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Comments and examples included in these notes are not sufficient for a complete course on
elementary differential equations. They do not replace the lecture notes nor the textbook.
They are mere elaborations on some of the concepts, ideas, techniques, examples and
exercises that are discussed in the text and lectures. You are expected to attend all the
lectures and take notes and study them and read the textbook and do all the recommended
exercise.

1 Basic Concepts

1.1 Examples

1.1.1. Example Solve The initial value problem (IVP)

d2x

dt2
= t2 + 3t (DE)

x(1) = 2, ẋ(1) = −1 (IC)

Remark. An IVP consists of a differential equation (DE) and initial conditions (IC).
Solution. Integrating twice we obtain

ẋ(t) =
1

3
t3 +

3

2
t2 + a (*)

x(t) =
1

12
t4 +

1

2
t3 + at+ b (**)

1. Each time we integrate we need a constant. As a result we obtain infinitely many
solutions, one for each choice (a, b). in fact x(t) is two-parameter family of solutions .
It is called the general solution of the DE.

2. The initial conditions (IC) allow us to determine (a, b) uniquely and obtain a unique
solution to the IVP.

3. From (*) we obtain

2 = ẋ(1) =
1

3
+

3

2
+ a −→ a =

1

6

Thus we have a one-parameter family of solution to the DE that satisfies ẋ(1) = 2.
Namely

x1(t) =
1

12
t4 +

1

2
t3 +

1

6
t+ b

Now we determine the parameter b from the second IC:

−1 = x(1) =
1

12
− 1

2
− 1

6
+ b −→ b = − 5

12

Thus, we have a unique solutio to the IVP:

q(t) =
1

12
t4 +

1

2
t3 +

1

6
t− 5

12
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1.1.2. Exercise. An object weighs lb is thrown up vertically with speed of 20 ft/h from
the top of a building that is 300 ft high. When does the object hit the ground.

1.1.3. Example. Solve the following initial value problem (IVP) and sketch the solution

ẋ = −3x, x(1) = 5

Solution. We know that
d

dt
eat = aeat

Try a solution
x(t) = e−3t

But
x(1) = e−2 6= 5

Let’s try the one-parameter family of solutions

x(t) = Ae−3t

If we insist that
x(1) = Ae−3 = 5

Then
A = 5e3

And the solution to our IVP is

q(t) = 5e3e−3t = 5e−3(t−1)

1.1.4. Independent variables and dependent variables

The variable t is called the independent variable and we may think of it as time.
The variable x is called the dependent variable and we may think of it as position of a
particle moving on the x-axis. In other words, x(t) tells us position of a particle moving on
the x-axis at time t.

Exercise 1.1.5. Determine the independent variable and the dependent variable in each of
the following:

1. y′′ + (sinx)y′ = xy, where y′ = dy/dx, · · · .

2. uv′′ + u2vv′ + 3v = 0, where v′ = dv/du, · · · .

3. y′′ + z2y′ = 3y2 + 5z.

4. y(4) + x2y′′ = 3y6 + 5x.
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1.1.6. Terminology and observations.

An initial value problem (IVP) consists of
a DE and

as many initial conditions as the order of the DE.

The order of a DE
is

the order of the highest derivative that appears in the DE.

Each time we integrate we need a constant. Therefore,

The number of parameters in the general solution
must equal

the order the DE.

The general solution of a DE of order n
is a solution that satisfies the following:

(1) It has n parameters.
(2) Given any set of n appropriate initial conditions,

we can use these initial conditions
to uniquely determine the n parameters

and obtain a unique solution for the IVP.

1.1.7. Example. Solve the following (IVP) and sketch the solution

ẍ = 5x, x(0) = −2, ẋ(0) = 4 (1.1)

Solution. We are looking for a function whose second derivative is the function itself
multiplied by 5. We know two

x1(t) = e
√

5 t, x2(t) = e−
√

5 t (1.2)

Neither of them can be made to satisfy the IC. for example

x(t) = −2e
√

5 t
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satisfies the first IC x(1) = −2, but does not satisfy the second IC.

Let’s try a linear combination

x(t) = c1x1(t) + c2x2(t) (1.3)

that is, x(t) = c1e
√

5 t + c2e
−
√

5 t (1.4)

We need to find constants (parameters) c = (c1, c2) such that x(t) satisfies the IC.

c1 + c2 = −2
√

5c1 −
√

5c2 = 4

In matrix notation (
1 1
1 −1

)(
c1
c2

)
=

(
−2

4/
√

5

)
Thus (

c1
c2

)
=

1

−2

(
−1 −1
−1 1

)(
−2

4/
√

5

)
=

(
−1 + 2/

√
5

−1− 2/
√

5

)
And the solution to the IVP is

q(t) = (−1 + 2/
√

5)e
√

5 t − (1 + 2/
√

5)e−
√

5 t, −∞ < t <∞

Sketch the solution.

1.1.8. Terminology. Notice that the two solutions x1(t) and x2(t) given in (1.2) are not
multiple of each other. In this case we say that they are linearly independent.

We call x1(t) = e
√

5t and x2(t) = e−
√

5t given in (1.2)

fundamental solutions of the
linear homogenous DE ẍ = 5x.

x(t) = c1e
√

5t + c2e
−
√

5t given in (1.3)

is the general solution of the DE ẍ = 5x.

Notice that it is a two-parameter family of solutions.
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Notice that

#(parameters) = #(fundamental solutions)= order of the DE.

1.1.9. Remark: The inverse of a 2× 2 matrix We used the fact that the inverse of a
mtrix

A =

(
a b
c d

)
is

A−1 =
1

ad− bc

(
d −b
−c a

)
, provided that ad− bc 6= 0

1.1.10. Example Solve the following (IVP) and sketch the solution

ẍ = −3x, x(0) = 3, ẋ(0) = −2

Solution. The main difference between this example and example 1.1.7 is the minus sign
on the righthand side.

So, again we are looking for a function whose second derivative is the function itself
multiplied by −3. We know two

x1(t) = cos
√

3 t, x2(t) = sin
√

3 t (1.5)

Neither of them can be made to satisfy the IC. For example

x(t) =
−2√

3
sin
√

3t

satisfies the second IC but not the first.

As in 1.1.7 let’s try a linear combination

x(t) = c1x1(t) + c2x2(t) (**)

x(t) = c1 cos(
√

3 t) + c2 sin(
√

3 t)

We need to find constants (parameters) c = (c1, c2) such that x(t) satisfies the IC.

c1 = 3,
√

3c2 = −2

And the solution to the IVP is

q(t) = 3 cos(
√

3 t)− 2√
3

sin(
√

3 t), −∞ < t <∞

Sketch the solution. Fill in the space for the previous example.
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The fundamental solutions are

——————— and ———————

The general solution of the DE is

—————————————-

It is a ........-parameter family of solutions.

1.1.11. Example Solve the following (IVP) and sketch the solution

ẍ = −3x+ 5 sin
√

2t (DE)

x(0) = 3, ẋ(0) = −2 (IC)

1.2 Classifying DE’s

1.2.1. Order of a DE. See above.

1.2.2. Nonlinear verses linear equations

The canonical for of a linear equation of order n is

an(t)x(n) + an−1(t)x
(n−1) + · · · a1(t)x

′ + ao(t)x = g(t)

If g(t) = 0, it is said to be homogenous.
If g(t) 6= 0, it is said to be non-homogenous.

If x1(t), x2(t), · · · , xn(t)
are linearly independent solutions of the linear homogenous DE

an(t)x(n) + an−1(t)x
(n−1) + · · · a1(t)x

′ + ao(t)x = 0
they are called fundamental solutions.
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Exercise. Which of the following is a linear DE? For the nonlinear ones, determines all
the nonlinear terms.

(t2 + 1)y′′ + 3ty′ − 5t3y = t

yy′′ + 3y′ − 5y = t

x′′ + (x′)2 − tx = sin t

3x′′ + 5x′ = sinx

ln(1 + t2)y′′ + 3t3y′ − 1

2 + cos t
y = t

3x′′ + 5x′ = sin t

t3x′′ + x′ − tx = t+ cosx

Theorem 1.2.3. Consider the homogenous linear system

an(t)x(n) + · · · a1(t)x
′ + ao(t)x = 0 (H)

Suppose we have n linearly independent solutions

x1(t), x2(t), · · · , xn(t)

Then, the general solution of (H) takes the form
x(t) = c1x1(t) + c2x2(t) + · · ·+ cnxn(t)

1.2.4. Ordinary (ODE) verses partial (PDE) differential equations:

1.3 Exercises

1. For each of the following:

(a) Classify each of the following DE’s according to order and linearity.

(b) Determine the independent and dependent variables.

(a)
dy

dx
= 3y2 + 5x.

(b)
dx

dy
= 3y2 + 5x.

What are the differences between between problem (a) and (b)?

(c) y′′ + x2y′ = 3y2 + 5x.

(d) y′′ + z2y′ = 3y2 + 5z.

(e) v′′′v′ + v′2u = 3vu2 + sin v.

(f) y(4) + x2y′′ = 3y6 + 5x.
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2. Show that x(t) = e−5t is a solution for the DE

x′′ + 3x′ − 10 = 0

Find another solution for the DE.

3. For what values of α is u(t) = eαt a solution of the following DE?

ü− 4u̇+ 3u = 0

Solve the IVP
ü− 4u̇+ 3u = 0, u(0) = 5, u̇(0) = −2

4. For what values of β is x(t) = eβt a solution of the following DE?

ẍ− ẋ− 6x = 0

Solve the IVP
ẍ− ẋ− 6x = 0, x(0) = 2, ẋ(0) = −3

5. After you answer the following two questions, comment on the difference between the
two equations:

(a) For what values of β is x(t) = eωt a solution of the following DE?

ẍ− 5x = 0

(b) For what values of β is x(t) = sin βt a solution of the following DE?

ẍ+ 3x = 0

Find another solution for the DE.

6. Solve each of the following the following IVP’s and sketch the solution

ẋ+ 5x = 0, x(1) = −2

ẍ+ 5x = 0, x(0) = −2, ẋ(0) = 7

7. Show that y(x) =
3

4
+
c

t2
is the general solution for the DE

2xy′ + 4y = 3

Solve the IVP
2xy′ + 4y = 3, y(2) = −3

8. Verify that the given functions are solutions to the DE. Then, find the unique
solution to the DE that satisfies the given IC when one is given.
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(a) x′′ + 2x′ − 3x = 0,
x1(t) = e−3t, x2(t) = et

x(t) = ae−3t + bet

(IC) x(0) = 2, x′(0) = −1

(b) 2t2y′′ + 3ty′ − y = 0, t > 0;
y1(t) = t1/2, y2(t) = t−1, y(t) = at1/2 + bt−1

(IC) y(1) = 2, y′(1) = −1

Definition Equations of this form are called linear.

