider a system of linear equations Ax = b or equivalently



a11 a12 ... a1m

a21 a22 ... a2m

... ... ... ...
an1 an2 ... anm







x1

x2

...
xm


 =




c1

c2

...
cn




This implies



a11x1 + a12x2 + . . . + a1mxm

a21x1 + a22x2 + . . . + a2mxm

...
an1x1 + an2x2 + . . . + anmxm


 =




b1

b2

...
bn




or

x1




a11

a21

...
an1


 + x2




a12

a22

...
an2


 + . . . + xm




a1m

a2m

...
anm


 =




b1

b2

...
bn




Exercise 280
Show that a system of linear equations Ax = b is consistent if and only if b is
in the column space of A.

Solution.
If b is in the column space of A then there exist scalars x1, x2, · · ·xn such that

x1




a11

a21

...
an1


 + x2




a12

a22

...
an2


 + . . . + xm




a1m

a2m

...
anm


 =




b1

b2

...
bn



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But this is equivalent to Ax = b. Hence, the system Ax = b is consistent. The
converse is similar

Let A be an n× n matrix. The set ker(A) = {x ∈ IRn : Ax = 0} is a subspace
of IRn called the nullspace. The dimension of this vector space is called the
nullity of A.

Exercise 281
Find a basis for the nullspace of

A =




2 2 −1 0 1
−1 −1 2 −3 1
1 1 −2 0 −1
0 0 1 1 1




Solution.
By Exercise 38 we found that

ker(A) = span{(−1, 1, 0, 0, 0), (−1, 0,−1, 0, 1)}

Thus, nullity(A) = 2

The following theorem establishes an important relationship between the rank
and nullity of a matrix.

Theorem 72
For any m× n matrix we have

rank(A) + nullity(A) = n. (4.6)

Proof.
Since A has n columns then the system Ax = 0 has n unknowns. These fall
into two categories: the leading (or dependent) variables and the independent
variables. Thus,

[number of leading variables] + [number of independent variables] = n.

But the number of leading variables is the same as the number of nonzero rows
of the reduced row-echelon form of A, and this is just the rank of A. On the
other hand, the number of independent variables is the same as the number of
parameters in the general solution which is the same as the dimension of ker(A).
Now (4.6) follows

Exercise 282
Find the number of parameters in the solution set of the system Ax = 0 if A is
a 5× 7 matrix and rank(A) = 3.
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Solution.
The proof of the foregoing theorem asserts that rank(A) gives the number of
leading variables that occur in solving the system AX = 0 whereas nullity(A)
gives the number of free variables. In our case, rank(A) = 3 so by the previous
theorem nullity(A) = 7− rank(A) = 4

The following theorem ties together all the major topics we have studied so
far.

Theorem 73
If A is an n× n matrix, then all the following are equivalent.

(a) A is invertible.
(b) |A| 6= 0.
(c) Ax = 0 has only the trivial solution.
(d) nullity(A) = 0.
(e) A is row equivalent to In.
(f) Ax = b is consistent for all n× 1 matrix b.
(g) rank(A) = n.
(h) The rows of A are linearly independent.
(i) The columns of A are linearly independent.

4.7 Review Problems

Exercise 283
Show that the midpoint of P (x1, y1, z1) and Q(x1, y2, z2) is the point

M(
x1 + x2

2
,
y1 + y2

2
,
z1 + z2

2
).

Exercise 284
(a) Let ~n = (a, b, c) be a vector orthogonal to a plane P. Suppose P0(x0, y0, z0)
is a point in the plane. Write the equation of the plane.
(b) Find an equation of the plane passing through the point (3,−1, 7) and per-
pendicular to the vector ~n = (4, 2,−5).

Exercise 285
Find the equation of the plane through the points P1(1, 2,−1), P2(2, 3, 1) and
P3(3,−1, 2).

Exercise 286
Find the parametric equations of the line passing through a point P0(x0, y0, z0)
and parallel to a vector ~v = (a, b, c).

Exercise 287
Compute < ~u,~v > when ~u = (2,−1, 3) and ~v = (1, 4,−1).
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Exercise 288
Compute the angle between the vectors ~u = (−1, 1, 2) and ~v = (2, 1,−1).

Exercise 289
For any vectors ~u and ~v we have

||~u× ~v||2 = ||~u||2||~v||2− < ~u,~v >2 .

Exercise 290
Show that ||~u× ~v|| is the area of the parallelogram with sides ~u and ~v.

Exercise 291
Let P be the collection of polynomials in the indeterminate x. Let p(x) = a0 +
ax +a2x

2 + · · · and q(x) = b0 +b1x+b2x
2 +c . . . be two polynomials in P. Define

the operations:
(a) Addition: p(x) + q(x) = a0 + b0 + (a1 + b1)x + (a2 + b2)x2 + · · ·
(b) Multiplication by a scalar: αp(x) = αa0 + (αa1)x + (αa2)x2 + · · · .
Show that P is a vector space.

Exercise 292
Define on IR2 the following operations:
(i) (x, y) + (x′, y′) = (x + x′, y + y, );
(ii) α(x, y) = (αy, αx).
Show that IR2 with the above operations is not a vector space.

Exercise 293
Let U = {p(x) ∈ P : p(3) = 0}. Show that U is a subspace of P.

Exercise 294
Let Pn denote the collection of all polynomials of degree n. Show that Pn is a
subspace of P.

Exercise 295
Show that < f, g >=

∫ b

a
f(x)g(x)dx is an inner product on the space C([a, b])

of continuous functions.

Exercise 296
Show that if u and v are two orthogonal vectors of an inner product space, i.e.
< u, v >= 0, then

||u + v||2 = ||u||2 + ||v||2.
Exercise 297
(a) Prove that a line through the origin in IR3 is a subspace of IR3 under the
standard operations.
(b) Prove that a line not through the origin in IR3 in not a subspace of IR3.

Exercise 298
Show that the set S = {(x, y) : x ≤ 0} is not a vector space of IR2 under the
usual operations of IR2.
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Exercise 299
Show that the collection C([a, b]) of all continuous functions on [a, b] with the
operations:

(f + g)(x) = f(x) + g(x)
(αf)(x) = αf(x)

is a vector space.

Exercise 300
Let S = {(a, b, a + b) : a, b ∈ IR}. Show that S is a subspace of IR3 under the
usual operations.

Exercise 301
Let V be a vector space. Show that if u, v, w ∈ V are such that u + v = u + w
then v = w.

Exercise 302
Let H and K be subspaces of a vector space V.
(a) The intersection of H and K, denoted by H ∩K, is the subset of V that
consists of elements that belong to both H and K. Show that H∩V is a subspace
of V.
(b) The union of H and K, denoted by H ∪K, is the susbet of V that consists
of all elements that belong to either H or K. Give, an example of two subspaces
of V such that H ∪K is not a subspace.
(c) Show that if H ⊂ K or K ⊂ H then H ∪K is a subspace of V.

Exercise 303
Let u and v be vectors in an inner product vector space. Show that

||u + v||2 + ||u− v||2 = 2(||u||2 + ||v||2).

Exercise 304
Let u and v be vectors in an inner product vector space. Show that

||u + v||2 − ||u− v||2 = 4 < u, v > .

Exercise 305
(a) Use Cauchy -Schwarz’s inequality to show that if u = (x1, x2, · · · , xn) ∈ IRn

and v = (y1, y2, · · · , yn) ∈ IRn then

(x1y1 + x2y2 + · · ·+ xnyn)2 ≤ (x2
1 + x2

2 + · · ·+ x2
n)(y2

1 + y2
2 + · · ·+ y2

n).

(b) Use (a) to show

n2 ≤ (a1 + a2 + · · ·+ an)(
1
a1

+
1
a2

+ · · ·+ 1
an

)

where ai > 0 for 1 ≤ i ≤ n.
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Exercise 306
Let C([0, 1]) be the vector space of continuous functions on [0, 1]. Define

< f, g >=
∫ 1

0

f(x)g(x)dx.

(a) Show that < ., . > is an inner product on C([0, 1]).
(b) Show that

[∫ 1

0

f(x)g(x)dx

]2

≤
[∫ 1

0

f(x)2dx

] [∫ 1

0

g(x)2dx

]
.

This inequality is known as Holder’s inequality.
(c) Show that

[∫ 1

0

(f(x) + g(x))2dx

] 1
2

≤
[∫ 1

0

f(x)2dx

] 1
2

+
[∫ 1

0

g(x)2dx

] 1
2

.

This inequality is known as Minkowski’s inequality.

Exercise 307
Let W = span{v1, v2, · · · , vn}, where v1, v2, · · · , vn are vectors in V. Show that
any subspace U of V containing the vectors v1, v2, · · · , vn must contain W, i.e.
W ⊂ U. That is, W is the smallest subspace of V containing v1, v2, · · · , vn.

Exercise 308
Express the vector ~u = (−9,−7,−15) as a linear combination of the vectors
~v1 = (2, 1, 4), ~v2 = (1,−1, 3), ~v3 = (3, 2, 5).

Exercise 309
(a) Show that the vectors ~v1 = (2, 2, 2), ~v2 = (0, 0, 3), and ~v3 = (0, 1, 1) span IR3.
(b) Show that the vectors ~v1 = (2,−1, 3), ~v2 = (4, 1, 2), and ~v3 = (8,−1, 8) do
not span IR3.

Exercise 310
Show that

M22 = span{
(

1 0
0 0

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)
,

(
0 0
0 1

)
}

Exercise 311
(a) Show that the vectors ~v1 = (2,−1, 0, 3), ~v2 = (1, 2, 5,−1), and ~v3 = (7,−1, 5, 8)
are linearly dependent.
(b) Show that the vectors ~v1 = (4,−1, 2) and ~v2 = (−4, 10, 2) are linearly inde-
pendent.

Exercise 312
Show that the {u, v} is linearly dependent if and only if one is a scalar multiple
of the other.
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Exercise 313
Let V be the vector of all real-valued functions with domain IR. If f, g, h are
twice differentiable functions then we define w(x) by the determinant

w(x) =

∣∣∣∣∣∣

f(x) g(x) h(x)
f ′(x) g′(x) h′(x)
f ′′(x) g′′(x) h′′(x)

∣∣∣∣∣∣

We call w(x) the Wronskian of f, g, and h. Prove that f, g, and h are linearly
independent if and only if w(x) 6= 0.

Exercise 314
Use the Wronskian to show that the functions ex, xex, x2ex are linearly indepen-
dent.

Exercise 315
Show that {1 + x, 3x + x2, 2 + x− x2} is linearly independent in P2.

Exercise 316
Show that {1 + x, 3x + x2, 2 + x− x2} is a basis for P2.

Exercise 317
Find a basis of P3 containing the linearly independent set {1 + x, 1 + x2}.

Exercise 318
Let ~v1 = (1, 2, 1), ~v2 = (2, 9, 0), ~v3 = (3, 3, 4). Show that S = {~v1, ~v2, ~v3} is a
basis for IR3.

Exercise 319
Let S be a subset of IRn with n+1 vectors. Is S linearly independent or linearly
dependent?

Exercise 320
Find a basis for the vector space M22 of 2× 2 matrices.

Exercise 321
(a) Let U,W be subspaces of a vector space V. Show that the set U + W =
{u + w : u ∈ U and w ∈ W} is a subspace of V.
(b) Let M22 be the collection of 2×2 matrices. Let U be the collection of matrices
in M22 whose second row is zero, and W be the collection of matrices in M22

whose second column is zero. Find U + W.

Exercise 322
Let S = {(1, 1)T , (2, 3)T } and S′ = {(1, 2)T , (0, 1)T } be two bases of IR2. Let
~u = (1, 5)T and ~v = (5, 4)T .

(a) Find the coordinate vectors of ~u and ~v with respect to the basis S.
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(b) What is the transition matrix P from S to S′?
(c) Find the coordinate vectors of ~u and ~v with respect to S′ using P.
(d) Find the coordinate vectors of ~u and ~v with respect to S′ directly.
(e) What is the transition matrix Q from S′ to S?
(f) Find the coordinate vectors of ~u and ~v with respect to S using Q.