9. Show that y(x) =

∫ x

1

sinx

x
dx is a solution to the DE xy′ − sinx = 0.

Hint: Recall the fundamental theorem of calculus.

10. Find the value of r for which the given DE has a solution of the form ert, then solve
the IVP.

(a) ẍ+ ẋ− 6x = 0
x(0) = −2, ẋ(0) = 3.

(b) y′′ + 5y′ + 6y = 0,
y(0) = 3, y′(0) = −1.

(c) y′′′ − 3y′′ + 2y′ = 0
y(0) = 3, y′(0) = −1, y′′(0) = 1.

Definition Equations of this form are called linear with constant coefficients.

11. Find the value of r for which the given DE has a solution of the form xrthen solve
the IVP.

(a) x2y′′ + xy′ = y,
y(1) = −1, y′(1) = 2.

(b) x2y′′ − xy′ − 15y = 0,
y(1) = 2, y′(1) = −1.

Definition Equations of this form are called linear. However, they don’t have
constant coefficients.

12. Find the trivial solutions of the following DE’s:

(a) ẋ = (x− 1)(x+ 2)

(b) ẋ = (x− 8) ln(x− 5)

13. Solve the IVP
ẋ = x− 2, x(0) = a

Describe the long term behaviour of the solution.

Hint: The long term behaviour is limt→∞ and limt→−∞
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2 First order homogenous linear DE’s

2.1 Separation of variables

One of the simplest types of DE are equations that can be reduced to the form

f(x)dx = f(y)dy (2.1)

where the left-hand-side depends on x only and the right-hand-side on y only. therefore,
the problems amounts to two integrals.

2.1.1. Example The following example shows that the interval of definition of a solution
might be finite and depends on the initial conditions.

dy

dx
= −5x

3y
, y 6= 0, y(1) = −3

This DE is not defined for y = 0 because there is a y in the denominator.
We Can rewrite the DE in the form

3ydy = −5xdx

Integrating each side separately and combining the two constants, we obtain

3y2 + c1 = −5x2 + c2

3y2 + 5x2 = c

Now we determine c from IC (y = −3 when x = 1) and obtain

3y2 + 5x2 = 32, y 6= 0 (*)

This is a vertical ellipse.
Important Remark: As a geometric object, this ellipse is defined for y = 0, i.e. includes
the two points (±

√
32/5, 0). However, the DE is not defined on the x-axis, y = 0 (Why?).

In other words, the x-axis, y = 0, does not have a physical meaning for the system that
this DE models. Thus, as far as the DE is concerned, we have to remove the two points
(x±, 0), x± = ±

√
32/5, from the ellipse. Now we can write (*) as

φ±(x) = ±
√

32

3
− 5

3
x2

x− = −
√

32/5 < x <
√

32/5 = x+

But these are two different functions φ±(x). Not one.
Which one is the unique solution to our IVP? φ+(x) or φ−(x)?

1. The solution of the IVP is the largest part of the ellipse that

(a) contains the IC and
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(b) does not intersect x-axis {y = 0}.

2. Since y(1) = −3 < 0, it follows that the part of the ellipse that satisfies these two
requirements is lower part of the ellipse. Therefore, the unique solution to the IVP is
given by

φ−(x) = −
√

32

3
− 5

3
x2

x− = −
√

32/5 < x <
√

32/5 = x+

The interval
x− < x < x+

is called the interval of definition of the solution
or the interval of existence of the solution.

Notice that the inequalities that define the interval of definition are strict inequalities
because the two points (±

√
32/5, 0) do not lie on the solution curve.

3. If we interpret the independent variable x as time and the dependent variable y as
the position of a particle moving on the y-axis, then the solution φ−(x) means that a
particle appears at time x− at the point y = 0, moves down on the y-axis towards the
point y− = −

√
32/3 and reaches it at time x = 0. The particles stops

instantaneously, then moves up again towards the point y = 0 and reaches it at time
x+ and disappears there.

4. If we look for the solution with IC y(1) = 3, we obtain

φ+(x) = +

√
32

3
− 5

3
x2,

x− = −
√

32/5 < x <
√

32/5 = x+

We can interpret the solution φ+(x) in a similar fashion, but now we have a particle
that moves upward on the y-axix to the point y+ = +

√
32/3 and back to y = 0 where

it disappears.

5. Together, the two solutions can be interpreted as two particles appearing at the
origin y = 0, travelling in opposite direction with the same speed, stoping at time
x = 0, then returning to the origin and annihilating each other.

6. Important Remark:

The Interval of existence of a solution
depends on the IC.
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We can see this form example 2.1.1:

(a) There is nothing special about the initial condition (y(1) = −3) that we used.
We can see that any initial condition y(xo) = yo will yields an ellipse of the form

5x2 + 3y2 = c2

where
c2 = 5x2

o + 3y2
o

and the positive constant c2 will depend on the initial condition .

(b) If yo > 0, the solution is the upper half of the ellipse

φ+ = +

√
c2 − 5x2

3
,

x− = −
√
c2

5
< x < +

√
c2

5
= x+

(c) If yo < 0, the solution is the lower half of the ellipse

φ− = −
√
c2 − 5x2

3
,

x− = −
√
c2

5
< x < +

√
c2

5
= x+

(d) Notice that in either case, the interval of existence of the solution is

x− = −
√
c2

5
< x < +

√
c2

5
= x+

depends on c2 = 5x2
o + 3y2

o which is obtained form the IC. Thus, it depends on
the IC. In physical terms, the life span of these two particles depends on the IC.

2.1.2. Exercise Describe and interpret all solutions of the differential equation

dy

dx
= − bx

ay

where a and b are two positive constants.

2.1.3. Exercise Find the general solution of the DE

y′ = −2ty2

Find the unique solution that satisfies each of the following IC and find its interval of
definition:

1. y(3) =
1

2
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2. y(−3) = −1

2

3. y(1) = 4

4. y(1) =
1

3

5. Sketch the four solutions on the same graph.

6. Suppose that t is time and y is the position of a particle moving on the y-axis.
Describe the behaviour of the particle in both cases.

2.1.4. Exercise Find the general solution of the DE

y′ = −ty3

1. Find the unique solutions to the IVP’s with IC’s y(±3) =
1

2
, y(±3) =

1

7
and

y(±3) =
1√
5

.

2. Find the unique solutions to the IVP’s with IC’s y(±3) = −1

2
, y(±3) = −1

7
and

y(±3) = − 1√
5

.

3. Sketch all these solutions on one graph.

2.1.5. Exercises Solve the IVP, find the interval of existence of the solution and sketch
the solution. Suppose that t is time and x is the position of a particle moving on the
x-axis. Give a physical interpretation to the four solutions together.

1. ẋ = (1− 2t)x2, x(0) = −1/2.

2. Describe the dependence of interval of definition on the initial condition x(0) = r and
x(1) = s.

2.1.6. Exercise Consider the DE

ẋ =
1− 2t

2x
x 6= 0

1. Find the four solutions that satisfy the following IC’s and give the interval of
definition for each solution:

x(0) = ±
√

2

9
(i)

x(1) = ±
√

2

9
(ii)

x(1/2) = −1/36 (iii)
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2. Sketch the six solutions on the same graph.

3. What is the difference between these solutions?

4. Suppose that t is time and x is the position of a particle moving on the x-axis. Give a
physical interpretation to the four solutions together.

2.1.7. Exercise Solve the following IVP and determine the interval of definition of the
solution.

y′ = xy3(1 + x2)−1/2, y(0) = −1

2.1.8. Exercise Solve the following IVP and determine the interval of definition of the
solution.

y′ =
2x

y + x2y
, y(0) = −2

Example 2.1.9. Consider the separable DE

dy

dx
= −xy, y(a) = b (2.2)

1. We can think of the independent variable x as time and the dependent variable y as
the position of a test particle moving on the y-axis.

2. Notice that the initial condition y(a) = 0 leads to the equilibrium solution

φo(x) = 0, x ∈ R

3. Separating the variables we obtain∫
1

y
dy = −

∫
x dx

Integrating,

ln |y| = −x
2

2
+ c −∞ < x <∞

|y(x)| = ece−x
2/2, −∞ < x <∞

y(x) = ±ece−x2/2, −∞ < x <∞

We can write the constant ±ec = A Thus, the general solution of the IVP is

y(x) = Ae−x
2/2, −∞ < x <∞

Notice that this general solution works also for the equilibrium solution. How?

4. How do you interpret these solutions physically?

Example 2.1.10. Solve the IVP, find the interval of definition of the solution and sketch
the solution.

y′ =
x(x2 − 1)

4y3
, y 6= 0, y(0) = − 1√

2
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This is a separable DE: ∫
4y3 dy =

∫
(x3 − x) dx

y4 =
1

4
x4 − 1

2
x2 + c

Determine c from IC:
1

4
= c

Solution to the IVP

y = − 1√
2

(x4 − 2x2 + 1)
1
4

x4 − 2x2 + 1 > 0

= − 1√
2

((x2 − 1)2)
1
4

= − 1√
2

√
|x2 − 1|, x2 < 1

Solution to the IVP

φ(x) = − 1√
2

√
|x2 − 1|, −1 < x < 1

Notice that
√
|x2 − 1| is defined when x = 1. But y = 0 does not have a physical meaning

because we are dividing by y3 in the DE.
To sketch the solution, notice that if we square it (and write y for φ(x)) and rearrange the
equation we get

y2 =
1

2
|x2 − 1|, x 6= ±1

But 0 ≤ x2 < 1, that is x2 − 1 < 0. Thus, |x2 − 1| = 1− x2. It follows that

y2 =
1

2
(1− x2), x 6= ±1

x2 +
y2

1
2

= 1, x 6= ±1

which is a horizontal ellipse.
Question. Which part of this ellipse is the graph of the solution?

2.1.11. Exercise Solve the following IVP’s :

1.
dy

dx
+ 2y = f(x), y(0) = 1

f(x) =

{
1, 0 ≤ x ≤ 3,

−1 x ≥ 3.
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2.
dy

dx
+ y = f(x), y(0) = 1

f(x) =

{
1, 0 ≤ x ≤ 3,

−1, x ≥ 3.

Notice that φo(x) ≡ 1, 0 ≤ x ≤ 3, is a solution for the first 3 seconds.

3. Consider the IVP
ẋ = (2− x) tan t, x(0) = b

(a) Solve the IVP. Don’t forget to find the interval of definition.

(b) Sketch and describe the behaviour of solutions away from these critical values.

(c) What is the unique solution that satisfies x(0) = 0?