Exercise 323
Suppose that S′ = { ~u1, ~u2, ~u3} is a basis of IR3, where ~u1 = (1, 0, 1), ~u2 =
(1, 1, 0), ~u3 = (0, 0, 1). Let S = {~v1, ~v2, ~v3}. Suppose that the transition matrix
from S to S′ is 


1 1 2
2 1 1
−1 −1 1




Determine S.

Exercise 324
Show that if A is not a square matrix then either the row vectors of A or the
column vectors of A are linearly dependent.

Exercise 325
Prove that the row vectors of an n×n invertible matrix A form a basis for IRn.

Exercise 326
Compute the rank of the matrix

A =




1 2 2 −1
3 6 5 0
1 2 1 2




and find a basis for the row space of A.

Exercise 327
Let U and W be subspaces of a vector space V. We say that V is the direct sum
of U and W if and only if V = U +W and U ∩W = {0}. We write V = U ⊕W.
Show that V is the direct sum of U and W if and only if every vector v in V
can be written uniquely in the form v = u + w.

Exercise 328
Let V be an inner product space and W is a subspace of V. Let W⊥ = {u ∈
V :< u, w >= 0, ∀w ∈ W}.
(a) Show that W⊥ is a subspace of V.
(b) Show that V = W ⊕W⊥.

Exercise 329
Let U and W be subspaces of a vector space V . Show that dim(U + W ) =
dim(U) + dim(W )− dim(U ∩W ).
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Exercise 330
Show that cos 2x ∈ span{cos2 x, sin2 x}.

Exercise 331
If X and Y are subsets of a vector space V and if X ⊂ Y , show that spanX ⊂
spanY.

Exercise 332
Show that the vector space F (IR) of all real-valued functions defined on IR is an
infinite-dimensional vector space.

Exercise 333
Show that {sin x, cos x} is linearly independent in the vector space F ([0, 2π]).

Exercise 334
Find a basis for the vector space V of all 2× 2 symmetric matrices.

Exercise 335
Find the dimension of the vector space Mmn of all m× n matrices.

Exercise 336
Let A be an n × n matrix. Show that there exist scalars a0, a1, a2, · · · , an2 not
all 0 such that

a0In + a1A + a2A
2 + · · ·+ an2An2

= 0. (4.7)

Exercise 337
Show that if A is an n × n invertible skew-symmetric matrix then n must be
even.



Chapter 5

Eigenvalues and
Diagonalization

Eigenvalues and eigenvectors arise in many physical applications such as the
study of vibrations, electrical systems, genetics, chemical reactions, quantum
mechanics, economics, etc. In this chapter we introduce these two concepts
and we show how to find them. Eigenvalues and eigenvectors are used in a
diagonalization process of a square matrix that we discuss in Section 5.2

5.1 Eigenvalues and Eigenvectors of a Matrix

If A is an n × n matrix and x is a nonzero vector in IRn such that Ax = λx
for some real number λ then we call x an eigenvector corresponding to the
eigenvalue λ.

Exercise 338

Show that x =
(

1
2

)
is an eigenvector of the matrix

A =
(

3 0
8 −1

)

corresponding to the eigenvalue λ = 3.

Solution.
The value λ = 4 is an eigenvalue of A with eigenvector x since

Ax =
(

3 0
8 −1

) (
1
2

)
=

(
3
6

)
= 3x

Eigenvalues can be either real numbers or complex numbers. In this book an
eigenvalue is always assumed to be a real number.
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To find the eigenvalues of a square matrix A we rewrite the equation Ax = λx
as

Ax = λInx

or equivalently
(λIn −A)x = 0.

For λ to be an eigenvalue, there must be a nonzero solution to the above homo-
geneous system. But, the above system has a nontrivial solution if and only if
the coefficient matrix (λIn − A) is singular (Exercise 172), that is , if and only
if

|λIn −A| = 0.

This equation is called the characteristic equation of A.

Exercise 339
Find the characteristic equation of the matrix

A =




0 1 0
0 0 1
4 −17 8




Solution.
The characteristic equation of A is the equation

∣∣∣∣∣∣

λ −1 0
0 λ −1
−4 17 λ− 8

∣∣∣∣∣∣
= 0

That is, the equation: λ3 − 8λ2 + 17λ− 4 = 0

Theorem 74
p(λ) = |λIn−A| is a polynomial function in λ of degree n and leading coefficient
1. This is called the characteristic polynomial of A.

Proof.
One of the elementary product will contain all the entries on the main diago-
nal,i.e. will be the product (λ−a11)((λ−a22) · · · (λ−ann). This is a polynomial
of degree n and leading coefficient 1. Any other elementary product will contain
at most n− 2 factors of the form λ− aii. Thus,

p(λ) = λn − (a11 + a22 + · · ·+ ann)λn−1 + terms of lower degree (5.1)

This ends a proof of the theorem

Exercise 340
Find the characteristic polynomial of the matrix

A =




5 8 16
4 1 8
−4 −4 −11



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Solution.
The characteristic polynomial of A is

p(λ) =

∣∣∣∣∣∣

λ− 5 −8 −16
−4 λ− 1 −8
4 4 λ + 11

∣∣∣∣∣∣

Expanding this determinant we obtain p(λ) = (λ+3)(λ2+2λ−3) = (λ+3)2(λ−
1)

Exercise 341
Show that the coefficient of λn−1 is the negative of the trace of A.

Solution.
This follows from (5.1)

Exercise 342
Show that the constant term in the characteristic polynomial of a matrix A is
(−1)n|A|.

Solution.
The constant term of the polynomial p(λ) corresponds to p(0). It follows that
p(0) = constant term = | −A| = (−1)n|A|

Exercise 343
Find the eigenvalues of the matrices

(a)

A =
(

3 2
−1 0

)

(b)

B =
( −2 −1

5 2

)

Solution.
(a) The characteristic equation of A is given by

∣∣∣∣
λ− 3 −2

1 λ

∣∣∣∣ = 0

Expanding the determinant and simplifying, we obtain

λ2 − 3λ + 2 = 0

or
(λ− 1)(λ− 2) = 0.
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Thus, the eigenvalues of A are λ = 2 and λ = 1.

(b) The characteristic equation of the matrix B is
∣∣∣∣

λ + 2 1
−5 λ− 2

∣∣∣∣ = 0

Expanding the determinant and simplifying, we obtain

λ2 − 9 = 0

and the eigenvalues are λ = ±3

Exercise 344
Find the eigenvalues of the matrix

A =




0 1 0
0 0 1
4 −17 8




Solution.
According to Exercise 339 the characteristic equation of A is λ3−8λ2+17λ−4 =
0. Using the rational root test we find that λ = 4 is a solution to this equation.
Using synthetic division of polynomials we find

(λ− 4)(λ2 − 4λ + 1) = 0.

The eigenvalues of the matrix A are the solutions to this equation, namely,
λ = 4, λ = 2 +

√
3, and λ = 2−√3

Next, we turn to the problem of finding the eigenvectors of a square ma-
trix. Recall that an eigenvector is a nontrivial solution to the matrix equation
(λIn −A)x = 0.

Theorem 75
The set of eigenvectors of a matrix corresponding to an eigenvalue λ, together
with the zero vector, is a subspace of IRn. This subspace is called the eigenspace
of A corresponding to λ and will be denoted by Vλ.

Proof.
Let Vλ = {x ∈ IRn : Ax = λx}. We will show that Vλ ∪{0} is a subspace of IRn.
Let v, w ∈ Vλ and α ∈ IR. Then A(v + w) = Av + Aw = λv + λw = λ(v + w).
That is v + w ∈ Vλ. Also, A(αv) = αAv = λ(αv) so αv ∈ Vλ. Hence, Vλ is a
subspace of IRn.

By the above theorem, determining the eigenspaces of a square matrix is re-
duced to two problems: First find the eigenvalues of the matrix, and then find
the corresponding eigenvectors which are solutions to linear homogeneous sys-
tems.
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Exercise 345
Find the eigenspaces of the matrix

A =




3 −2 0
−2 3 0
0 0 5




Solution.
The characteristic equation of the matrix A is




λ− 3 2 0
2 λ− 3 0
0 0 λ− 5




Expanding the determinant and simplifying we obtain

(λ− 5)2(λ− 1) = 0.

The eigenvalues of A are λ = 5 and λ = 1.
A vector x = (x1, x2, x3)T is an eigenvector corresponding to an eigenvalue λ if
and only if x is a solution to the homogeneous system





(λ− 3)x1 + 2x2 = 0
2x1 + (λ− 3)x2 = 0

(λ− 5)x3 = 0
(5.2)

If λ = 1, then (5.2) becomes



−2x1 + 2x2 = 0
2x1 − 2x2 = 0

− 4x3 = 0
(5.3)

Solving this system yields

x1 = s, x2 = s, x3 = 0

The eigenspace corresponding to λ = 1 is

V1 =








s
s
0


 : s ∈ IR



 = span








1
1
0








If λ = 5, then (5.2) becomes




2x1 + 2x2 = 0
2x1 + 2x2 = 0

0x3 = 0
(5.4)

Solving this system yields

x1 = −t, x2 = t, x3 = s
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The eigenspace corresponding to λ = 5 is

V5 =







−t
t
s


 : s ∈ IR





=



t



−1
1
0


 + s




0
0
1


 : s, t ∈ IR





= span







−1
1
0


 ,




0
0
1








Exercise 346
Find bases for the eigenspaces of the matrix

A =




0 0 −2
1 2 1
1 0 3




Solution.
The characteristic equation of the matrix A is




λ 0 2
−1 λ− 2 −1
−1 0 λ− 3




Expanding the determinant and simplifying we obtain

(λ− 2)2(λ− 1) = 0.

The eigenvalues of A are λ = 2 and λ = 1.
A vector x = (x1, x2, x3)T is an eigenvector corresponding to an eigenvalue λ if
and only if x is a solution to the homogeneous system





λx1 + 2x3 = 0
−x1 + (λ− 2)x2 − x3 = 0
−x1 + (λ− 3)x3 = 0

(5.5)

If λ = 1, then (5.5) becomes




x1 + 2x3 = 0
−x1 − x2 − x3 = 0
−x1 − 2x3 = 0

(5.6)

Solving this system yields

x1 = −2s, x2 = s, x3 = s

The eigenspace corresponding to λ = 1 is

V1 =







−2s
s
s


 : s ∈ IR



 = span







−2
1
1







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and (−2, 1, 1)T is a basis for V1.

If λ = 2, then (5.5) becomes




2x1 + 2x3 = 0
−x1 − x3 = 0
−x1 − x3 = 0

(5.7)

Solving this system yields

x1 = −s, x2 = t, x3 = s

The eigenspace corresponding to λ = 2 is

V2 =







−s
t
s


 : s ∈ IR





=



s



−1
0
1


 + t




0
1
0


 : s, t ∈ IR





= span







−1
0
1


 ,




0
1
0








One can easily check that the vectors (−1, 0, 1)T and (0, 1, 0)T are linearly in-
dependent and therefore these vectors form a basis for V2

Exercise 347
Show that λ = 0 is an eigenvalue of a matrix A if and only if A is singular.

Solution.
If λ = 0 is an eigenvalue of A then it must satisfy |0In −A| = | −A| = 0. That
is |A| = 0 and this implies that A is singular. Conversely, if A is singular then
0 = |A| = |0In −A| and therefore 0 is an eigenvalue of A

Exercise 348
(a) Show that the eigenvalues of a triangular matrix are the entries on the main
diagonal.
(b) Find the eigenvalues of the matrix

A =




1
2 0 0
−1 2

3 0
5 −8 − 1

4




Solution.
(a) Suppose that A is upper triangular n× n matrix. Then the matrix λIn −A
is also upper triangular with entries on the main diagonal are λ − a11, λ −
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a22, · · · , λann. Since the determinant of a triangular matrix is just the product
of the entries of the main diaginal then the characteristic equation of A is

(λ− a11)(λ− a22) · · · (λ− ann) = 0.

Hence, the eigenvalues of A are a11, a22, · · · , ann.
(b) Using (a), the eigenvalues of A are λ = 1

2 , λ = 2
3 , and λ = − 1

4

Exercise 349
Show that A and AT have the same characteristic polynomial and hence the
same eigenvalues.

Solution.
We use the fact that a matrix and its transpose have the same determinant
(Theorem 28). Hence,

|λIn −AT | = |(λIn −A)T | = |λIn −A|.
Thus, A and AT have the same characteristic equation and therefore the same
eigenvalues

The algebraic multiplicity of an eigenvalue λ of a matrix A is the multi-
plicity of λ as a root of the characteristic polynomial, and the dimension of the
eigenspace corresponding to λ is called the geometric multiplicity of λ.

Exercise 350
Find the algebraic and the geometric multiplicity of the eigenvalues of the matrix

A =




2 1 0
0 2 0
2 3 1




Solution.
The characteristic equation of the matrix A is




λ− 2 −1 0
0 λ− 2 0
−2 −3 λ− 1




Expanding the determinant and simplifying we obtain

(λ− 2)2(λ− 1) = 0.

The eigenvalues of A are λ = 2 (of algebraic multiplicity 2) and λ = 1 (of
algebraic multiplicity 1).
A vector x = (x1, x2, x3)T is an eigenvector corresponding to an eigenvalue λ if
and only if x is a solution to the homogeneous system





(λ− 2)x1 − x2 = 0
(λ− 2)x2 = 0

−2x1 − 3x2 + (λ− 1)x3 = 0
(5.8)
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If λ = 1, then (5.8) becomes




−x1 − x2 = 0
− x2 = 0

−2x1 − 3x2 = 0
(5.9)

Solving this system yields

x1 = 0, x2 = 0, x3 = s

The eigenspace corresponding to λ = 1 is

V1 =








0
0
s


 : s ∈ IR



 = span








0
0
1








and (0, 0, 1)T is a basis for V1. The geometric multiplicity of λ = 1 is 1.

If λ = 2, then (5.8) becomes
{ − x2 = 0
−2x1 − 3x2 + x3 = 0 (5.10)

Solving this system yields

x1 =
1
2
s, x2 = 0, x3 = s

The eigenspace corresponding to λ = 2 is

V2 =








1
2s
0
s


 : s ∈ IR





= span








1
2
0
1








and the vector ( 1
2 , 0, 1)T is a basis for V2 so that the geometric multiplicity of

λ = 2 is 1

There are many matrices with real entries but with no real eigenvalues. An
example is given in the next exercise.

Exercise 351
Show that the following matrix has no real eigenvalues.

A =
(

0 1
−1 0

)



160 CHAPTER 5. EIGENVALUES AND DIAGONALIZATION

Solution.
The characteristic equation of the matrix A is

(
λ −1
1 λ

)

Expanding the determinant we obtain

λ2 + 1 = 0.

The solutions to this equation are the imaginary complex numbers λ = i and
λ = −i, and since we are assuming in this chapter that all our scalars are real
numbers, A has no real eigenvalues

Symmetric matrices with real entries have always real eigenvalues. In order
to prove this statement we recall the reader of the following definition. A com-
plex number is any number of the form z = a + bi where i =

√−1 is the
imaginary root. The number a is called the real part of z and b is called the
imaginary part. Also, recall that a + bi = a′ + b′i if and only if a = a′ and
b = b′.

Theorem 76
If λ = a + bi is an eigenvalue of a real symmetric n × n matrix A then b = 0,
that is λ is real.

Proof.
Since λ = a + bi is an eigenvalue of A then λ satisfies the equation

[(a + bi)In −A](u + vi) = 0 + 0i,

where u, v, are vectors in IRn not both equal to zero and 0 is the zero vector of
IRn. The above equation can be rewritten in the following form

(aInu−Au− bInv) + (aInv + bInu−Av)i = 0 + 0i

Setting the real and imaginary parts equal to zero, we have

aInu−Au− bInv = 0

and
aInv + bInu−Av = 0.

These equations yield the following equalities

< v, aInu−Au− bInv >=< v, 0 >= 0

and
< aInv + bInu−Av, u >=< 0, u >= 0
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or equivalently

a < v, Inu > − < v, Au > −b < v, Inv > = 0 (5.11)
a < Inv, u > − < Av, u > +b < Inu, u > = 0. (5.12)

But < Inv, u >= uT (Inv) = (Inu)T v =< v, Inu > and < Av, u >= uT (Av) =
uT (AT v) = (uT At)v = (Au)T v =< v,Au >, where < ., . > is the inner product
inIRn. Subtracting the two equations in (5.11), we now get

−b < v, Inv > −b < Inu, u >= 0

or
−b[< u, u > + < v, v >] = 0.

Since u and v not both the zero vector, then either < u, u >> 0 or < v, v >> 0.
From the previous equation we conclude that b = 0.

We next introduce a concept for square matrices that will be fundamental in
the next section. We say that two n× n matrices A and B are similar if there
exists a nonsingular matrix P such that B = P−1AP. We write A ∼ B. The
matrix P is not unique. For example, if A = B = In then any invertible matrix
P will satisfy the definition.

Exercise 352
Show that ∼ is an equivalence relation on the collection Mnn of square matrices.
That is, show the following:
(a) A ∼ A (∼ is reflexive).
(b) If A ∼ B then B ∼ A (∼ is symmetric).
(c) If A ∼ B and B ∼ C then A ∼ C (∼ is transitive).

Solution.
(a) Since A = I−1

n AIn then A ∼ A.
(b) Suppose that A ∼ B. Then there is an invertible matrix P such that
B = P−1AP. By premultiplying by P and postmultiplying by P−1 we find
A = PBP−1 = Q−1BQ, where Q = P−1. Hence, B ∼ A.
(c) Suppose that A ∼ B and B ∼ C then there exist invertible matric P and
Q such that B = P−1AP and C = Q−1BQ. It follows that C = Q−1BQ =
Q−1P−1APQ = (PQ)−1A(PQ) = R−1AR, with R = PQ. This says that
A ∼ C

Exercise 353
Let A and B be similar matrices. Show the following:
(a) |A| = |B|.
(b) tr(A) = tr(B).
(c) rank(A) = rank(B).
(d) |λIn −A| = |λIn −B|.
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Solution.
Since A ∼ B then there exists an invertible matrix P such that B = P−1AP.

(a) |B| = |P−1AP | = |P−1||A||P | = |A| since |P−1| = |P |−1.
(b) tr(B) = tr(P−1AP ) = tr(PP−1A) = tr(A) (See Exercise 88 (a)).
(c) By Theorem 70, we have rank(B) = rank(PA) = rank(A).
(d) Indeed, |λIn −B| = |λIn − P−1AP | = |P−1(λIn)P | = |λIn − A|. It follows
that two similar matrices have the same eigenvalues

Exercise 354
Show that the following matrices are not similar.

A =
(

1 2
2 1

)
, B =

(
1 1
1 1

)

Solution.
The eigenvalues of A are λ = 3 and λ = −1. The eigenvalues of B are λ = 0 and
λ = 2. According to Exercise 353 (d), these two matrices cannot be similar

Exercise 355
Let A be an n × n matrix with eigenvalues λ1, λ2, · · · , λn including repetitions.
Show the following.

(a) tr(A) = λ1 + λ2 + · · ·+ λn.
(b) |A| = λ1λ2 · · ·λn.

Solution.
Factoring the characteristic polynomial of A we find

p(λ) = (λ− λ1)(λ− λ2) · · · (λ− λn)
= λn − (λ1 + λ2 + · · ·+ λn)λn−1 + · · ·+ λ1λ2 · · ·λn

(a) By Exercise 341, tr(A) = λ1 + λ2 + · · ·+ λn.
(b) |A| = p(0) = λ1λ2 · · ·λn

We end this section with the following important result of linear algebra.

Theorem 77 (Cayley-Hamilton)
Every square matrix is the zero of its characteristic polynomial.

Proof.
Let p(λ) = λn+an−1λ

n−1+· · ·+a1λ+a0 be the characteristic polynomial corre-
sponding to A. We will show that p(A) = 0. The cofactors of A are polynomials
in λ of degree at most n− 1. Thus,

adj(λIn −A) = Bn−1λ
n−1 + · · ·+ B1λ + B0

where the Bi are n× n matrices with entries independent of λ. Hence,

(λIn −A)adj(λIn −A) = |λIn −A|In.
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That is

Bn−1λ
n + (Bn−2 −ABn−1)λn−1 + (Bn−3

−ABn−2)λn−2 + · · ·+ (B0 −AB1)λ−AB0 =
Inλn−1 + an−1Inλn−1 + an−2Inλn−2 + · · · a1Inλ + a0In.

Equating coefficients of corresponding powers of λ,

Bn−1 = In

Bn−2 −ABn−1 = an−1In

Bn−3 −ABn−2 = an−2In

.............................
B0 −AB1 = a1In

−AB0 = a0In

Multiplying the above matrix equations by An, An−1, · · · , A, In respectively and
adding the resulting matrix equations to obtain

0 = An + an−1A
n−1 + · · ·+ a1A + a0In.

In other words, p(A) = 0

Exercise 356
Let A be an n × n matrix whose characteristic polynomial is p(λ) = λn +
an−1λ

n−1 + · · · + a1λ + a0. Show that if A is invertible then its inverse can
be found by means of the formula

A−1 = − 1
a0

(An−1 + an−1A
n−2 + · · ·+ a1In)

Solution.
By the Cayley-Hamilton theorem p(A) = 0. that is

An + an−1A
n−1 + · · ·+ a1A + a0In = 0.

Multiplying both sides by A−1 to obtain

a0A
−1 = −An−1 − an−1A

n−2 − · · · − a1In.

Since A is invertible then |A| = a0 6= 0. Divide both sides of the last equality
by a0 to obtain

A−1 = − 1
a0

(An−1 + an−1A
n−2 + · · ·+ a1In)
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5.2 Diagonalization of a Matrix

In this section we shall discuss a method for finding a basis of IRn consisting
of eigenvectors of a given n × n matrix A. It turns out that this is equivalent
to finding an invertible matrix P such that P−1AP is a diagonal matrix. The
latter statement suggests the following terminology.
A square matrix A is called diagonalizable if A is similar to a diagonal matrix.
That is, there exists an invertible matrix P such that P−1AP = D is a diagonal
matrix. The next theorem gives a characterization of diagonalizable matrices
and tells how to construct a suitable characterization. In fact, it supports our
statement mentioned at the begining of this section that the problem of finding
a basis of IRn consisting of eigenvectors of A is equivalent to diagonalizing A.

Theorem 78
If A is an n×n square matrix, then the following statements are all equivalent.
(a) A is diagonalizable.
(b) A has n linearly independent eigenvectors.

Proof.
(a) ⇒ (b) : Suppose A is diagonalizable. Then there are an invertible matrix P
and a diagonal matrix D such that A = PDP−1. That is

AP = PD =




p11 p12 . . . p1n

p21 p22 . . . p2n

...
...

pn1 pn2 . . . pnn







λ1 0 0 . . . 0
0 λ2 0 . . . 0
...

...
0 0 0 . . . λn




For 1 ≤ i ≤ n, let

pi =




p1i

p2i

...
pni




Then the columns of AP are λ1p1, λ2p2, . . . , λnpn. But AP = [Ap1, Ap2, . . . , Apn].
Hence, Api = λipi, for 1 ≤ i ≤ n. Since P is invertible its column vectors are
linearly independent and hence are all nonzero vectors (Theorem 71). Thus
λ1, λ2, . . . , λn are eigenvalues of A and p1, p2, . . . , pn are the corresponding eigen-
vectors. Hence, A has n linearly independent eigenvectors.