(d) Let b1 < b2. What happen to the line segment b1 ≤ x ≤ b2 as t varies?
Notation: Denote the unique solution that satisfies the IVP by φb(t).
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3 First order Linear O D E

3.1 Method of integrating factor or variation of parameter

ẋ+ p(t)x = g(t) (NH)

where p(t) and g(t) are continuous in some open interval of a < t < b.

3.1.1. The Homogenous Case: g(t) = 0. In this case we have the DE

ẋ+ p(t)x = 0 (H)

which is also separable since
dx

x
= −p(t)dt

Integrating, we obtain the general solution of differential equation (H) given by

xh(t) = A exp[−
∫
p(t)dt] (3.1)

with parameter A. Nothing new so far. But what about solving the nonhomogeneous
differential equation (NH). For this we need what is called the variation of parameter
method.

3.1.2. The Variation of Parameter Method (AKA integrating factor method)
for the nonhomogeneous DE (NH).

The steps:

1. Write the DE in the standard form

(NH) x′ + p(t)x = g(t)

2. Find a fundamental solution of (H):

(H) x′ + p(t)x = 0

Calculate:

∫
p(t) dt

Fundamental solution of (H)

Φh(t) = exp[−
∫
p(t) dt]

Simplify. (This is very important).
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3. Calculate

u(t) =

∫
g(t)

Φh(t)
dt

4. The general solution of (NH)

x(t) = Φh(t)

(
C +

∫
g(t)

Φh(t)
dt

)

5. The constant C: Determine the constant C from the initial conditions.

6. Interval of existence: Find the interval of definition of the solution to the initial
value problem.

7. Once we solve (NH) we should study dominant term and transient terms in the
solution.

3.1.3. The term ”integrating factor”. This is just different terminlogy and notation.
The function

µ(t) = Φ−1
h (t)−1 =

1

Φh(t)

is called an integrating factor.

Thus
The general solution of (NH)

can be written in the form

x(t) =
C +

∫
g(t)µ(t)dt

µ(t)

Exercises 3.1.4. Solve the following, find interval of definition and sketch the solution.
Determine the dominant and transient terms at both ends of the interval of definition.

1. (a) ty′ + 2y = 4t2, y(1) = 2

(b) ty′ + 2y = 4t2, y(1) = −16

2. y′ − 2y = t2e2t, y(1) = 2
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3. tx′ + 2x = t2 − t+ 1, t > 0, y(1) = 1/2

4. y′ + 3y = t+ e−2t, y(1) = 2

5. y′ + 2ty = 2te−t
2

, y(1) = −1

6. ty′ + y = 3t cos 2t, t > 0, y(1) = 2

7. (1 + t2)y′ + 4ty = 1/(1 + t2)2, y(1) = −2

8. (1 + t2)y′ + 4ty = 1/(1 + t3)2, y(1) = −2

9. y′ + (2/t)y = (cos t)/t2, t > 0, y(π/3) = 2

10. y′ + (tanx)y = cos2 x, y(π) = −1

11. uv′ − u2 sinu = v

12. (1 + x2)y′ + 2xy = f(x), y(0) = 1

f(x) =

{
x, 0 ≤ x ≤ 3,

−5 x ≥ 3.

13. y′ + (2/t)y = M(t), t > 0, y(π/3) = 2

M(x) =

{
(sin t)/t2, 0 ≤ x ≤ 3,

1/t3 x ≥ 3.

Justification of the method:

1. The first step is to solve the homogenous DE (H) and obtain the general solution
given by (3.1). We rewrite this solution as

xh(t) = AΦh(t) (3.2)

Φh(t) = exp[−
∫
p(t) dt] (3.3)

and A is our parameter. Notice that if we set A = 1, the Φh(t) itself is a solution of
(H). That is

Φ′h(t) + p(t)Φh(t) = 0

2. Now, we want to solve the non-homogenous equation (NH) (g(t) 6= 0). The variation
of parameter (A) method says that in order to account for the effect of the external
force g(t) we replace the parameter A by a function of w(t). That is, we look for a
solution for the non-homogenous equation (NH) in the form

x(t) = Φh(t)w(t)
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If we substitute this x(t) in (NH) we obtain

Φh(t)w
′(t) + Φ′h(t)w(t)

+ p(t)Φh(t)w(t) = g(t)

factorizing w(t), we obtain

Φh(t)w
′(t) + [Φ′h(t) + p(t)Φh(t)]w(t) = g(t)

But we know that
Φ′h(t) + p(t)Φh(t) = 0 (*)

Substituting in (*) we see that w(t) satisfies the separable DE

w′ =Φh(t)
−1g(t) =

g(t)

Φh(t)
(3.4)

dw =
g(t)

Φh(t)
dt

Integrating, we obtain

w(t) =C +

∫
Φh(t)

−1g(t) dt

=C +

∫
g(t)

Φh(t)
dt

3. The general solution to (NH) takes the form

x(t) =Φh(t)

(
C +

∫
g(t)

Φh(t)
dt

)
(3.5)

Φh(t) = exp

[
−
∫
p(t) dt

]
(3.6)

Remarks 3.1.5. We wrote the general solution of (NH) in several forms (3.5-3.7). We
would like to emphasize the following:

1. The form (3.7) tells us that the general solution of the non-homogenous DE (NH) is
the sum of the general solution of the homogenous DE (H) (xh(t) = Φh(t)) and any
particular solution (xp(t)) of the nonhomogenous DE (NH). This is a consequence of
the linearity of the DE (NH).

2. The form (3.5) says that the particular solution of the nonhomogenous DE (NH),
xp(t), can be constructed by replacing the parameter c in the general solution of the
homogenous DE (H) by a function w(t). This is what’s known as the variation of
parameter method.
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3. In this way, we replace the the nonhomogenous DE (NH) by two separable equations,
(H) and (3.4).

4. We can also write the general solution of (NH) as follows:

x(t) = CΦh(t) + Φh(t)

∫
g(t)

Φh(t)
dt (3.7)
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4 Second order homogenous linear DE’s

Abbreviation: LHDE = linear homogenous DE. The simplest example of a HLDE is the
motion of an undamped free spring. Undamped means there is no friction or viscosity in its
ambiance. Free means that there is no external force affecting it.

4.1 Free undamped Spring-Mass

Consider undamped (no friction) free (no external force) motion.

l = natural length of spring

s = elongation of spring

in the downward (positive) direction

caused by the mass m

L = length during vibration.

L = l + s = the point of equilibrium.

x = L− (l + s) = deviation from equilibrium point.

mẍ = F Newton’s equation

F (x) = restoring force + weight

+ friction + external force

friction = 0 undamped motion.

external force = 0 free motion.

restoring force =− k(elongation)

F (x) = −k(x+ s) +mg

x = 0, equilibrium position =⇒
F (0) = 0 =⇒
ks = mg =⇒ (I)

mẍ = −ks =⇒
undamped free motion

ẍ = −ω2x, (*)

ω2 =
k

m
=
g

s

The general solution of (*) is

x(t) = c1 cosωt+ c2 sinωt (4.1)

We take x = 0 at the equilibrium position. We take the positive direction of x to be the
downward direction. Therefore, if the mass is moving downward, its velocity is positive and
if it is moving upward its velocity is negative.
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4.2 Fundamental and general solutions.

A second order linear DE with constant coefficients takes the form

(H) aẍ+ bẋ+ cx = 0, a 6= 0

The constants a, b and c are all real numbers. (What are the numbers that are not real
numbers?)

Fundamental set of solutions

Two solutions x1(t) and x2(t)
form a fundamental set of solutions for (H)

iff
any IVP

aẍ+ bẋ+ cx = 0, x(to) = xo, ẋ(to) = ẋo
has a unique solution

which is a linear combination
x(t) = c1x1(t) + c2x2(t)

4.2.1. The characteristic equation. We saw earlier that the DE ẍ− ω2x = 0 has two
fundamental solutions of the forms

x1(t) = eωt, x2(t) = e−ωt (4.2)

We also saw that DE ẍ+ ω2x = 0 has two fundamental solutions of the forms

x1(t) = cosωt, x2(t) = sinωt (4.3)

The two types of solutions are related by the Euler formula

eirt = cos rt+ i sin rt

It is reasonable then to look for solutions of (H) of the form ert. If we substitute x(t) = ert

in the HLDE (H) and simplify we obtain

ert(ar2 + br + c) = 0

Since ert 6= 0 for all t ∈ R, we divide by ert and obtain

the characteristic equation

(CE) ar2 + br + c = 0
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This is a quadratic equation with solutions given by

r =
−b±

√
b2 − 4ac

2a

Recall that the constants a, b and c are all real numbers. (What are the numbers that are
not real numbers?) Thus solutions are either real or complex conjugates to each other.
(What is the complex conjugate of 3 + 5i?)

We have three different cases:

1. (CE) has two different real roots
r1 6= r2

2. (CE) has repeated roots
r1 = r2 = δ

3. (CE) has two complex conjugate roots

r = α± iβ, β > 0

4.2.2. General solutions a HLDE. We have three cases

Case 1: (CE) has two different real roots r1 6= r2:

Fundamental solutions x1(t) = er1t, x2(t) = er2t (4.4)

General solution x(t) = c1e
r1t + c2e

r2t

Case 2: (CE) has one repeated real root r1 = r2 = δ:

Fundamental solutions x1(t) = eδt, x2(t) = teδt (4.5)

General solution x(t) = c1e
δt + c2te

δt

= eδt(c1 + c2t)

Case 3: (CE) has two complex conjugate roots r = α± iβ, β 6= 0:

Fundamental solutions x1(t) = eαt cos βt, x2(t) = eαt sin βt (4.6)

General solution x(t) = c1e
αt cos βt+ c2e

αt sin βt

= eαt(c1 cos βt+ c2 sin βt)

4.3 Exercises

1. Show that in the three cases above, x1(t) and x2(t) are linearly independent. That is,
they are not multiple of each other.

2. The graph of the solution of the DE y′′ + 4y′ + 4y = 0 goes through the two points
(1, e−2) and (2,−e−4).
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(a) Find y(0) and y′(0).

(b) Find the unique solution of the given DE that satisfy the initial conditions that
you found.

3. Write each of the complex numbers in the form λ+ µi.

3eiπ/6, −4e−i
π
3 , (4− 5i)e−i

√
3 t,

4. Solve the following IVP’s and

(a) Sketch the solution.

(b) Describe its long term behaviour.

(c) Assume that t is time and y(t) is the position of a particle on the y-axis at time
t.

i. For case 1 and 2 find the following when they exist.

A. The time the particle passes through the origin.

B. Its highes and lowest points and the times the particle reaches them.

ii. For case 3 (2 complex conjugate roots):

A. Find the amplitude A, the frequency ω, the period T and time shift δ.

B. Write the solution in the form y(t) = A sin(ωt+ δ).

(a) y′′ + 2y′ − 3y = 0, y(0) = 2, y′(0) = 10.

(b) 6y′′ − 7y′ − 3y = 0, y(0) = −2, y′(0) = 3.

(c) y′′ − 5y′ = 0, y(0) = 1, y′(0) = 2.

(d) y′′ + 3y′ + 2y = 0, y(0) = 3, y′(0) = −2.

(e) y′′ + 2y′ + y = 0, y(0) = 1, y′(0) = 2.

(f) 4y′′ + 12y′ + 9y = 0, y(0) = 1, y′(0) = −2.

(g) y′′ + 4y′ + 4y = 0, y(0) = 3, y′(0) = 2.

(h) y′′ + 3y = 0, y(0) = 1, y′(0) = 0.
y′′ + 3y = 0, y(0) = 0, y′(0) = 1.

(i) y′′ + 2y′ + 2y = 0, y(0) = 0, y′(0) = 1.
y′′ + 2y′ + 2y = 0, y(0) = 1, y′(0) = 0.

(j) y′′ + y′ + y = 0, y(0) = −1, y′(0) = 2.

(k) y′′ + 4y′ + 5y = 0, y(0) = 3, y′(0) = −2.

(l) y′′ + 4y′ + 6.25y = 0, y(π/4) = −3, y′(π/4) = −1.

(m) y′′ + y′ + 1.25y = 0, y(0) = 3, y′(0) = 1.
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5 Nonhomogenous linear DE’s with constant

coefficients

5.1 The General solution

Consider the nonhomogeneous linear DE

y′′ + p(t)y′ + q(t)y = g(t), y(to) = r, y′(to) = s (NH)

• Step 1. Find the general solution of the homogeneous DE (H).

y′′ + p(t)y′ + q(t)y = 0 (H)

– Find two fundamental solutions of (H).

y1(t) = · · · & y2(t) = · · ·

– The general solution of (H) is

yh(t) = c1y1(t) + c2y2(t)

• Step 2. Find any particular solution of (NH).

z(t) = · · ·

• Step 3. The general solution of (NH) is

y(t) = yH(t) + z(t)

y(t) = c1y1(t) + c2y2(t) + z(t)

• Step 4. Find c1 and c2 from initial the conditions.

5.2 Method of undetermined coefficients

We use this method when the nonhomogeneous term g(t) is of the form

g(t) = e3t, te−2t, e−5t cos(2t), · · ·

5.2.1. Example. Solve the IVP

y′′ − y′ − 6y = 7e
√

2t, y(0) = 1, y′(0) = 3 (NH)

• Step 1. Find the general solution of the homogeneous DE (H).

y′′ − y′ − 6y = 0 (H)

– Find two fundamental solutions of (H).
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∗ Characteristic equation: r2 − r − 6 = 0 −→ (r + 2)(r − 3) = 0

∗ Roots of characteristic equation: r1 = −2, r2 = 3.

∗ Fundamental solutions of (H):

y1(t) = e−2t, y2(t) = e3t

– The general solution of (H) is

H(t) = c1y1(t) + c2y2(t)

H(t) = c1e
−2t + c2e

3t

• Step 2. Find any particular solution of (NH). Since e
√

2t 6= y1(t), y2(t), we try a
solution of the form

z(t) = Ae
√

2t

Determine the constant A by substituting z(t) in (NH).

Recall that if we substitute x(t) = Aest in

L[x] = ax′′ + bx′ + cx

we obtain
L[Aert] = Aert(ar2 + br + c)

Thus, if we substitute z(t) = Ae
√

2t in the left hand side of (Nh) we obtain

Ae
√

2t((
√

2)2 −
√

2− 6 = 7e
√

2t

Thus,

A =
−7

4 +
√

2

And we have a particular solution

z(t) =
−7

4 +
√

2
e
√

2t

• Step 3. The general solution of (NH) is

y(t) = H(t) + z(t)

y(t) = c1e
−2t + c2e

3t +
−7

4 +
√

2
e
√

2t

• Step 4. Find c1 and c2 from initial the conditions. Exercise.

5.2.2. Example. Solve the IVP

y′′ − y′ − 12y = 5e−3t, y(0) = 1, y′(0) = 3 (NH)
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• Step 1. Find the general solution of the homogeneous DE (H).

y′′ − y′ − 12y = 0 (H)

– Find two fundamental solutions of (H).

∗ Characteristic equation: r2 − r − 12 = 0 −→ (r + 3)(r − 4) = 0

∗ Roots of characteristic equation: r1 = −3, r2 = 4.

∗ Fundamental solutions of (H):

y1(t) = e−3t, y2(t) = e4t

– The general solution of (H) is

yH(t) = c1y1(t) + c2y2(t)

yH(t) = c1e
−3t + c2e

4t

• Step 2. Find any particular solution of (NH). Since e−3t = y1(t) but
e−3t 6= y2(t), we take

z(t) = Ate−3t

Determine the constant A by substituting z(t) in (NH).

Recall that if we substitute x(t) = Atert in

L[x] = ax′′ + bx′ + cx

we obtain
L[Aebt] = Aest[(ar2 + br + c)t+ (2ar + b)]

– Notice that the coefficient of t is the characteristic polynomial

P (r) = ar2 + br + c

– If we substitute one of the roots in P (r) we obtain zero. That is, in our
example, if we substitute r = −3 in r2 − r + 12 we should get zero.

– Thus, if r is a root of the characteristic equation and we substitute x(t) = Atert

in
L[x] = ax′′ + bx′ + cx

we obtain
L[Atert] = Aest(2ar + b)

Thus, in our example, if we substitute z(t) = Ae−3t in the left hand side of (NH) we
obtain

Ate−3t(2(−3)− 1) = 5e−3t

Thus,

A =
−5

7
And we have a particular solution

z(t) =
−5

7
te−3t
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• Step 3. The general solution of (NH) is

y(t) = yH(t) + z(t)

y(t) = c1e
−3t + c2e

4t − 5

7
te−3t

• Step 4. Find c1 and c2 from initial the conditions. Exercise.

5.2.3. Exercises: Method of undetermined coefficients.

1. In each of the following find a particular solution z(t). Then solve the IVP. (Find the
roots and z(t) and check them against the given ones).

(a) y′′ − y′ − 6y = 7e5t, y(0) = 2, y′(0) = −3
r = −2, 3, z(t) = (−7/10)e5t.

(b) y′′ − y′ − 6y = 7e−2t, y(0) = 2, y′(0) = −3
z(t) = (−7/5)te−2t.

(c) y′′ − y′ − 6y = 8 cos 2t, y(0) = 2, y′(0) = −3
z(t) = (−10/13) cos 2t+ (−2/13) sin 2t.

(d) y′′ − y′ + y = 2 sin 3t, y(0) = 2, y′(0) = −3)
r = (1/2)± (

√
3/2)i, z(t) = (6/73) cos 3t+ (−16/73) sin 3t.

(e) y′′ − 2y′ − 3y = 4x− 5 + 4xe2x, y(0) = −1, y′(0) = 2, , (r = −1, 3)
z(x) = −(4/3)x+ (23/9)− (2x+ 4/3)e2x.

2. Solve each of the following IVP’s:

(a) y′′ − y′ − 6y = 7e
√

2t − 5e4t, y(0) = 1, y′(0) = 3, (r = −2, 3).

(b) y′′ − y′ − 6y = 7e−2t − 6e4t, y(0) = 4, y′(0) = −1.

(c) y′′ − y′ − 6y = 7 sin 5t, y(0) = 4, y′(0) = −1.

3. Solve each of the following IVP’s:

(a) y′′ + 7y′ + 12y = 7e−4t, y(0) = 1, y′(0) = 3, (r = −3,−4).

(b) y′′ + 7y′ + 12y = −6te−3t, y(0) = 4, y′(0) = −1.

(c) y′′ + 7y′ + 12y = 7 sin 5t, y(0) = 4, y′(0) = −1.

(d) y′′ + 7y′ + 12y = 3t2e5t, y(0) = −1, y′(0) = 2.

4. Find the general solutions to the following:

(a) y′′ + 4y′ + 3y = 7e−2t − 6e4t, (r = −1,−3).

(b) y′′ − 6y′ + 9y = 7e−2t − 6e4t, (r = −3,−3).

(c) y′′ − 6y′ + 9y = 7e3t.

(d) y′′ − 6y′ + 9y = 7te3t.
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5. In each of the following the general solution of the DE ẍ+ bẋ+ cx = g(t) is given
where c1 and c2 are constants. Find b, c and g(t).

(a) x(t) = c1e
−2t + c2e

3t + 5e4t.

(b) x(t) = c1e
−2t + c2te

−2t + 5e4t.

(c) x(t) = c1 cos(
√

3t) + c2 sin(
√

3t)− 5te−t.

5.2.4. How to find the particular solution z(t):

If g(t) = (polynomial)ert

take
z(t) = tk(polynomial of the same degree)ert

where k is the smallest integer
so that

all terms are different from the fundamental solutions y1(t) and y2(t)

If g(t) = (polynomial)eαt cos βt
take

z(t) = tk(polynomial of the same degree)eαt cos βt
+ tk(polynomial of the same degree)eαt sin βt

where k is the smallest integer
so that

all terms are different from the fundamental solutions y1(t) and y2(t)

If g(t) = (polynomial)eαt sin βt
take

z(t) = tk(polynomial of the same degree)eαt cos βt
+ tk(polynomial of the same degree)eαt sin βt

where k is the smallest integer
so that

all terms are different from the fundamental solutions y1(t) and y2(t)



5 NONHOMOGENOUS LINEAR DE’S WITH CONSTANT COEFFICIENTS 33

5.3 Method of variation of parameters

Consider the second order non-homogenous linear DE

y′′ + p(t) + y + q(t)y = g(t) (NH)

Assume that we found a fundamental set of solutions {y1(t), y2(t)} for the associated
homogenous DE

y′′ + p(t) + y + q(t)y = 0 (H)

And assume that p(t), q(t) and g(t) are continuous in an open Interval a < t < b.
Then a particular solution to (NH) is of the form

z(t) = u1(t)y1(t) + u2(t)y2(t) (5.1)

u1(t) = −
∫

y2(t)g(t)

W (y1(t), y2(t))
dt

u2(t) =

∫
y1(t)g(t)

W (y1(t), y2(t))
dt

The general solution of (NH) is

y(t) = H(t) + z(t) (5.2)

y(t) = (c1 + u1(t)) y1(t) + (c2 + u2(t)) y2(t)

We can also write the general solution oin the form

y(t) = c1y1(t) + c2y2(t) +

∫ t

to

y1(λ)y2(t)− y2(λ)(y1(t)

W (y1(λ), y2(λ))
g(λ)dλ (5.3)

We can also write the general solution oin the form

y(t) = c1y1(t) + c2y2(t) +

∫ t

to

∣∣∣∣ y1(λ) y2(λ)
y1(t) y2(t)

∣∣∣∣
W (y1(λ), y2(λ))

g(λ)dλ (5.4)

Question: What happens if we write

∫ t

to

· · · dλ in (5.1)?