(b) ⇒ (a) : Suppose that A has n linearly independent eigenvectors p1, p2, . . . , pn

with corresponding eigenvalues λ1, λ2, . . . , λn. Let

P =




p11 p12 . . . p1n

p21 p22 . . . p2n

...
...

pn1 pn2 . . . pnn



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Then the columns of AP are Ap1, Ap2, . . . , Apn. But Ap1 = λ1p1, Ap2 = λ2p2, . . . , Apn =
λnpn. Hence

AP =




λ1p11 λ2p12 . . . λnp1n

λ1p21 λ2p22 . . . λnp2n

...
...

λ1pn1 λ2pn2 . . . λnpnn




=




p11 p12 . . . p1n

p21 p22 . . . p2n

...
...

pn1 pn2 . . . pnn







λ1 0 0 . . . 0
0 λ2 0 . . . 0
...

...
0 0 0 . . . λn


 = PD

Since the column vectors of P ar linearly independent, P is invertible. Hence
A = PDP−1, that is A is similar to a diagonal matrix

From the above proof we obtain the following procedure for diagonalizing a
diagonalizable matrix.

Step 1. Find n linearly independent eigenvectors of A, say p1, p2, · · · , pn.
Step 2. Form the matrix P having p1, p2, · · · , pn as its column vectors.
Step 3. The matrix P−1AP will then be diagonal with λ1, λ2, . . . , λn as its
diagonal entries, where λi is the eigenvalue corresponding to pi, 1 ≤ i ≤ n.

Exercise 357
Find a matrix P that diagonalizes

A =




3 −2 0
−2 3 0
0 0 5




Solution.
From Exercise 345 of the previous section the eigenspaces corresponding to the
eigenvalues λ = 1 and λ = 5 are

V1 =








s
s
0


 : s ∈ IR



 = span








1
1
0








and

V5 =







−t
t
s


 : s ∈ IR





=



t



−1
1
0


 + s




0
0
1


 : s, t ∈ IR





= span







−1
1
0


 ,




0
0
1







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Let ~v1 = (1, 1, 0)T , ~v2 = (−1, 1, 0), and ~v3 = (0, 0, 1)T . It is easy to verify that
these vectors are linearly independent. The matrices

P =




1 −1 0
1 1 0
0 0 1




and

D =




1 0 0
0 5 0
0 0 5




satisfy AP = PD or D = P−1AP

Exercise 358
Show that the matrix

A =
( −3 2
−2 1

)

is not diagonalizable.

Solution.
The characteristic equation of the matrix A is

(
λ + 3 −2

2 λ− 1

)

Expanding the determinant and simplifying we obtain

(λ + 1)2 = 0.

The only eigenvalue of A is λ = −1.
A vector x = (x1, x2)T is an eigenvector corresponding to an eigenvalue λ if and
only if x is a solution to the homogeneous system

{
(λ + 3)x1 − 2x2 = 0

2x1 + (λ− 1)x2 = 0 (5.13)

If λ = −1, then (5.13) becomes
{

2x1 − 2x2 = 0
2x1 − 2x2 = 0 (5.14)

Solving this system yields x1 = s, x2 = s. Hence the eigenspace corresponding
to λ = −1 is

V−1 =
{(

s
s

)
: s ∈ IR

}
= span

{(
1
1

)}

Since dim(V−1) = 1, A does not have two linearly independent eigenvectors and
is therefore not diagonalizable

In many applications one is concerned only with knowing whether a matrix
is diagonalizable without the need of finding the matrix P. In order to establish
this result we first need the following theorem.
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Theorem 79
If v1, v2, . . . , vn are nonzero eigenvectors that correspond to distinct eigenvalues
λ1, λ2, . . . , λn then the set {v1, v2, . . . , vn} is linearly indepedent.

Proof.
The proof is by induction on n. If n = 1 then {v1} is linearly independent (Exer-
cise 252). So assume that the vectors {v1, v2, · · · , vn−1} are linearly independent.
Suppose that

α1v1 + α2v2 + · · ·αnvn = 0. (5.15)

Apply A to both sides of (5.15) and using the fact that Avi = λivi to obtain

α1λ1v1 + α2λ2v2 + · · ·αnλnvn = 0. (5.16)

Now, multiplying (5.15) by λn and subtracting the resulting equation from
(5.16) we obtain

α1(λ1 − λn)v1 + α2(λ2 − λn)v2 + · · ·αn−1(λn−1 − λn)vn−1 = 0. (5.17)

By the induction hypothesis, all the coefficients must be zero. Since the λi are
distinct, i.e. λi − λn 6= 0 for i 6= n then, α1 = α2 = · · · = αn−1 = 0. Substi-
tuting this into (5.15) to obtain αnvn = 0, and hence αn = 0. This shows that
{v1, v2, · · · , vn} is linearly indepedent.

As a consquence of the above theorem we have the following useful result.

Theorem 80
If A is an n× n matrix with n distinct eigenvalues then A is diagonalizable.

Proof.
If v1, v2, · · · , vn are nonzero eigenvectors corresponding to the distinct eigenval-
ues λ1, λ2, · · ·λn then by Theorem 79, v1, v2, · · · , vn are linearly independent
vectors. Thus, A is diagonalizable by Theorem 78

Exercise 359
Show that the following matrix is diagonalizable.

A =




1 0 0
1 2 −3
1 −1 0




Solution.
The characteristic equation of the matrix A is




λ− 1 0 0
−1 λ− 2 3
−1 1 λ



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Expanding the determinant and simplifying we obtain

(λ− 1)(λ− 3)(λ + 1) = 0

The eigenvalues are 1, 3 and −1, so A is diagonalizable by Theorem 78

The converse of Theorem 80 is false. That is, an n × n matrix A may be
diagonalizable even if it does not have n distinct eigenvalues.

Exercise 360
Show that the matrix

A =
(

3 0
0 3

)

is diagonalizable with only one eigenvalue.

Solution.
The characteristic equation of the matrix A is

(
λ− 3 0

0 λ− 3

)

Expanding the determinant and simplifying we obtain

(λ− 3)2 = 0.

The only eigenvalue of A is λ = 3. By letting P = In and D = A we see that
D = P−1AP, i.e. A is diagonalizable

Next we turn our attention to the study of symmetric matrices since they
arise in many applications. The interesting fact about symmetric matrices is
that they are always diagonalizable. This follows from Theorem 76 and Theo-
rem 80.Moreover, the diagonalizing matrix P has some noteworthy properties,
namely, PT = P−1, i.e. P is orthogonal. More properties are listed in the
next theorem.

Theorem 81
The following are all equivalent:
(a) A is diagonalizable by an orthogonal matrix.
(b) A has an orthonormal set of n eigenvectors.
(c) A is symmetric.

Proof.
(a) ⇒ (b): Since A is diagonalizable by an orthogonal matrix P then there exist
an orthogonal matrix P and a diagonal matrix D such that P−1AP = D. As
shown in the proof of Theorem 78, the column vectors of P are the n eigen-
vectors of A. Since P is orthogonal then these vectors form an orthonormal set
according to Theorem 63.
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(b) ⇒ (c): Suppose that A has an orthonormal set of n eigenvectors of A. As
shown in the proof of Theorem 78 the matrix P with columns the eigenvectors
of A diagonalizes A and P−1AP = D. Since the columns of P are orthonor-
mal then PPT = In. By Theorem 20 P−1 = PT . Thus, AT = (PDP−1)T =
(P−1)T DT PT = (PT )−1DT PT = PDP−1 = A. This says that A is symmetric.
(c)⇒ (a): Suppose that A is symmetric. We proceed by induction on n. If n = 1,
A is already doagonal. Suppose that (c) implies (a) for all (n − 1) × (n − 1)
symmetric matrices. Let λ1 be a real eigenvalue of A and let x1 be a corre-
sponding eigenvector with ||x1|| = 1. Using the Gram-schmidt algorithm we can
extend x1 to a orthonormal basis {x1, x2, · · · , xn} basis of IRn. Let P1 be the
matrix whose columns are x1, x2, · · · , xn respectively. Then P1 is orthogonal by
Theorem 63. Moreover

PT
1 AP1 =

(
λ1 X
0 A1

)

Since A is symmetric then PT
1 AP is also symmetric so that X = 0 and A1 is an

(n− 1)× (n− 1) symmetric matrix. By the induction hypothesis, there exist an
orthogonal matrix Q and a diagonal matrix D1 such that QT A1Q = D1. Hence,
the matrix

P2 =
(

1 0
0 Q

)

is orthogonal and

(P2P1)T A(P2P1) = PT
2 (P1AP1)P2

=
(

1 0
0 QT

)(
λ1 0
0 A1

)(
1 0
0 Q

)

=
(

λ1 0
0 D1

)

is diagonal. Let T = P1P2. Then one can easily check that P1P2 is orthogonal.
This ends a proof of the theorem

Exercise 361
Let A be an m× n matrix. Show that the matrix AT A has an orthonormal set
of n eigenvectors.

Solution.
The matrix AT A is of size n × n and is symmetric. By Theorem 81, AT A has
an orthonormal set of n eigenvectors

We now turn to the problem of finding an orthogonal matrix P to diagonal-
ize a symmetric matrix. The key is the following theorem.

Theorem 82
If A is a symmetric matrix then the eigenvectors corresponding to distinct eigen-
values are orthogonal.
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Proof.
Let A be an n × n symmetric matrix and α, β be two distinct eigenvalues
of A. Let v = (v1, v2, · · · , vn) and w = (w1, w2, · · · , wn) be two eigenvectors
corresponding to α and β. We want to show that < v, w >= 0. That is,
v1w1 + v2w2 + · · ·+ vnwn = 0. But this is the same thing as the matrix multi-
plication vT w = 0. Since v is an eigenvector corresponding to α then Av = αv.
Taking transpose of both sides to obtain vT AT = αvT . Since A is symmetric,
i.e. AT = A then vT A = αvT . Multiply this equation from the right by w to
obtian vT Aw = αvT w. Hence, βvT w = αvT w. That is, (α − β)vT w = 0. By
Exercise 79 we conclude that vT w = 0.

As a consequence of this theorem we obtain the following procedure for di-
agonalizing a matrix by an orthogonal matrix P.

Step 1. Find a basis for each eigenspace of A.
Step 2. Apply the Gram-Schmidt process to each of these bases to obtain an
orthonormal basis for each eigenspace.
Step 3. Form the matrix P whose columns are the basis vectors constructed in
Step 2. This matrix is orthogonal.

Exercise 362
Consider the matrix

A =




1 0 −1
0 1 2
−1 2 5


 .

(a) Show that A is symmetric.
(b) Find an orthogonal matrix P and a diagonal matrix D such that P−1AP =
D.

Solution.
(a) One can either check that AT = A or by noticing that mirror images of
entries across the main diagonal are equal.
(b) The characteristic equation of the matrix A is




λ− 1 0 1
0 λ− 1 −2
1 −2 λ− 5




Expanding the determinant and simplifying we obtain

λ(λ− 1)(λ− 6) = 0

The eigenvalues are 0, 1 and 6. One can eaily check the following

V0 = span








1
−2
1







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V1 = span








2
1
0








V9 = span







−1
2
5








Let ~v1 = 1√
6
(1,−2, 1)T , ~v2 = 1√

5
(2, 1, 0)T , and ~v3 = 1√

30
(−1, 2, 5)T . One can

easily check that these vectors form an orthonormal set so that the matrix P
with columns the vectors ~v1, ~v2, ~v3 is orthogonal and

P−1AP =




0 0 0
0 1 0
0 0 6


 = D

5.3 Review Problems

Exercise 363
Show that λ = −3 is an eigenvalue of the matrix

A =




5 8 16
4 1 8
−4 −4 −11




and then find the corresponding eigenspace V−3.

Exercise 364
Find the eigenspaces of the matrix

A =
(

3 0
8 −1

)

Exercise 365
Find the characteristic polynomial, eigenvalues, and eigenspaces of the matrix

A =




2 1 1
2 1 −2
−1 0 −2




Exercise 366
Find the bases of the eigenspaces of the matrix

A =



−2 0 1
−6 −2 0
19 5 −4



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Exercise 367
Show that if λ is a nonzero eigenvalue of an invertible matrix A then 1

λ is an
eigenvalue of A−1.

Exercise 368
Show that if λ is an eigenvalue of a matrix A then λm is an eigenvalue of Am

for any positive integer m.

Exercise 369
(a) Show that if D is a diagonal matrix then Dk, where k is a positive integer,
is a diagonal matrix whose entries are the entries of D raised to the power k.
(b) Show that if A is similar to a diagonal matrix D then Ak is similar to Dk.

Exercise 370
Show that the identity matrix In has exactly one eigenvalue. Find the corre-
sponding eigenspace.

Exercise 371
Show that if A ∼ B then
(a) AT ∼ BT .
(b) A−1 ∼ B−1.

Exercise 372
If A is invertible show that AB ∼ BA for all B.

Exercise 373
Let A be an n× n nilpotent matrix, i.e. Ak = 0 for some positive ineteger k.

(a) Show that λ = 0 is the only eigenvalue of A.
(b) Show that p(λ) = λn.

Exercise 374
Suppose that A and B are n×n similar matrices and B = P−1AP. Show that if
λ is an eigenvalue of A with corresponding eigenvector x then λ is an eigenvalue
of B with corresponding eigenvector P−1x.

Exercise 375
Let A be an n×n matrix with n odd. Show that A has at least one real eigenvalue.

Exercise 376
Consider the following n× n matrix

A =




0 1 0 0
0 0 1 0
0 0 0 1
−a0 −a1 −a2 −a3




Show that the characterisitc polynomial of A is given by p(λ) = λ4 + a3λ
3 +

a2λ
2 + a1λ + a0. Hence, every monic polynomial (i.e. the coefficient of the

highest power of λ is 1) is the characteristic polynomial of some matrix. A is
called the companion matrix of p(λ).
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Exercise 377
Find a matrix P that diagonalizes

A =




0 0 −2
1 2 1
1 0 3




Exercise 378
Show that the matrix A is diagonalizable.

A =




0 1 0
0 0 1
4 −17 8




Exercise 379
Show that the matrix A is not diagonalizable.

A =




2 1 1
2 1 −2
−1 0 −2




Exercise 380
Show that if A is diagonalizable then the rank of A is the number of nonzero
eigenvalues of A.

Exercise 381
Show that A is diagonalizable if and only if AT is diagonalizable.

Exercise 382
Show that if A and B are similar then A is diagonalizable if and only if B is
diagonalizable.

Exercise 383
Give an example of two diagonalizable matrices A and B such that A+B is not
diagonalizable.

Exercise 384
Show that the following are equivalent for a symmetric matrix A.
(a) A is orthogonal.
(b) A2 = In.
(c) All eigenvalues of A are ±1.

Exercise 385
A matrix that we obtain from the identity matrix by writing its rows in a different
order is called permutation matrix. Show that every permutation matrix is
orthogonal.

Exercise 386
Let A be an n× n skew symmetric matrix. Show that
(a) In + A is nonsingular.
(b) P = (In −A)(In + A)−1 is orthogonal.
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Exercise 387
We call square matrix E a projection matrix if E2 = E = ET .

(a) If E is a projection matrix, show that P = In − 2E is orthogonal and
symmetric.
(b) If P is orthogonal and symmetric, show that E = 1

2 (In − P ) is a projection
matrix.



Chapter 6

Linear Transformations

In this chapter we shall discuss a special class of functions whose domains and
ranges are vector spaces. Such functions are referred to as linear transforma-
tions, a concept to be defined in Section 6.1. Linear transformations play an
important role in many areas of mathematics, the physical and social sciences,
engineering, and economics.

6.1 Definition and Elementary Properties

A linear transformation T from a vector space V to a vector space W is a
function T : V → W that satisfies the following two conditions

(i) T (u + v) = T (u) + T (v), for all u, v in V.
(ii) T (αu) = αT (u) for all u in V and scalar α.

If W = IR then we call T a linear functional on V.
It is important to keep in mind that the addition in u + v refers to the addition
operation in V whereas that in T (u) + T (v) refers to the addition operation in
W. Similar remark for the scalar multiplication.

Exercise 388
Show that T : IR2 → IR3 defined by

T (x, y) = (x, x + y, x− y)

is a linear transformation.

Solution.
We verify the two conditions of the definition. Given (x1, y1) and (x2, y2) in

175
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IR2, compute

T ((x1, y1) + (x2, y2)) = T (x1 + x2, y1 + y2)
= (x1 + x2, x1 + x2 + y1 + y2, x1 + x2 − y1 − y2)
= (x1, x1 + y1, x1 − y1) + (x2, x2 + y2, x2 − y2)
= T (x1, y1) + T (x2, y2)

This proves the first condition. For the second condition, we let α ∈ IR and
compute

T (α(x, y)) = T (αx, αy) = (αx, αx+αy, αx−αy) = α(x, x+y, x−y) = αT (x, y)

Hence T is a linear transformation

Exercise 389
Let T : IR2 → IR3 be given by T (x, y) = (x, y, 1). Show that T is not linear.

Solution.
We show that the first condition of the definition is violated. Indeed, for any
two vectors (x1, y1) and (x2, y2) we have

T ((x1, y1) + (x2, y2)) = T (x1 + x2, y1 + y2) = (x1 + x2, y1 + y2, 1)
6= (x1, y1, 1) + (x2, y2, 1) = T (x1, y1) + T (x2, y2)

Hence the given transformation is not linear

Exercise 390
Show that an m× n matrix defines a linear transforamtion from IRn to IRm.

Solution.
Given x and y in IRm and α ∈ IR, matrix arithmetic yields T (x+y) = A(x+y) =
Ax + Ay = Tx + Ty and T (αx) = A(αx) = αAx = αTx. Thus, T is linear

Exercise 391
Consider the matrices

E =
(

0 1
1 0

)
, F =

(
α 0
0 1

)
, G =

(
1 1
0 1

)

(a) Show that the transformation TE(x, y) = (y, x) is linear. This transforma-
tion is a reflection in the line y = x.
(b) Show that TF (x, y) = (αx, y) is linear. Such a transformation is called an
expansion if α > 1 and a compression if α < 1.
(c) Show that TG(x, y) = (x + y, y) is linear. This transformation is called a
shear

Solution.
(a) Given (x1, y1) and (x2, y2) is IR2 and α ∈ IR we find

TE((x1, y1) + (x2, y2)) = TE(x1 + x2, y1 + y2) = (y1 + y2, x1 + x2)
= (y1, x1) + (y2, x2) = TE(x1, y1) + TE(x2, y2)
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and
TE(α(x, y)) = TE(αx, αy) = (αy, αx) = α(y, x) = αTE(x, y)

Hence, TE is linear.
(b) Given (x1, y1) and (x2, y2) is IR2 and β ∈ IR we find

TF ((x1, y1) + (x2, y2)) = TF (x1 + x2, y1 + y2) = (α(x1 + x2), y1 + y2)
= (αx1, y1) + (αx2, y2) = TF (x1, y1) + TF (x2, y2)

and
TF (β(x, y)) = TF (βx, βy) = (βαx, βy) = β(αx, y) = βTF (x, y)

Hence, TF is linear.
(c) Given (x1, y1) and (x2, y2) is IR2 and α ∈ IR we find

TG((x1, y1) + (x2, y2)) = TG(x1 + x2, y1 + y2) = (x1 + x2 + y1 + y2, y1 + y2)
= (x1 + y1, y1) + (x2 + y2, 22) = TG(x1, y1) + TG(x2, y2)

and

TG(α(x, y)) = TG(αx, αy) = (α(x + y), αy) = α(x + y, y) = αTG(x, y)

Hence, TG is linear.

Exercise 392
(a) Show that the identity transformation defined by I(v) = v for all v ∈ V is a
linear transformation.
(b) Show that the zero transformation is linear.

Solution.
(a) For all u, v ∈ V and α ∈ IR we have I(u + v) = u + v = Iu + Iv and
I(αu) = αu = αIu. So I is linear.
(b) For all u, v ∈ V and α ∈ IR we have 0(u + v) = 0 = 0u + 0v and
0(αu) = 0 = α0u. So 0 is linear

The next theorem collects four useful properties of all linear transformations.

Theorem 83
If T : V → W is a linear transformation then

(a) T (0) = 0
(b) T (−u) = −T (u)
(c) T (u− w) = T (u)− T (w)
(d) T (α1u1 + α2u2 + . . . + αnun) = α1T (u1) + α2T (u2) + . . . + αnT (un).

Proof.
(a) T (0) = T (2× 0) = 2T (0). Thus, T (0) = 0.
(b) T (−u) = T ((−1)u) = (−1)T (u) = −T (u).
(c) T (u−w) = T (u+(−w)) = T (u)+T (−w) = T (u)+(−T (w)) = T (u)−T (w).
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(d) Use induction

The following theorem provides a criterion for showing that a transformation is
linear.

Theorem 84
A function T : V → W is linear if and only if T (αu + v) = αT (u) + T (v) for
all u, v ∈ V and α ∈ IR.

Proof.
Suppose first that T is linear. Let u, v ∈ V and α ∈ IR. Then αu ∈ V. Since T
is linear we have T (αu + v) = T (αu) + T (v) = αT (u) + T (v).
Conversely, suppose that T (αu+v) = αT (u)+T (v) for all u, v ∈ V and α ∈ IR.
In particular, letting α = 1 we see that T (u + v) = T (u) + T (v) for all u, v ∈ V.
Now, letting v = 0 we see that T (αu) = αT (u). Thus, T is linear

Exercise 393
Let Mmn denote the vector space of all m× n matrices.
(a) Show that T : Mmn → Mnm defined by T (A) = AT is a linear transforma-
tion.
(b) Show that T : Mnn → IR defined by T (A) = tr(A) is a linear functional.

Solution.
(a) For any A,B ∈ Mmn and α ∈ IR we find T (αA + B) = (αA + B)T =
αAT + BT = αT (A) + T (B). Hence, T is a linear transformation.
(b) For any A,B ∈ Mnn and α ∈ IR we have T (αA + b) = tr(αA + B) =
αtr(A) + tr(B) = αT (A) + T (B) so T is a linear functional

Exercise 394
Let V be an inner product space and v0 be any fixed vector in V. Let T : V → IR
be the transformation T (v) =< v, v0 > . Show that T is linear functional.

Solution
Indeed, for u, v ∈ V and α ∈ IR we find T (αu+ v) =< αu+ v, v0 >=< αu, v0 >
+ < v, v0 >= α < u, v0 > + < v, v0 >= αT (u) + T (v). Hence, T is a linear
functional

Exercise 395
Let {v1, v2, . . . , vn} be a basis for a vector space V and let T : V → W be a
linear transformation. Show that if T (v1) = T (v2) = . . . = T (vn) = 0 then
T (v) = 0 for any vector v in V.

Solution.
Let v ∈ V. Then there exist scalars α1, α2, · · · , αn such that v = α1v1 + α2v2 +
· · ·+ αnvn. Since T is linear then T (v) = αTv1 + αTv2 + · · ·+ αnTvn = 0
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Exercise 396
Let S : V → W and T : V → W be two linear transformations. Show the
following:
(a) S + T and S − T are linear transformations.
(b) αT is a linear transformation where α denotes a scalar.

Solution.
(a) Let u, v ∈ V and α ∈ IR then

(S ± T )(αu + v) = S(αu + v)± T (αu + v)
= αS(u) + S(v)± (αT (u) + T (v))
= α(S(u)± T (u)) + (S(v)± T (v))
= α(S ± T )(u) + (S ± T )(v)

(b) Let u, v ∈ V and β ∈ IR then

(αT )(βu + v) = (αT )(βu) + (αT )(v)
= αβT (u) + αT (v)
= β(αT (u)) + αT (v)
= β(αT )(u) + (αT )(v)

Hence, αT is a linear transformation

The following theorem shows that two linear transformations defined on V are
equal whenever they have the same effect on a basis of the vector space V.

Theorem 85
Let V = span{v1, v2, · · · , vn}. If T and S are two linear transformations from
V into a vector space W such that T (vi) = S(vi) for each i then T = S.