5.3.1. Exercises.

1. In each of the following

• Find the general solution.

• If initial condition are give, solve the IVP.
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• In some problems a set of solutions is given. In this case verify that they are
solutions and that the set is a set of fundamental solutions.

• Some problems has more questions. Answer them.

(a) x′′ − 2x′ + x =
et

t2 + 1
.

(b) y′′ + 9y = 5 tan(3t).

(c) y′′ + 4y′ + 4y = t−2e−2t, t > 0.

(d) ty′′ − (t+ 1)y′ + y = t2, y1(t) = et, y2(t) = t+ 1.

(e) y′′ + y = sec t, −π/2 < t < π/2.

i. What about y′′ + y = sec(2t)?

ii. What about y′′ + 9y = sec(3t)? What can you conclude from these three
DE’s?

(f) y′′ + 16y = sec2 4t, −π/8 < t < π/8.
Why do we have to restrict the domain of t to the given one?

(g) x2y′′ − x(x+ 2)y′ + (x+ 2)y = 2x3, x > 0.
y1(x) = x, y2(x) = xex.

(h) tx′′ − (1 + t)x′ + x = t2e2t, t > 0.
x1(t) = 1 + t, x2(t) = et.

(i) y′′ + 4y = 7 sec 2t, 0 < t < π/2.
Why do we have to restrict the domain of t to the given one?

(j) y′′ + 2y′ + y = e−t ln t.

(k) t2y′′ + 3ty′ − 3y =
1

t3
, t > 0.

Hint: Look for fundamental solutions of the form tk.

(l) 4ty′′ + 2y′ − y = 4
√
t e
√
t, y1(t) = e

√
t, t2(t) = e−

√
t.

(m) y′′ + y = sin2 t.

(n) t2y′′ − 3ty′ + 4y = t2 ln t, t > 0.

(o) y′′ + y′ = ln t.

(p) t2y′′ − 2ty′ + 2y = t3, t > 0.

• What about t2y′′ − 2ty′ + 2y = tr, t > 0? That is, find the r for which
the method of the variation of parameters gives us an explicit solution and
find this solution.

• Can we use the method of undetermined coefficients for this problem?

(q) y′′ + y′ =
1

2 + sin t
.

(r) x2y′′ + xy′ + (x2 − 0.25)y = 3x3/2 sinx, x > 0,
y1(x) = x−1/2 sinx, y2(x) = x−1/2 cosx.
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2. Consider the IVP

y′′ + αy′ + βy = g(t), y(0) = yo, y
′(0) = vo

In each of the following the solution to IVP is given. Find α, β, yo and vo and.

(a) y(t) =
1

2

∫ t

0

sin(2(t− λ))g(λ) dλ.

(b) y(t) = t+

∫ t

0

(t− λ)g(λ) dλ.
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6 General Linear DE’s

6.1 Linear O D E

1. Recall that an equation of a plane in R3 is given by

cx+ by + az = d (6.1)

where a, b and c are constants.

2. If think of t as time and x(t) as the position at time t of a particle moving on the x
axis. Then,x′(t) and x′′(t) are its velocity and speed respectively. Let’s form a vector
out of these three quantities:

< x(t), x′(t), x′′(t) >

3. Set
y = x′, z = x′′

Suppose that the vector
< x(t), x′(t), x′′(t) >

satisfies (6.1), that is,
cx+ bx′ + ax′′ = d (6.2)

This means that the particle moves on the x-axis in such a way that the vector
< x(t), x′(t), x′′(t) > always lies on the plane (6.1).

4. In this case, the differential equation (6.2) is called a linear differential equation of
order 2, provided that a 6= 0.

5. We can also allow a, b and c to be functions of time. In this case, the plane (6.1)
changes with time.

The general form of a second order linear differential equation is

a(t)x′′ + b(t)x′ + c(t)x = f(t) a(t) 6= 0 (6.3)

Since we are studying the DE (6.3) when a(t) 6= 0, we can divide the equation by a(t) and
write p(t) = b(t)/a(t), q(t) = c(t)/a(t) and g(t) = f(t)/a(t).

6.1.1. The standard form of a second order linear DE’s.

(NH) ẍ+ p(t)ẋ+ q(t)x = g(t)

It is called homogenous iff
g(t) ≡ 0

That is

(H) ẍ+ p(t)ẋ+ q(t)x = 0.
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Question: For which initial conditions (to, xo, x
′
o) do we have a unique solution? The

answer is given by the following theorem:

Theorem 6.1.2. Consider the two LDE’s

ẍ+ p(t)ẋ+ q(t)x = g(t) (NH)

ẍ+ p(t)ẋ+ q(t)x = 0 (H)

t1 < t < t2

Assume that p(t), q(t) and g(t) are continuous for t1 < t < t2. Let t1 < to < t2.

Then, each of the DE (NH) and (H)
has a unique solution x(t) for every IC

x(to) = xo, ẋ(to) = ẋo
and this solution is defined on

the interval t1 < t < t2.
Moreover, this solution is twice differentiable.

That is, ẋ(t) and ẍ(t) are both continuous.

6.1.3. Remark. Linear DE’s of any higher order can be written and treated in a similar
fashion.

6.1.4. Declaration. In all what follows we assume that p(t), q(t) and g(t) are continuous
in the interval t1 < t < t2.

6.1.5. Continuous functions. For all practical purposes in this course, to make sure that
a function is continuous avoid the following:

1. Dividing by zero.

2.
√

negative #, 4
√

negative #, 6
√

negative #, · · · , 2k
√

negative #, · · · .

3. ln(negative #).

4. ln 0.

5. Jumps if the function is defined by two formulae.

6.1.6. Exercises Find the longest interval on which the IVP is certain to have a t unique
twice differentiable solution:

1. Compare the following four cases:

(a) (t2 − 9)y′′ +
3

t
y′ − (sin t)y = e2t−3, y(2) = 5, y′(2) = 7.

(b) (t2 − 9)y′′ +
3

t
y′ − y = e2t−3, y(−2) = 5, y′(−2) = 7.
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(c) (t2 − 9)y′′ +
3

t
y′ − y = e2t−3, y(4) = 5, y′(4) = 7.

(d) (t2 − 9)y′′ +
3

t
y′ − y = e2t−3, y(−6) = 5, y′(−6) = 7.

2. t(t− 5)x′′ + t2 x′ − x = 7e2t−3, x(3) = 35, x′(3) = 74.

3. (t− 3)x′′ + ln |t| x′ − x = 7e2t−3, x(2) = 45, x′(2) = 29.

4. (x+ 7)(tan 3x)u′′ + ln |t| u′ − u = t3 + 7t− 3, u(2) = 4, u′(2) = 9.

5. (x+ 7)(tan 3x)u′′ + ln |t| u′ − u = t3 + 7t− 3, u(−4) = 4, u′(−4) = 9.

6.2 Fundamental solutions and the Wronskian.

6.2.1. Linearly independent functions. Two continuous functions f(t) and g(t) with
t1 < t < t2, are said to be linearly independent if the are not multiple of each other.

Theorem 6.2.2. Let f(t) and g(t) be two differentiable functions defined on the interval
t1 < t < t2.

Then f(t) and g(t) are linearly independent iff
there is t1 < to < t2

such that the determinant∣∣∣∣ f(to) g(to)
f ′(to) g′(to)

∣∣∣∣ 6= 0

6.2.3. The Wronskian. The determinant

W (f, g)(t) =

∣∣∣∣ f(t) g(t)
f ′(t) g′(t)

∣∣∣∣ = f(t)g′(t)− g(t)f ′(t)

is called the Wronskian of f(t) and g(t).

6.2.4. Exercises In each of the following determine whether the given two functions are
linearly independent in two different ways, first using the definition and second using the
Wronskian:

1. e5t, e−3t.

2. e2t, te2t.

3. cos 3t, sin 3t.

4. e5t cos 2t, e−3t sin 2t.

5. x, e−3x.
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Theorem 6.2.5 (Abel’s Theorem). Consider the LHDE (H). Assume that p(t) and q(t)
are continuous for t1 < t < t2. Let t1 < to < t2. Let x1(t) and x2(t) be two solutions of (H).
Then

W (x1(t), x2(t)) = W (x1(to), x2(to)) exp[−
∫ t

to

p(s)ds]

6.2.6. Fundamental solutions for LHDE’s. Consider the LHDE

ẍ+ p(t)ẋ+ q(t)x = 0, t1 < t < t2 (H)

Fundamental set of solutions
Two solutions x1(t) and x2(t) of(H)
forma fundamental set of solutions

iff
any solution of an IVP
ẍ+ p(t)ẋ+ q(t)x = 0
x(to) = xo, ẋ(to) = ẋo

has a unique solution which is a linear combination
x(t) = c1x1(t) + c2x2(t)

Theorem 6.2.7. Consider the LHDE (H). Assume that p(t) and q(t) are continuous for
t1 < t < t2. Lett1 < to < t2.

Two solutions x1(t) and x2(t)
are fundamental solutions of (H)

iff
W (x1, x2)(to) 6= 0

for some t1 < to < t2

6.3 The general solution of a LHDE.

Abbreviation: LHDE = linear homogenous DE.

6.3.1. The principle of superposition. Consider the LHDE

ẍ+ p(t)ẋ+ q(t)x = 0 (H)

If x1(t) and x2(t) are two solutions of (H)
then so is

ax1(t) + bx2(t)
where a and b are any two numbers.
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6.3.2. Exercises

1. Verify that x1(t) = t−1 and x2(t) = t2 are solutions of the DE t2ẍ− 2x = 0. Then
show that at−1 + bt2 is also a solution for the DE.