Proof.
Let v = α1v1 + α2v2 + · · ·+ αnvn ∈ V. Then

T (v) = T (α1v1 + α2v2 + · · ·+ αnvn)
= α1T (v1) + α2T (v2) + · · ·+ αnT (vn)
= α1S(v1) + α2S(v2) + · · ·+ αnS(vn)
= S(α1v1 + α2v2 + · · ·+ αnvn) = S(v)

Since this is true for any v ∈ V then T = S.

The following very useful theorem tells us that once we say what a linear trans-
formation does to a basis for V, then we have completely specified T.

Theorem 86
Let V be an n-dimensional vector space with basis {v1, v2, · · · , vn}. If T : V −→
W is a linear transformation then for any v ∈ V , Tv is completely determined
by {Tv1, T v2, · · · , T vn}.
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Proof.
For v ∈ V we can find scalars α1, α2, · · · , αn such that v = α1v1 + α2v2 + · · ·+
αnvn. Since T is linear then Tv = α1Tv1 +α2Tv2 + · · ·+αnTvn. This says that
Tv is completely determined by the vectors Tv1, T v2, · · · , T vn

Theorem 87
Let V and W be two vector spaces and {e1, e2, · · · , en} be a basis of V. Given
any vectors w1, w2, · · · , wn in W , there exists a unique linear transformation
T : V −→ W such that T (ei) = wi for each i.

Proof.
Let v ∈ V . Then v can be represented uniquely in the form v = α1e1 + α2e2 +
· · ·+ αnen. Define T : V −→ W by T (v) = α1w1 + α2w2 + · · ·+ αnwn. Clearly,
T (ei) = wi for each i. One can easily show that T is linear. Now the uniqueness
of T follows from Theorem 85

Exercise 397
Let T : IRn → IRm be a linear transformation. Write vectors in IRn as columns.
Show that there exists an m× n matrix A such that T (x) = Ax for all x ∈ IRn.
The matrix A is called the standard matrix of T.

Solution.
Consider the standard basis of IRn, {e1, e2, · · · , en}. Let x = (x1, x2, · · · , xn)T ∈
IRn. Then x = x1e1 + x2e2 + · · ·+ xnen. Thus,

T (x) = x1T (e1) + x2T (e2) + · · ·+ xnT (en) = Ax

where A = [ T (e1) T (e2) · · · T (en) ]

Exercise 398
Find the standard matrix of T : IR3 → IR2 defined by

T




x
y
z


 =

(
x− 2y + z

x− z

)

Solution.
Indeed, by simple inspection one finds that

T




x
y
z


 =

(
1 −2 1
1 0 −1

) 


x
y
z




6.2 Kernel and Range of a Linear Transforma-
tion

In this section we discuss two important subspaces associated with a linear
transformation T, namely the kernel of T and the range of T. Also, we discuss
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some further properties of T as a function such as, the concepts of one-one, onto
and the inverse of T. Let T : V → W be a linear transformation. The kernel of
T (denoted by ker(T )) and the range of T (denoted by R(T )) are defined by

ker(T ) = {x ∈ V : T (v) = 0}
R(T ) = {w ∈ W : T (v) = w, v ∈ V }

The following theorem asserts that ker(T ) and R(T ) are subspaces.

Theorem 88
Let T : V → W be a linear transformation. Then
(a) ker(T ) is a subspace of V .
(b) R(T ) is a subspace of W.

Proof.
(a) Let v1, v2 ∈ ker(T ) and α ∈ IR. Then T (αv1 + v2) = αTv1 + Tv2 = 0. That
is, αv1 + v2 ∈ ker(T ). This proves that ker(T ) is a subspace of V.
(b) Let w1, w2 ∈ R(T ). Then there exist v1, v2 ∈ V such that Tv1 = w1 and
Tv2 = w2. Let α ∈ IR. Then T (αv1 + v2) = αTv1 + Tv2 = αw1 + w2. Hence,
αw1 + w2 ∈ R(T ). This shows that R(T ) is a subspace of W

Exercise 399
If T : IR3 → IR3 is defined by T (x, y, z) = (x − y, z, y − x), find ker(T ) and
R(T ).

Solution.
If (x, y, z) ∈ ker(T ) then (0, 0, 0) = T (x, y, z) = (x − y, z, y − x). This leads to
the system 




x − y = 0
−x + y = 0

z = 0

The general solution is given by (s, s, 0) and therefore ker(T ) = span{(1, 1, 0)}.
Now, let (u, v, w) ∈ R(T ) be given. Then there is a vector (x, y, z) ∈ IR3 such
that T (x, y, z) = (u, v, w). This yields the following system





x − y = u
−x + y = w

z = v

and the solution is given by (u, v,−u). Hence,

R(T ) = span{(1, 0,−1), (0, 1, 0)}

Exercise 400
Let T : IRn → IRm be given by Tx = Ax. Find ker(T ) and R(T ).
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Solution.
We have

ker(T ) = {x ∈ IRn : Ax = 0} = null(A)

and
R(T ) = {Ax : x ∈ IRn}

Exercise 401
Let V be any vector space and α be a scalar. Let T : V → V be the transforma-
tion defined by T (v) = αv.

(a) Show that T is linear.
(b) What is the kernel of T?
(c) What is the range of T?

Solution.
(a) Let u, v ∈ V and β ∈ IR. Then T (βu + v) = α(βu + v) = αβu + αv =
βT (u) + T (v). Hence, T is linear
(b) If v ∈ ker(T ) then 0 = T (v) = αv. If α = 0 then ker(T ) = V. If α 6= 0 then
ker(T ) = {0}.
(c) If α = 0 then R(T ) = {0}. If α 6= 0 then R(T ) = V since T ( 1

αv) = v for all
v ∈ V

Since the kernel and the range of a linear transformation are subspaces of given
vector spaces, we may speak of their dimensions. The dimension of the kernel
is called the nullity of T (denoted nullity(T )) and the dimension of the range
of T is called the rank of T (denoted rank(T )).

Exercise 402
Let T : IR2 −→ IR3 be given by T (x, y) = (x, x + y, y).

(a) Show that T is linear.
(b) Find nullity(T ) and rank(T ).

Solution.
(a) Let (x1, y1) and (x2, y2) be two vectors in IR2. Then for any α ∈ IR we have

T (α(x1, y1) + (x2, y2)) = T (αx1 + x2, αy1 + y2)
= (αx1 + x2, αx1 + x2 + αy1 + y2, αy1 + y2)
= (αx1, α(x1 + y1), αy1) + (x2, x2 + y2, y2)
= αT (x1, y1) + T (x2, y2)

(b) Let (x, y) ∈ ker(T ). Then (0, 0, 0) = T (x, y) = (x, x + y, y) and this leads
to ker(T ) = {(0, 0)}. Hence, nullity(T ) = 0. Now, let (u, v, w) ∈ R(T ). Then
there exists (x, y) ∈ IR2 such that (x, x + y, y) = T (x, y) = (u, v, w). Hence,
R(T ) = {(x, x + y, y) : x, y ∈ IR} = span{(1, 1, 0), (0, 1, 1)}. Thus, rank(T ) = 2
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Since linear transformations are functions then it makes sense to talk about
one-one and onto functions. We say that a linear transformation T : V → W
is one-one if Tv = Tw implies v = w. We say that T is onto if R(T ) = W. If
T is both one-one and onto we say that T is an isomorphism and the vector
spaces V and W are said to be isomorphic and we write V ∼= W. The identity
transformation is an isomorphism of any vector space onto itself. That is, if V
is a vector space then V ∼= V.

The following theorem is used as a criterion for proving that a linear trans-
formation is one-one.

Theorem 89
Let T : V → W be a linear transformation. Then T is one-one if and only if
ker(T ) = {0}.
Proof.
Suppose first that T is one-one. Let v ∈ ker(T ). Then Tv = 0 = T0. Since T is
one-one then v = 0. Hence, ker(T ) = {0}.
Conversely, suppose that ker(T ) = {0}. Let u, v ∈ V be such that Tu = Tv,
i.e T (u− v) = 0. This says that u− v ∈ ker(T ), which implies that u− v = 0.
Thus, T is one-one

Another criterion of showing that a linear transformation is one-one is provided
by the following theorem.

Theorem 90
Let T : V → W be a linear transformation. Then the following are equivalent:
(a) T is one-one.
(b) If S is linearly independent set of vectors then T (S) is also linearly inde-
pendent.

Proof.
(a) ⇒ (b): Follows from Exercise 405 below.
(b) ⇒ (a): Suppose that T (S) is linearly independent for any linearly indepen-
dent set S. Let v be a nonzero vector of V. Since {v} is linearly independent
then {Tv} is linearly independent. That is, Tv 6= 0. Hence, T is one-one

Exercise 403
consider the transformation T : IR3 → IR2 given by T (x, y, z) = (x + y, x− y)
(a) Show that T is linear.
(b) Show that T is onto but not one-one.

Solution.
(a) Let (x1, y1, z1) and (x2, y2, z2) be two vectors in IR3 and α ∈ IR. Then

T (α(x1, y1, z1) + (x2, y2, z2)) = T (αx1 + x2, αy1 + y2, αz1 + z2)
= (αx1 + x2 + αy1 + y2, αx1 + x2 − αy1 − y2)
= (α(x1 + y1), α(x1 − y1)) + (x2 + y2, x2 − y2)
= αT (x1, y1, z1) + T (x2, y2, z2)
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(b) Since (0, 0, 1) ∈ ker(T ) then by Theorem 89 T is not one-one. Now, let
(u, v, w) ∈ IR3 be such that T (u, v, w) = (x, y). In this case, x = 1

2 (u + v) and
y = 1

2 (u− v). Hence, R(T ) = IR3 so that T is onto

Exercise 404
Consider the transformation T : IR2 → IR3 given by T (x, y) = (x + y, x− y, x)
(a) Show that T is linear.
(b) Show that T is one-one but not onto.

Solution.
(a) Let (x1, y1) and (x2, y2) be two vectors in IR2. Then for any α ∈ IR we have

T (α(x1, y1) + (x2, y2)) = T (αx1 + x2, αy1 + y2)
= (αx1 + x2 + αy1 + y2, αx1 + x2 − αy1 − y2, αx1 + x2)
= (α(x1 + y1), α(x1 − y1), αx1) + (x2 + y2, x2 − y2, x2)
= αT (x1, y1) + T (x2, y2)

Hence, T is linear.
(b) If (x, y) ∈ ker(T ) then (0, 0, 0) = T (x, y) = (x+y, x−y, x) and this leads to
(x, y) = (0, 0). Hence, ker(T ) = {(0, 0)} so that T is one-one. To show that T is
not onto, take the vector (0, 0, 1) ∈ IR3. Suppose that (x, y) ∈ IR2 is such that
T (x, y) = (0, 0, 1). This leads to x = 1 and x = 0 which is impossible. Thus, T
is not onto

Exercise 405
Let T : V → W be a one-one linear transformation. Show that if {v1, v2, . . . , vn}
is a basis for V then {T (v1), T (v2), . . . , T (vn)} is a basis for R(T ).

Solution.
The fact that {T (v1), T (v2), · · · , T (vn)} is linearly independent follows from
Theorem 90. It remains to show that R(T ) = span{T (v1), T (v2), · · · , T (vn)}.
Indeed, let w ∈ R(T ). Then there exists v ∈ V such that T (v) = w. Since
{v1, v2, · · · , vn} is a basis of V then v can be written uniquely in the form
v = αv1 + α2v2 + · · · + αnvn. Hence, w = T (v) = α1T (v1) + α2T (v2) +
· · · + αnT (vn). That is, w ∈ span{T (v1), T (v2), · · · , T (vn)}. We conclude that
{T (v1), T (v2), · · · , T (vn)} is a basis of R(T )

Exercise 406
Show that if T : V → W is a linear transformation such that dim(ker(T )) =
dimV then ker(T ) = V.

Solution.
This follows from Exercise 265

The following important result is called the dimension theorem.