2. Verify that x1(t) = t1/2 and x2(t) = 1 are solutions of the DE xẍ+ (ẋ)2 = 0, t > 0.
Then show that at−1 + bt2 is not a solution of the DE. Explain.
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7 The Laplace Transform:

7.0.3. Table

f(t)
L−→ F (s), s > a

f ′(t)
L−→ sF (s)− f(0), s > a

f ′′(t)
L−→ s(F (s)− f(0))− f ′(0),s > a

1
L−→ 1

s
, s > 0

t
L−→ 1

s2
, s > 0

tn
L−→ n!

sn+1
, s > 0

eat
L−→ 1

s− a
, s > a

cos bt
L−→ s

s2 + b2
, s > 0

sin bt
L−→ b

s2 + b2
, s > 0

eat cos bt
L−→ s− a

(s− a)2 + b2
, s > a

eat sin bt
L−→ b

(s− a)2 + b2
, s > a

ectf(t)
L−→ F (s− c), s− c > a

tf(t)
L−→ −dF

ds
(s), s > a

uc(t)
L−→ e−sc

s
, c > 0, s > 0

uc(t)f(t− c) L−→ e−scF (s), c > 0, s > a

δ(t− c) L−→ e−sc, c > 0, s > 0

f(t)δ(t− c) L−→ f(c)e−sc,c > 0, s > 0

cosh bt
L−→ s

s2 − b2
, s > |b|

sinh bt
L−→ b

s2 − b2
, s > |b|

f(t)
L−−−→ F (s)y y

f ′(t)
L−−−→ sF (s)− f(0)

s >?
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f(t)
L−−−→ F (s)y y

uc(t)f(t− c) L−−−→ e−csF (s)

s >?

f(t)
L−−−→ F (s)y y

ectf(t)
L−−−→ F (s− c)

s− c >?

f(t)
L−−−→ F (s)y y

tf(t)
L−−−→ −dF

ds
(s)

s >?

f(t)
L−−−→ F (s)y y

f(ct)
L−−−→ 1

c
F ( s

c
)

c > 0,
s

c
>?

7.0.4. Useful integrals ∫
teat dt =

1

a
teat − 1

a2
eatdt+ C

∫
t2eat dt =

1

a
t2eat − 2

a2
teat +

2

a3
eat + C

∫
tneat dt =

1

a
tneat − n

a

∫
tn−1eatdt+ C

∫
eat sin bt dt =

eat

a2 + b2
(a sin bt− b cos bt) + C

∫
eat cos bt dt =

eat

a2 + b2
(a cos bt+ b sin bt) + C
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8 Autonomous DE’s

Consider the following differential equation :

ẋ = f(x), x(to) = a (8.1)

where ẋ =
dx

dt
.

Notice that f(x) does not depend on time.

In this case the system is called autonomous.

1. Think of the independent variable t as time and the dependent variable x as the
position of a particle in space. In this way, f(x) gives the instantaneous velocity of
any particle passing through the point x.

2. This means that in an autonomous system, the velocity field (vector field) f(x) does
not depend on time. That is the velocity ẋ depends only on the position x of the
particle and not on when the particle passes through the point x.

3. Physically, this means that if we repeat an experiment at a latter time, we obtain
exactly the same results if we reset our clocks.

4. If f(xo) = 0, any particle at the point xo will have velocity ẋ = 0. Therefore, it will
never move. And the solution of (8.1) with IC x(to) = xo is φ(t) = xo, t ∈ R.

Definition 8.0.5. 1. A point xo at which

f(xo) = 0

is called a rest point.

2. The solution φ(t) = xo, t ∈ R of (8.1), is called an equilibrium solution or a
trivial solution.

Exercise 8.0.6. Find the equilibrium solution for the following DE’s:

1. ẋ = x(x− 2)(x+ 3)

2. ẋ = sinx

3. ẋ = (x− 7) ln(x− 2)

It is not a good idea to try to find a solution to an equation if there is none. If several
people try to find the solution to the same equation, it will be nice if they all find the same
solution.
The following Theorem 8.0.7 gives us conditions that guarantee the existence of a unique
solution to an autonomous system.

Theorem 8.0.7 (Autonomous DE). Consider the autonomous system (8.1) and assume
that f(x) and f ′(x) are continuous in a certain (open) domain G.
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1. Then for every a ∈ G and to ∈ R, there is a unique solution x(t), t− < t < t+, to the
IVP (8.1) defined on a time-interval t− < to < t+.

2. Solution curves don’t intersect. If two solution curves did intersect, there would be
two solutions through the point of intersection. This would violate uniqueness.

3. It takes nonequilibrium solutions infinitely long to reach rest points.
That is,
nonequilibrium solutions never reach rest points in finite time
and hence they never cross rest points.

Remark 8.0.8. For the purpose of this course, in order to find the regions where a
function is continuous, we need to avoid undefined quantities such as

1

0
, ln(0), ln(negative number)

n
√
negative number, n = even integer

jumps

Example 8.0.9. Consider the following autonomous system on the line:

dx

dt
= x− x2, x(0) = xo (8.2)

Notice that if we consider the DE with IC

x(to) = 0, 1

then we obtain the two equilibrium solutions

φ1(t) = 0, t ∈ R

and
φ2(t) = 1, t ∈ R

respectively. For x 6= 0, 1, we proceed as follows:

dx

x(1− x)
= dt

Using partial fractions, we obtain∫ (
1

x
+

1

1− x

)
dx =

∫
dt

Integrating, we obtain

ln |x| − ln |1− x| = t+ c
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ln

∣∣∣∣ x

1− x

∣∣∣∣ = t+ c∣∣∣∣ x

1− x

∣∣∣∣ = ecet

x

1− x
= Aet, A = ±ec

The constant ±ec depends on IC. We give it a simpler name A = ±ec.
To get the general solution, we need to simplify and get
We can find A from the IC x(0) = xo. Now the general solution is

φxo(t) =
Aet

1 + Aet
, (8.3)

A =
xo

1− xo
, xo 6= 0, 1

φ0(t) = 0, −∞ < t <∞, xo = 0

φ1(t) = 1, −∞ < t <∞, xo = 1

Notice that the function

ln

∣∣∣∣ x

1− x

∣∣∣∣
is not defined at x = 0, 1. But we are avoiding these two points anyway.
Question. What happens to the general solution (8.3) as xo → 0 and xo → 1? Notice that

lim
xo→0

A = 0

lim
xo→1−

A =∞, lim
xo→1+

A = −∞

lim
A→±∞

φxo(t) = 1

8.1 Phase portrait of an autonomous ODE

Now we try to generalize the ideas of Example 8.0.9 and consider the autonomous system,

ẋ = f(x) (8.4)

1. Rest points and equilibrium solutions.

2. Classifying rest points and equilibrium solutions:

(a) Stable rest point (asymptotically stable, attractor, sink).

(b) Unstable rest point (repeller, source).

(c) Semistable rest point (node).

3. Derivative test for classifying rest points.
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4. Transversal and nontransversal
intersections.

5. Basin of attraction of a stable rest point.

6. Phase portrait.

7. Long term behaviour of solutions.

8. Observable rest points.

Example 8.1.1. Consider the DE

ẋ = (x− 1)(3− x)5(6− x)3(x− 8)2(x− 9)(x− 11)

1. Sketch the phase portrait of the differential equation.

2. Find and classify the rest points.

3. Find and classify equilibrium solutions.

4. Find the basin of attraction of each stable rest point.

5. Let x(t) is the concentration of a certain substance at time t during a chemical
reaction. What are the achievable (observable) concentrations in this experiment?
Why?

6. Find the long term behaviour of the solutions with initial condition : initial
conditions:

x(0) = 0.3, 1.5, 2.3, 3.7, 5.7, 7.1, 8.8, 9.4, 12.13

Example 8.1.2. The following autonomous DE has no critical points but has a singularity
a t x = 3:

dx

dt
=

1

3− x
, x 6= 3

1. Sketch the phase portrait and analyze the long term behaviour of solutions.

2. Show that every solution reach the singular point x = 3 in finite time.

3. If t is time and x is the position of a particle on a straight line, how do you describe
the behaviour of solutions near the singular point x = 3?

Example 8.1.3. Consider the DE

ẋ = (x− 7) ln(x− 4)

1. Where is the velocity field defined.

2. Find and classify rest points using the first derivative test.

3. Sketch the phase portrait.
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4. Find the basin of attraction of each stable rest point.

Example 8.1.4. The following autonomous DE has a singularity at x = −2:

dx

dt
= −x ln(x+ 2), x > 2

1. Sketch the phase portrait and describe the long term behaviour of solutions.

2. What happens to particles with initial positions −2 < x(0) < −1?

Example 8.1.5 (A semisimple rest point). Consider the following DE with a small
parameter ε:

ẋ = (x− 1)2 + ε

1. Sketch the phase portrait for the three different cases ε < 0, ε = 0 and ε > 0.

2. Describe the long term behaviour of solutions in the three cases.

3. Study the long term behaviour of the point x = 1 in the three cases.

8.2 Attractors, repellers, basin of attraction
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9 Population Dynamics

Let x(t) be the number of rabbits in a forest at time t. Assume that there are no foxes nor
French chefs around.

9.1 Exponential growth model

It is reasonable to assume that the rate of growth of rabbits is proportional to their
number. That is,

ẋ = rx, r > 0 (9.1)

The phase portrait shows that x = 0 is an unstable equilibrium and that if we start with
any positive number rabbits

lim
t→∞

x(t) =∞

This means that if we wait long enough, the whole universe will be filled with rabbits. But
this is not what we see in reality to the disappointment of foxes and French chefs. The
reason for that is that the forest has a limited amount of food. So, if the number of rabbits
exceeds a certain number k > 0, which is called the carrying capacity, rabbits will decrease
in numbers because of shorter life span due to starvation and because of lack of interest in
romance. Therefore, we need another model that takes into account the carrying capacity
of the habitat. Before getting into that notice equation (9.1) is a separable equation whose
solution is

x(t) = x(0)ert (9.2)

This is why the model (9.1) is called exponential growth model.

9.2 Logistic growth model

ẋ = rx(1− x

k
) , r > 0, k > 0 (9.3)

The phase portrait shows that we have two rest points:

1. x1 = 0, which is unstable. Is this good or bad?

2. x2 = k, which is stable.

9.3 Logistic growth model with harvesting

Now what happens if a French chef shows up with his pet-fox?

ẋ = rx(1− x

k
)− h , r > 0, k > 0 (9.4)

ẋ = rx(1− x

k
)− hx , r > 0, k > 0 (9.5)
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9.4 Logistic growth model with a threshold

ẋ = rx(x− a)(1− x

k
) , r > 0, k > 0 (9.6)

9.5 Logistic growth model with a threshold and harvesting

ẋ = rx(x− a)(1− x

k
)− h (9.7)

r > 0, k > 0, a > 0

ẋ = rx(x− a)(1− x

k
)− hx (9.8)

r > 0, k > 0, a > 0
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10 Homogenous Planar Linear Systems of DE’s

In this section we study linear systems of first order DE.

Example 10.0.1. Solve the IVP

ẋ = 3x (10.1)

ẏ = −5y

x(2) = 1/2, y(2) = 7

Solution. These two equations are decoupled. That is there is no interaction between x
and y. We know that the general solutions are

x(t) = e3tc1 (10.2)

y(t) = e−5tc2

We can find (c1, c2) from IC

c1 = (1/2)e−6, c2 = 7e10

And the solution to the IVP is

ξ(t) = (1/2)e3(t−2)

η(t) = 7e−5(t−2)

Example 10.0.2. Solve the IVP

ẋ = −4x− 2y (10.3)

ẏ = 3x+ 3y

x(2) = −1, y(2) = 3

Notice that the two equations are coupled. That is, the x and y infulance each other.

Finding a method.
We can still look for solutions that look like the solutions of Example 10.0.1:

x(t) = eλtp (10.4)

y(t) = eλtq

Notice that the exponent λ is also an unknown together with (p, q). Not just the
parameters (p, q).

If we substitute the functions (10.4) in the DE (10.3) we obtain

λeλtp = eλt(−4p− 2q)

λeλtq = eλt(3p+ 3q)
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Simplifying,

(−4− λ)p− 2q = 0 (10.5)

3p+ (3− λ)q = 0

These are equations of two lines through the origin (because the y-intercepts = 0):

q =
−4− λ

2
p

q =
−3

3− λ
p

The only time we have a non-zero solution is when the two lines are identical because both
lines go through the origin. This happens when they have the same slope:

−4− λ
−2

=
3

3− λ

Step 1: Wiriting down the charachteristic equation

(−4− λ)(3− λ) = (−2)(3) (10.6)

Simplifying, we obtain
λ2 + λ− 6 = 0

This quadratic equation has two solutions

λ1 = 2, λ2 = −3 (10.7)

Notice

(−4− λ)(3− λ)− (−2)(3)

=

∣∣∣∣ −4− λ −2
3 3− λ

∣∣∣∣
= det(A− λI)

A =

(
−4 −2
3 3

)
To obtain solutions of the form (10.4) we need to find a vector E = (p, q)ᵀ for each λ.
These are called eignvectors

Step 2: Find the eigenvectors.
λ1 = 2 We substitute λ1 = 2 in the two equations in (10.5) and get the line

q =
−4− 2

2
p =⇒ q = −3p (10.8)

q =
−3

3− 2
p =⇒ q = −3p
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So, both equations give the same line q = −3p. Any point on the line q = −3p will do. We
chose p = 1. Then q = −3.

Very important sub-step. Check to make sure that (p, q) = (1,−3) satisfy the second
equation of the system (10.5). If not, something is wrong. And we start again by checking
the equation (10.6).
If (p, q) = (1,−3) satisfy the second equation of the system (10.5), we take

E1 =

(
1
−3

)
λ2 = −3 We repeat the same with λ2 = −3 and substitute in the first equation in (10.5)

and get the line

q =
−4 + 3

2
p

Any point on the line will do. We chose p = 2, q = −1.

Very important sub-step. Check to make sure that (p, q) = (2,−1) satisfy the second
equation of the system (10.5). If not, something is wrong. And we start again by checking
the equation (10.6).
If (p, q) = (2,−1) satisfy the second equation of the system (10.5), we take

E2 =

(
2
−1

)
Step 3: Find two fundamental solutions.

v1(t) = e2t
(

1
−3

)
(10.9)

=

(
e2t

−3e2t

)
v2(t) = e−3t

(
2
−1

)
=

(
2e−3t

−e−3t

)
Notice that neither v1(t) nor v2(t) satisfy the IC.

Step 4: The general solution is a linear combination of v1(t) of v2(t):

z(t) = c1v1(t) + c2v2(t)

z(t) = c1e
2t

(
1
−3

)
+ c2e

−3t

(
2
−1

)
= c1

(
e2t

−e2t
)

+ c2

(
2e−3t

−e−3t

)
z(t) =

(
e2t 2e−3t

−3e2t −e−3t

)(
c1
c2

)
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z(t) = Φ(t)c

z(t) =
(

v1 v2

)
c

Step 5: Find (c1, c2)
ᵀ from IC. For this we need:

The inverse of a matrix. If A is a 2× 2

A =

(
a b
c d

)
detA = ad− bc 6= 0

it has a multiplicative inverse given by

A−1 =
1

detA

(
d −b
−c a

)
(10.10)

Exercise. Check that
AA−1 = A−1A = I

Back to finding (c1, c2)
ᵀ from IC:(
−1
2

)
= z(2) = Φ(2)c (Step 5)

c = Φ(2)−1

(
−1
2

)
=

(
e4 2e−6

−3e4 −e−6

)−1( −1
2

)
(
c1
c2

)
=

(
e4 −2e−6

−3e4 e−6

)−1( −1
2

)
=

1

−5e−2

(
e−6 2e−6

3e4 e4

)(
−1
2

)
=

(
3e−4/5
−e6/5

)
Step 6: Solution to the IVP.

q(t) =

(
e2t 2e−3t

−3e2t −e−3t

)(
3e−4/5
−e6/5

)
=

(
3e2(t−2)/5− 2e−3(t−2)/5
−9e2(t−2)/5 + e−3(t−2)/5

)
Definition 10.0.3. λ1 and λ2 are called eigenvalues and E1 and E2 are called the
corresponding eigenvectors.

10.0.4. The method. Given a system

ẋ = ax+ by (H)

ẏ = cx+ dy
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Step 1.

Find the eigenvalues by solving the characteristic equation

(a− λ)(d− λ) = bc (10.11)

This equation corresponds to equation (10.7) in our example.

For the second step we have three cases.

The case λ1 6= λ2 and real

Step 2.

1. Find an eigenvector E1 for λ1 by solving

(a− λ1)p+ bq = 0 (10.12)

cp+ (d− λ1)q = 0 (10.13)

This system corresponds to system (10.8).

Before you solve the system, check that

(a− λ1)(d− λ1)− bc = 0 (10.14)

If not, something is wrong. check your calculations from the start.

If it is true, solve the first equation and make sure that your solution satisfies the
second one.

We obtain

E1 =

(
p1

q1

)
2. Repeat the same for λ2: Find an eigenvector E2 for λ2 by solving

(a− λ2)p+ bq = 0 (10.15)

cp+ (d− λ2)q = 0 (10.16)

Make sure that
(a− λ2)(d− λ2)− bc = 0 (10.17)

If true, we solve the system and we get

E2 =

(
p2

q2

)



10 HOMOGENOUS PLANAR LINEAR SYSTEMS OF DE’S 55

Step 3.

Find two fundamental solutions

v1(t) = eλ1tE1 (10.18)

v2(t) = eλ2tE2

Step 4.

Find the general solution

z(t) = c1v1(t) + c2v2(t) (10.19)

= c1e
λ1tE1 + c2e

λ2tE2

Step 5.

Determine the parameters (c1, c2)
ᵀ from IC.

Step 6.

Solution to the IVP. Substitute the the parameters ((c1, c2)
ᵀ that you found in Step 5

back in the general solution to obtain the unique solution to the IVP.

10.0.5. The fundamental matrix solution
Notice that

The general solution of (H) ẋ = Ax

z(t) =
(

v1(t) v2(t)
)( c1

c2

)

Define

The fundamental matrix solution

Φ(t) =
(

v1(t) v2(t)
)

Then

The general solution of (H) ẋ = Ax

z(t) = Φ(t)c



10 HOMOGENOUS PLANAR LINEAR SYSTEMS OF DE’S 56

When λ1 6= λ2, real

Φ(t) =
(

E1 E2

)( eλ1t 0
0 eλ2t

)

Then

The general solution of (H) ẋ = Ax
when λ1 6= λ2, real

z(t) =
(

E1 E2

)( eλ1t 0
0 eλ2t

)(
c1
c2

)

Exercise 10.0.6. Find the fundamental matrix solutions for Examples 10.0.1, 10.0.2 and
10.0.7.

Example 10.0.7. Solve the IVP

ẋ = 3x− 2y

ẏ = −3x+ 4y

x(0) = −2, y(0) = 1

Solution
Step 1: Find the eigenvalues. Solve

(a− λ)(d− λ)− bc = 0

(3− λ)(4− λ)− 6 = 0

λ2 − 7λ+ 6 = 0

(λ− 1)(λ− 6) = 0

Thus,
λ1 = 1, λ2 = 6

Step 2: Find the corresponding eigenvectors. This system has two distinct real
eigenvalues λ1 = 1 and λ2 = 6.
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For each λ check

(a− λ)(d− λ)− bc = 0

If true, solve

(a− λ)p+ bq = 0

For λ1 = 1, solve
(3− 1)p− 2q = 0

We get

E1 =

(
1
1

)
For λ1 = 6, solve

(3− 6)p− 2q = 0

We get

E1 =

(
2
−3

)
Step 3: Find two fundamental solutions.

v1(t) = eλ1tE1, v2(t) = eλ2tE2

v1(t) = et
(

1
1

)
v2(t) = e6t

(
2
−3

)
Step 4: Find the general solution.

z(t) = c1v1(t) + c2v2(t)

z(t) = c1e
t

(
1
1

)
+ c2e

6t

(
2
−3

)
Step 5: Find the parameters (c1, c2)

ᵀ form IC. Exercise.
Step 6: Find the unique solution to the IVP. Exercise.
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10.0.8. Matrix notation. We use matrix notation to write the system of Example 10.0.7.(
ẋ
ẏ

)
=

(
3 −2
−3 4

)(
x
y

)
(
x(0)
y(0)

)
=

(
−2
1

)
We also write the system in the form

z =

(
x
y

)
A =

(
3 −2
−3 4

)
ż = Az

z(0) =

(
−2
1

)
Definition 10.0.9. 1. Two linearly indepen-

dent functions u1(t) and u2(t) that are solutions for the system (H) are called
fundamental solutions

2. The matrix Φ(t) =
(
u1(t) u2(t)

)
is called a fundamental matrix solution. Notice

that Φ(t) satisfies the same linear DE. That is,

Φ̇(t) = AΦ(t)

The two functions v1(t) and v2(t), given by (10.18), are two linearly independent solutions
of the system (H).

10.0.10. Phase portrait
Sketch phase portrait for all the systems that you solve.

10.0.11. DE with complex conjugate eigenvalues.
Consider the planar linear DE

ż = Az (10.20)

Assume that A has two complex conjugate eigenvalues λ = α + iβ and λ̄.
Notice that all the (arithmetic) calculations we did in the case of two distinct real
eigenvalues λ1 6= λ2, depended only on the fact that λ1 6= λ2 and could be carried out with
complex numbers.