Theorem 91
If T : V → W is a linear transformation with dim(V ) = n, then

nullity(T ) + rank(T ) = n.



6.2. KERNEL AND RANGE OF A LINEAR TRANSFORMATION 185

Proof.
Let k = dim(ker(T )). If k = 0 then ker(T ) = {0} and consequently ker(T ) has
no basis. Let {v1, v2, . . . , vn} be a basis for V. Then {T (v1), T (v2), . . . , T (vn)}
is a basis for R(T ) (Exercise 405). Thus the conclusion holds. Now, if k =
n then ker(T ) = V (Exercise 406) and consequently T (v) = 0 for all v in
V. Hence, R(T ) = {0} and the conclusion holds. So we assume that 0 <
k < n. Let {v1, v2, . . . , vk} be a basis for ker(T ). Extend this basis to a basis
{v1, . . . , vk, vk+1, . . . , vn} for V. We show that {T (vk+1), T (vk+2), . . . , T (vn)} is
a basis for R(T ).
Clearly, span{T (vk+1), T (vk+2), . . . , T (vn)} is contained in R(T ). On the other
hand, let w be an element of R(T ). Then w = T (v) for some v in V . But then
v = α1v1 + α2v2 + . . . + αnvn and consequently

w = α1v1 + α2v2 + . . . + αnvn

= αk+1T (vk+1) + αk+2T (vk+2) + . . . αn + T (vn)

since T (v1) = T (v2) = . . . = T (vk) = 0. It follows that

R(T ) = span{T (vk+1), T (vk+2), . . . , T (vn)}.

Now, suppose that

αk+1T (vk+1) + αk+2T (vk+2) + . . . αnT (vn) = 0

then
T (αk+1vk+1 + αk+2vk+2 + . . . + αnvn) = 0.

This implies that the vector αk+1vk+1 + αk+2vk+2 + . . . + αnvn is in ker(T ).
Consequently,

αk+1vk+1 + αk+2vk+2 + . . . + αnvn = β1v1 + β2v2 + . . . + βkvk.

Hence, β1 = β2 = . . . = βk = αk+1 = . . . = αn = 0. It follows that the vectors
T (vk+1), T (vk+2), . . . , T (vn) are linearly independent and form a basis for R(T ).
This shows that the conclusion of the theorem holds

Remark
According to the above theorem, if T : V → W is a linear transformation and
{v1, v2, · · · , vk, vk+1, · · · , vn} is a basis of V such that {vk+1, · · · , vn} is a basis
of ker(T ) then {T (v1), · · · , T (vk)} is a basis of R(T ).

We have seen that a linear transformation T : V → W can be one-one and
onto, one-one but not onto, and onto but not one-one. The foregoing theorem
shows that each of these properties implies the other if the vector spaces V and
W have the same dimension.

Theorem 92
Let T : V → W be a linear transformation such that dim(V ) = dim(W ) = n.
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Then
(a) if T is one - one, then T is onto;
(b) if T is onto, then T is one-one.

Proof.
(a) If T is one-one then ker(T ) = {0}. Thus, dim(ker(T )) = 0. By Theorem 91
we have dim(R(T )) = n. Hence, R(T ) = W. That is, T is onto.
(b) If T is onto then dim(R(T )) = n. By Theorem 91, dim(ker(T )) = 0. Hence,
ker(T ) = {0}, i.e. T is one-one

The following theorem says that every linear transformation from IRn to IRm is
a multiplication by an m× n matrix.

Theorem 93
Let T : IRn → IRm. Then there exists an m× n matrix A such that

Tx = Ax

for all x in IRn.

Proof.
We have

x = Inx = [e1, e2, . . . , en]x
= x1e1 + x2e2 + . . . + xnen

Now using the linearity of T to obtain

Tx = T (x1e1 + x2e2 + . . . + xnen)
= x1T (e1) + x2T (e2) + . . . + xnT (en)
= [T (e1), T (e2), . . . , T (en)]x
= Ax.

This ends a proof of the theorem

The matrix A is called the standard matrix for the linear transforma-
tion T.

Exercise 407
Find the standard matrix A for the linear transformation T : IRn → IRn defined
by T (x) = 3x.

Solution.
Since T (ei) = 3ei then the standard matrix is the scalar matrix 3In

Theorem 94
Let T : IRn → IRm be defined by T (x) = Ax, where A is an m×n matrix. Then
(a) ker(T ) is the nullspace of A.
(b) R(T ) is the column space of A.
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Proof.
(a) ker(T ) = {x ∈ IRn : Ax = 0} = null(A).
(b) If b ∈ R(T ) then there exists x ∈ IRn such that Ax = b. This is equivalent to
b = x1c1 + x2c2 + · · ·+ xncn, where x1, x2, · · · , xn are the components of x and
c1, c2, · · · , cn are the columns of A. Hence, b ∈ span{c1, c2, · · · , cn} =column
space of A. Hence, R(T ) is a subset of the column space of A. The converse is
similar

It follows from the above theorem that rank(T ) = rank(A). Hence, by Theorem
91, dim(ker(A)) = n − rank(A). Thus, if rank(A) < n then the homogeneous
system Ax = 0 has a nontrivial solution and if rank(A) ≥ n then the system
has only the trivial solution.

A linear transformation T : V → W is said to be invertible if and only if
there exists a unique function T−1 : W → V such that T ◦ T−1 = idW and
T−1 ◦ T = idV .

Theorem 95
Let T : V → W be an invertible linear transformation. Then
(a) T−1 is linear.
(b) (T−1)−1 = T.

Proof.
(a) Suppose T−1(w1) = v1, T

−1(w2) = v2 and α ∈ IR. Then αw1 + w2 =
αT (v1)+T (v2) = T (αv1+v2. That is, T−1(αw1+w2) = αv1+v2 = αT−1(w1)+
T−1(w2).
(b) Follows from the definition of invertible functions

The following theorem provides us with an important link between invertible
matrices and one-one linear transformations.

Theorem 96
A linear transformation T : V → W is invertible if and only if ker(T ) = {0}
and R(T ) = W.

Proof.
Suppose that T is such that ker(T ) = {0} and R(T ) = W. That is, T is one-
one and onto. Define, S : W → V by S(w) = v where T (v) = w. Since T
is one-one and onto then S is well-defined. Moreover, if w ∈ W then (T ◦
S)(w) = T (S(w)) = T (v) = w, i.e. T ◦ S = idW . Similarly, one shows that
S ◦ T = idV . It remains to show that S is unique. Indeed, if S′ is a linear
transformation from W into V such that S′ ◦ T = idV and T ◦ S′ = idW then
S′(w) = S′(T (S(w))) = (S′ ◦ T )(S(w)) = S(w) for all w ∈ W. Hence, S′ = S
and so T is invertible.
Conversely, suppose that T is invertible. If T (v1) = T (v2) then T−1(T (v1)) =
T−1(T (v2)). This implies that v1 = v2, i.e. T is one-one. Now, if w ∈ W then
T (T−1(w)) = w. Let v = T−1(w) to obtain T (v) = w. That is T is onto.
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Exercise 408
Let T : IR3 → IR3 be given by T (x) = Ax where A is the matrix

A =




1 1 1
0 1 2
1 2 2




(a) Prove that T is invertible.
(b) What is T−1(x)?

Solution.
(a) We must show that T is one-one and onto. Let x = (x1, y1, z1) ∈ ker(T ).
Then Tx = Ax = (0, 0, 0). Since |A| = −1 6= 0 then A is invertible and therefore
x = (0, 0, 0). Hence, ker(T ) = {(0, 0, 0)}. Now since A is invertible the system
Ax = b is always solvable. This shows that R(T ) = IR3. Hence, by the above
theorem, T is invertible.
(b) T−1x = A−1x

The following theorem gives us a very useful characterization of isomorphism:
They are linear transformations that preserve bases.

Theorem 97
Let T : V → W be a linear transformation with V 6= {0}. Then the following
are all equivalent:
(a) T is an isomorphism.
(b) If {v1, v2, · · · , vn} is a basis of V then {T (v1, T (v2), · · · , T (vn)} is a basis of
W.
(c) There exists a basis {v1, v2, · · · , vn} of V such that {T (v1), T (v2), · · · , T (vn)}
is a basis of W.

Proof.
(a) ⇒ (b): Suppose that T is an isomorphism. Let {v1, v2, · · · , vn} be a basis of
V. If α1T (v1)+α2T (v2)+ · · ·+αnT (vn) = 0 then T (α1v1 +α2v2 + · · ·+αnvn) =
0. Since T is one-one then α1v1 + α2v2 + · · · + αnvn = 0. But the vectors
v1, v2, · · · , vn are linearly independent. Hence, α1 = α2 = · · · = αn = 0.
Next, we show that span{T (v1), T (v2), · · · , T (vn)} = W. Indeed, if w ∈ W
then there is a v ∈ V such that T (v) = w (recall that T is onto). But then
w = α1v1 +α2v2 + · · ·+αnvn. Thus, T (w) = α1T (v1)+α2T (v2)+ · · ·+αnT (vn).
That is w ∈ span{T (v1), T (v2), · · · , T (vn)}.
(b) ⇒ (c): Since V 6= {0} then V has a basis, say {v1, v2, · · · , vn}. By (b),
{T (v1), T (v2), · · · , T (vn)} is a basis of W.
(c)⇒ (a): Suppose that T (v) = 0. Since v ∈ V then v = α1v1+α2v2+· · ·+αnvn.
Hence, α1T (v1) + α2T (v2) + · · · + αnT (vn) = 0. Since T (v1), T (v2), · · · , T (vn)
are linearly independent then α1 = α2 = · · · = αn = 0. This implies that v = 0.
Hence ker(T ) = {0} and T is one-one. To show that T is onto, let w ∈ W. Then
w = α1T (v1) + α2T (v2) + · · ·+ αnT (vn) = T (α1v1 + α2v2 + · · ·+ αnvn) = T (v)
where v = α1v1 + α2v2 + · · ·+ αnvn ∈ V.
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Finally, we end this section with the following theorem.

Theorem 98
Two finite dimensional vector spaces V and W are isomorphic if and only if
dim(V ) = dim(W ).

Proof.
Suppose that V and W are isomorphic. Then there is an isomorphism T : V →
W. Let {v1, v2, · · · , vn} be a basis of V. Then {T (v1), T (v2), · · · , T (vn)} is a basis
of W (Theorem 97). Thus, dim(W ) = n = dim(V ).
Conversely, suppose that dim(V ) = dim(W ). Let {v1, v2, · · · , vn} be a basis
of V and {w1, w2, · · · , wn} be a basis of W. Then there exists a unique linear
transformation T : V → W such that T (vi) = wi ( Theorem 87). Hence,
{T (v1), T (v2), · · · , T (vn)} is a basis of W. By Theorem 97, T is an isomorphism

6.3 The Matrix Representation of a Linear Trans-
formation

Let V and W be two vector spaces such that dim(V ) = n and dim(W ) = m.
Let T : V → W be a linear transformation. The purpose of this section is to
represent T as a matrix multiplication. The basic idea is to work with coordinate
matrices rather than the vectors themselves.

Theorem 99
Let V and W be as above. Let S = {v1, v2, · · · , vn} and S′ = {u1, u2, · · · , um}
be ordered bases for V and W respectively. Let A be the m × n matrix whose
jth column is the coordinate vector of T (vj) with respect to the basis S′. Then
A is the only matrix with the property that if w = T (v) for some v ∈ V then
[w]S′ = A[v]S .

Proof.
Since T (vj) ∈ W and S′ is a basis of W then there exist unique scalars
a1j , a2j , · · · , amj such that T (vj) = a1ju1 + a2ju2 + · · · + amjum. Hence, the
coordinate of T (vi) with respect to S′ is the vector

[T (vj)]S′ =




a1j

a2j

...
amj




Let A be the m×n matrix whose jth column is [T (vj)]S′ . We next show that A
satisfies the property stated in the theorem. Indeed, let v ∈ V and w = T (v).
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Then v = α1v1 + α2v2 + · · ·+ αnvn. Take T of both sides to obtain

T (v) = α1T (v1) + α2T (v2) + · · ·+ αnT (vn)
= α1(a11u1 + a21u2 + · · ·+ am1um)
+ α2(a12u1 + a22u2 + · · ·+ am2um)
+ · · ·+ αn(a1nu1 + a2nu2 + · · ·+ amnum)
= (a11α1 + a12α2 + · · ·+ a1nαn)u1

+ (a21α1 + a22α2 + · · ·+ a2nαn)u2

+ · · ·+ (am1α1 + am2α2 + · · ·+ amnαn)um

Now, since w ∈ W then w = β1u1 + β2u2 + · · · + βmum. This and the above
equalities lead to the following system of m equations in n unknowns:

a11α1 + a12α2 + · · · + a1nαn = β1

a21α1 + a22α2 + · · · + a2nαn = β2

...
am1α1 + am2α2 + · · · + amnαn = βm

In matrix notation, we have A[v]S = [w]S′ .
It remains to show that A defined as above is the only m × n matrix with the
property A[v]S = [w]S′ . Let B be another matrix with the property B[v]S =
[w]S′ and B 6= A. Write A = (aij) and B = (bij). Since A and B are assumed
to be different then the kth columns of these two matrices are unequal. The
coordinate vector of vk is the vector

[vk]S =




0
0
...
1
0
...
0




where the 1 is in the kth row of [vk]S . Thus,

[T (vk)]S′ = A[vk]S =




a1k

a2k

...
amk




The right-hand side is just the kth column of A. On the other hand,

[T (vk)]S′ = B[vk]S =




b1k

b2k

...
bmk



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which is the kth column of B. What we have shown here is that T (vk) has two
different coordinate vectors with respect to the same basis S′, which is impos-
sible. Hence, A = B.

The matrix A is called the representation of T with respect to the or-
dered bases S and S′. In case V = W then S = S′ and we call S the matrix
representation of T with respect to S.

Exercise 409
Let T : IR2 → IR2 be defined by the formula

T

(
x
y

)
=

(
x + 2y
2x− y

)
.

(a) Let S = {~e1, ~e2} be the standard basis of IR2. Find the matrix representation
of T with respect to S.
(b) Let

S′ = {
( −1

2

)
,

(
2
0

)
}.

Find the matrix representation of T with respect to S and S′.

Solution.
(a) We have the following computation

T

(
1
0

)
=

(
1
2

)

T

(
0
1

)
=

(
2
−1

)

Thus, the matrix representation of T with respect to S is
(

1 2
2 −1

)

(b) Let A be the matrix representation of T with respect to S and S′. Then the
columns of A are determined as follows.

T

(
1
0

)
=

(
1
2

)

=
( −1

2

)
+

(
2
0

)

T

(
0
1

)
=

(
2
−1

)

= − 1
2

( −1
2

)
+ 3

4

(
2
0

)

Thus,

A =
(

1 − 1
2

1 3
4

)
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Exercise 410
Let T : IR3 → IR3 be defined by

T




1
0
0


 =




1
1
0


 , T




0
1
0


 =




2
0
1


 , T




0
0
1


 =




1
0
1




(a) Find the matrix representation of T with respect to the standard basis S of
IR3.
(b) Find

T




1
2
3




using the definition of T and then the matrix obtained in (a).

Solution.
(a) The matrix representation of T with respect to the standard basis S of IR3

is

A =




1 2 1
1 0 0
0 1 1




(b) Using the definition of T we have

T




1
2
3


 = T




1
0
0


 + 2T




0
1
0


 + 3T




0
0
1




=




1
1
0


 +




4
0
2


 +




3
0
3




=




8
1
5




Using (a) we find

T




1
2
3


 =




1 21
1 0 0
0 1 1







1
2
3




=




8
1
5




Exercise 411
Let T : V → V be a linear transformation defined by T (v) = αv, where α is
a fixed scalar. Prove that the matrix representation of T with respect to any
ordered basis for V is a scalar matrix, i.e. a diagonal matrix whose diagonal
entries are equal.
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Solution.
If {v1, v2, · · · , vn} is a basis for V then T (vi) = αvi for all 1 ≤ i ≤ n. It follows
that the matrix representation of T with respect to any basis is the scalar matrix
αIn

Exercise 412
Let V be an n-dimensional vector space. Prove that the matrix representation
of the identity transformation on V is the identity matrix In.

Solution.
Since id(v) = v for all v ∈ V then in particular id(v) = v if v is a basis element.
It follows that the matrix representation of id is the identity matrix In

Exercise 413
Let V and W be vector spaces such that dim(V ) = n and dim(W ) = m. Show
that the set L(V, W ) of all linear transformations from V into W is a vector
space under the operations of additions of functions and scalar multiplication.

Solution.
L(V, W ) is closed under addition and scalar multiplication according to Exercise
396. It is left for the reader to check the axioms of a vector space

Theorem 100
The vector space L(V,W ) is isomorphic to the vector space Mmn of all m × n
matrices.

Proof.
Let S = {v1, v2, · · · , vn} and S′ = {u1, u2, · · · , um} be ordered bases for V and
W respectively. Given T ∈ L(V, W ) there exists a unique matrix A ∈ Mmn

such that [w]S′ = A[v]S . Thus, the function f : L(V, W ) → Mmn given by
f(T ) = A is well-defined linear transformation (See Exercise 414). We next
show that f is one-one. Indeed, let T1, T2 ∈ L(V,W ) be such that T1 6= T2. Then
T1(vk) 6= T2(vk) for some 1 ≤ k ≤ n. This implies that [T1(vk)]S′ 6= [T2(vk)]S′
which in turn implies that the matrix representation of T1 with respect to S
and S′ is different from the matrix representation of T2. Hence, f(T1) 6= f(T2).
It remains ro show that f is onto. Let A = (aij) ∈ Mmn. Define a function
T : V → W by T (vk) = a1ku1 +a2ku2 + · · ·+amkum and T (α1v1 +α2v2 + · · ·+
αnvn) = α1T (v1)+α2T (v2)+ · · ·+αnT (vn). Then T is a linear transformation,
i,e T ∈ L(V,W ) and the matrix representing T with respect to S and S′ is A.
(See Exercise 415)

Exercise 414
Show that the function f defined in the previous theorem is a linear transforma-
tion from L(V, W ) into Mmn.

Solution.
Let S, T ∈ L(V,W ) and α ∈ IR. Then there exist matrices A,B ∈ Mmn such
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that f(T ) = A and f(S) = B. Since αT + S is a linear transformation then
there exists a matric C ∈ Mmn such that f(αT + S) = C. If vi is a basis vector
of V then (αT (vi) + S(vi)) is the ith column of C. That is, the matrix C looks
like [ αT (v1) + S(v1) αT (v2) + S(v2) · · · αT (vn) + S(vn) ]. But this is the
same as αA + B. Hence, f(αT + S) = αf(T ) + f(S)

Exercise 415
Show that the function T defined in Theorem 100 is a linear transforamtion
from V into W with matrix representation with respect to S and S′ equals to A.

Solution.
Let v = α1v1+α2v2+· · ·+αnvn and w = β1v1+β2v2+· · ·+βnvn be two vectors
in V and α ∈ IR. Then T (αv + w) = T ((αα1 + β1)v1 + (αα2 + β2)v2 + · · · +
(ααn +βn)vn) = (αα1 +β1)T (v1)+ (αα2 +β2)T (v2)+ · · ·+(ααn +βn)T (vn) =
αT (v) + T (w). That is, T is linear. The fact that the matrix representation of
T with respect to S and S′ is clear

Theorem 100 implies that dim(L(V, W )) = dim(Mmn) = mn. Also, it means
that when dealing with finite-dimensional vector spaces, we can always replace
all linear transformations by their matrix representations and work only with
matrices.

6.4 Review Problems

Exercise 416
Show that the function T : IR2 → IR3 defined by T (x, y) = (x + y, x− 2y, 3x) is
a linear transformation.

Exercise 417
Let Pn be the vector space of all polynomials of degree at most n.
(a) Show that D : Pn −→ Pn−1 given by D(p) = p′ is a linear transformation.
(b) Show that I : Pn −→ Pn+1 given by I(p) =

∫ x

0
p(t)dt is a linear transforma-

tion.

Exercise 418
If T : IR3 −→ IR is a linear transformation with T (3,−1, 2) = 5 and T (1, 0, 1) =
2. Find T (−1, 1, 0).

Exercise 419
Let T : IR3 −→ IR2 be the transformation T (x, y, z) = (x, y). Show that T is
linear. This transformation is called a projection.

Exercise 420
Let θ be a given angle. Define T : IR2 −→ IR2 by

T

(
x
y

)
=

(
cos θ − sin θ
sin θ cos θ

)(
x
y

)
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Show that T is a linear transformation. Geometrically, Tv is the vector that
results if v is rotated counterclockwise by an angle θ. We call this transformation
the rotation of IR2 through the angle θ

Exercise 421
Show that the following transformations are not linear.

(a) T : Mnn −→ IR given by T (A) = |A|.
(b) T : Mmn −→ IR given by T (A) = rank(A).

Exercise 422
If T1 : U −→ V and T2 : V −→ W are linear transformations, then T2 ◦ T1 :
U −→ W is also a linear transformation.

Exercise 423
Let {v1, v2, · · · , vn} be a basis for a vector space V, and let T : V −→ V be a
linear transformation. Show that if T (vi) = vi, for 1 ≤ i ≤ n then T = idV , i.e.
T is the identity transformation on V.

Exercise 424
Let T be a linear transformation on a vector space V such that T (v − 3v1) = w
and T (2v − v1) = w1. Find T (v) and T (v1) in terms of w and w1.

Exercise 425
Let T : Mmn → Mmn be given by T (X) = AX for all X ∈ Mmn, where A is an
m×m invertible matrix. Show that T is both one-one and onto.

Exercise 426
Consider the transformation T : IRn −→ IRm defined by T (x) = Ax, where
A ∈ Mmn.

(a) Show that R(T ) = span{c1, c2, · · · , cn}, where c1, c2, · · · , cn are the columns
of A.
(b) Show that T is onto if and only if rank(A) = m(i.e. the rows of A are
linearly independent).
(c) Show that T is one-one if and only if rank(A) = n (i.e. the columns of A
are linearly independent).

Exercise 427
Let T : V −→ W be a linear transformation. Show that if the vectors

T (v1), T (v2), · · · , T (vn)

are linearly independent then the vectors v1, v2, · · · , vn are also linearly indepen-
dent.

Exercise 428
Show that the projection transformation T : IR3 → IR2 defined by T (x, y, z) =
(x, y) is not one-one.
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Exercise 429
Let Mnn be the vector space of all n×n matrices. Let T : Mnn → Mnn be given
by T (A) = A−AT .
(a) Show that T is linear.
(b) Find ker(T ) and R(T ).

Exercise 430
Let T : V → W. Prove that T is one-one if and only if dim(R(T )) = dim(V ).

Exercise 431
Show that the linear transformation T : Mnn → Mnn given by T (A) = AT is an
isomorphism.

Exercise 432
Let T : P2 → P1 be the linear transformation Tp = p′. Consider the standard
ordered bases S = {1, x, x2} and S′ = {1, x}. Find the matrix representation of
T with respect to the basis S and S′.

Exercise 433
Let T : IR2 → IR2 be defined by

T

(
x
y

)
=

(
x
−y

)

(a) Find the matrix representation of T with respect to the standard basis S of
IR2.
(b) Let

S′ = {
(

1
1

)
,

( −1
1

)
}

Find the matrix representation of T with repspect to the bases S and S′.

Exercise 434
Let V be the vector space of continuous functions on IR with the ordered basis
S = {sin t, cos t}. Find the matrix representation of the linear transformation
T : V → V defined by T (f) = f ′ with respect to S.

Exercise 435
Let T : IR3 → IR3 be the linear transformation whose matrix representation with
the respect to the standard basis of IR3 is given by

A =




1 3 1
1 2 0
0 1 1




Find

T




1
2
3




.