1. Thus, we find an eigenvector for λ1 = α− iβ, β > 0.

E1 = E = N1 + iN2

Since the matrix A is real, it follows that

E2 = Ē = N1 − iN2

is an eigenvector for λ2 = λ̄
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2. Now, we have two complex invariant-line solutions in the two dimensional complex
space which can be identified with a four dimensional real space. These two solutions
are

q1(t) = e(α−iβ)t(N1 + iN2) (10.21)

= eαt(cos βt− i sin βt)(N1 + iN2)

= eαt[N1 cos βt+ N2 sin βt)]

+ eαt[−N1 sin βt+ N2 cos βt]

= u1(t) + iu2(t)

q2(t) = q̄1(t)

= u1(t)− iu2(t)

where,

u1(t) = eαt[N1 cos βt+ N2 sin βt]

u2(t) = eαt[−N1 sin βt+ N2 cos βt]

3. Notice that u1(t) and u2(t) are real valued functions.

Exercise 10.0.12. Show that(
u1(t) u2(t)

)
=

eαt
(
N1 N2

)(cos βt − sin βt
sin βt cos βt

)
Exercise 10.0.13. 1. Show that

u1(t) =
1

2
(q1 + q2)

u2(t) =
1

2i
(q1 − q2)

2. Show that u1(t) and u2(t) are solutions for (10.20).

3. Show that u1(t) and u2(t) are linearly independent for all t ∈ R.

4. It follows that u1(t) and u2(t) are two fundamental solutions for the system (10.20).

Now the general solution is

z(t) = b1q1(t) + b2q2(t) (10.22)

= (b1 + b2)u1(t) + i(b1 − b2)u2(t)

= c1u1(t) + c2u2(t) (10.23)

where b1 and b2 are complex constants but c1 and c2 are real constants.
Summary of the complex case:
If we have two complex conjugate eigenvalues

λ1 = α− iβ, λ2 = λ̄1 = α + iβ

we proceed as follows:
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1. Find an eigenvector for λ1 = α− iβ, β > 0

E1 = N1 + iN2

Then,
E2 = Ē1 = N1 − iN2

is an eigenvector for λ2 = λ̄1.

2. Thus, we have a real general solution

z(t) = c1u1(t) + c2u2(t) (10.24)

=
(
u1(t) u2(t)

)( c1
c2

)
= eαt

(
N1 N2

)(cos βt − sin βt
sin βt cos βt

)
c

= eαtNR(βt)c

= ML(t)c

= Φ(t)c

where c1 and c2 are real constants.

3. It is obvious that the fundamental matrix solution

Φ(t) = eαtNR(βt)

has an inverse
e−αtR(−βt)N−1

Thus, we can determine the vector parameter c uniquely from any initial condition.

4. The matrix

R(θ) =

(
cos θ − sin θ
sin θ cos θ

)
is a counter-clockwise rotation with angle θ.

Exercise 10.0.14. In each of the following:

1. Find and sketch the fundamental solutions.

2. Find the general solution .

3. Solve the IVP.

4. Sketch the phase portrait.

Solve the following IVP and sketch the solutions
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1.

ẋ = −5x+ y

ẏ = −2x− 3y

x(0) = 1, y(0) = 2

2.

ẋ = 2x− 5y

ẏ = 4x− 2y

x(0) = 2, y(0) = 3

3.

ẋ = x− 2y

ẏ = 2x+ y

x(0) = −2, y(0) = 1

10.0.15. DE with a repeated eigenvalue.
Consider the planar linear DE

ż = Az (10.25)

Assume that A has a repeated eigenvalue

µ =
tr(A)

2

This happens iff
(tr(A))2 = 4 det(A)

1. Find an eigenvector E1 as before. That is, solve the equation

[A− µI]E1 = 0 (10.26)

AE1 = µE1

Since we are considering a planar system, we will be able to find only one linearly
independent eigenvector.

2. Now we look for another vector E2 satisfies

AE2 = µE2 + E1

That is, E2 must satisfy
[A− µI]E2 = E1 (10.27)

3. Exercise. Show that E1 and E2 are linearly independent.
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4. We have one invariant-line solution

u1(t) = eµtE1 (10.28)

5. A second solution is
u2(t) = eµt(E2 + tE1) (10.29)

6. Notice that
r(t) = E2 + tE1, −∞ < t <∞

is an equation of a straight line parallel to E1.

7. Then the general solution is

z(t) = c1u1(t) + c2u2(t) (10.30)

=
(
u1(t) u2(t)

)( c1
c2

)
= eµt

(
E1 tE1 + E2

)
c

= eµt
(
E1 E2

)(1 t
0 1

)
c

=
(
E1 E2

)(eµt teµt

0 eµt

)
c

= ML(t)c

= Φ(t)c

Definition 10.0.16. The vector E2 is called a generalized eigenvector.

Exercise 10.0.17. Show that u1(t) and u2(t) are fundamental solutions.

Remark: This question can be rephrased as follows:
Show that Φ(t) is a fundamental matrix solution.
In either case we need to show that u1(t) and u2(t) are solutions and are linearly
independent. To show that we need to show that the matrix Φ(t) = ML(t) has an inverse.
But this will be true if we show that each of M and L(t) has an inverse.

Exercise 10.0.18. Consider the case λ < 0. Show that as t→∞, the solution u2(t)→ 0
tangential to the the invariant line solution u1(t).
Then show that as t→ −∞, ‖u2(t)‖ → ∞ in such a way that u2(t) is almost parallel to
u1(t).
Hint: What are the dominant terms as t→ ±∞?

Exercise 10.0.19. Sketch and describe each of the two fundamental solutions (10.28) and
(10.29) for the three cases λ < 0, λ = 0 and λ > 0.

Exercise 10.0.20. In each of the following:

1. Find and sketch the fundamental solutions.



10 HOMOGENOUS PLANAR LINEAR SYSTEMS OF DE’S 63

2. Find the general solution .

3. Solve the IVP.

4. Sketch the phase portrait.

Solve the following IVP and sketch the solutions

1.

ẋ = −2x+ y

ẏ = −x− 4y

x(0) = 1, y(0) = 2

2.

ẋ = x− 2y

ẏ = 2x+ 5y

x(0) = 2, y(0) = 3

3.

ẋ = 7x+ y

ẏ = −4x+ 3y

x(0) = −2, y(0) = 1

10.0.21. Summary of the three cases:
To find the general solution to the real planar system

ż = Az

a Find the eigenvalues of the matrix A.

b Find the corresponding eigenvectors or generalized eigenvectors.

c Write down the fundamental matrix solution and the general solution.

To do that, we write down the characteristic equation

λ2 − tr(A)λ+ det(A) = 0 (10.31)

The quadratic equation (10.31) has two solutions. There are three cases:

1. Two distinct real roots λ1 6= λ2:
In this case we can find two linearly independent eigenvectors E1 and E2. Then, the
fundamental matrix solution and the general solution are given by (10.19).
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2. Two complex roots λ± = α± iβ:
In this case we can find two complex conjugate eigenvectors E1 = N1 + iN2 and
E2 = N1 − iN2. The the real fundamental matrix solution and the general solution
are given by (10.24).

3. One repeated real root λ = tr(A)/2:
In this case we have only one eigenvector E1. Then we can find a generalized
eigenvector E2 by solving

[A− λI]E2 = E1

The general solution is given by (10.30).
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10.0.22. Shortcuts for finding eigenvectors in the planar case.
Short cut for finding eigenvectors when λ1 6= λ2, in 2-D: Here is a shortcut for
finding eigenvectors that works only for 2 matrices. The explanation is given after
Theorem 10.0.24.

Compute

A− µ1I =
(
b1 c1

)
A− µ2I =

(
b2 c2

)
Then take

E1 = b2, E2 = b1

This is not a typo.
The indices in both cases are switched.
Short cut for finding eigenvectors for two complex conjugate eigenvalues,
in 2-D:

1. The shortcut that we used for the case λ1 6= λ2 works for the case of two complex
conjugate eigenvalues because µ 6= µ̄.

2. So, to find E1 that corresponds to λ1 = µ = α− iβ, β > 0, we compute

A− (α + iβ)I =
(
b2 c2

)
And then take

E1 = b2

Now, since we are dealing with complex eigenvalue, b2 will be complex too. So, we
write

E1 = E = N1 + iN2, µ = λ1 = α− iβ

3. Now, since λ2 = µ̄, the complex conjugate of µ, we expect the eigenvector of µ̄ to be

E2 = Ē = N1 − iN2

Short cut for finding eigenvectors for a repeated eigenvalue, in 2-D:

1. Pick your favourite vector in R2 and call it E2.

2. Then, compute E1 from

E1 = (A− αI)E2

3. There is a remote possibility that you get E1 = 0. If this happens, just pick another
E2 that is not parallel to your first pick. It is enough to change one component. Now
compute E1 again.
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4. Couldn’t be easier.

10.0.23. Why these shortcuts work:

Theorem 10.0.24. [Cayley-Hamilton] A square matrix A satisfies its characteristic
equation.

Consider a 2× 2 real matrix A.
Suppose that A has two distinct eigenvalues
λ1 6= λ2.

1. In this case the characteristic equation

λ2 − tr(A)λ+ det(A) = 0

can be factorized to
(λ− µ1)(λ− µ2) = 0 (10.32)

The Cayley-Hamilton Theorem 10.0.24 says that

(A− µ1I)(A− µ2I) = 0

which can be written as
A(A− µ2I) = µ1(A− µ2I) (10.33)

Now, view (A− µ2I) as two column vectors

A− µ2I =
(
B2 C2

)
We know that det(A− µ2I) = 0, which means that

C2 = cB2

for some scalar c 6= 0.

2. Now equation (10.33) takes the form

A
(
B2 C2

)
= µ1

(
B2 C2

)
Thus, (

AB2 cAC2

)
=
(
µ1B2 cµ1B2

)
This means that

AB2 = µ1B2 (10.34)

3. What does (10.34) mean? It means that B2 is an eigenvector corresponding to µ1.
It follows that B2 is also an eigenvector corresponding to µ1. Why?

4. The moral of the story: In order to find an eigenvector corresponding to µ1, we
compute (A− µ2I) and take either of its two columns.
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5. Exercise: How do you find an eigenvector corresponding to µ2 in the same fashion?

Suppose that A has a repeated eigenvalue µ.

1. In this case the characteristic equation

λ2 − tr(A)λ+ det(A) = 0

can be factorized to
(λ− µ)2 ≡ 0 (10.35)

The Cayley-Hamilton Theorem 10.0.24 says that

(A− µI)2 = 0

2. Recall that we are looking for two vectors E1 and E2 satisfying

(A− µI)E1 = 0 (a)

(A− µI)E2 = E1 (b)

Thus,
(A− µI)2E2 = 0

But we know from (10.35) that
(A− µI)2 ≡ 0

Since we are dealing with a planar system, any vector E2 ∈ R2 will do. But then, (b)
tells us that we can take

E1 = [A− λI]E2
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11 Nonhomogenous Planar Linear Systems

In this section we study the nonhomogenous planar system

ż = Az + f(t) (NH)

The corresponding homogenous system is

ż = Az (H)

The difference between (NH) and (H):

a The homogenous DE (H) represents the
evolution of the system under the influence of its intrinsic forces.

b The nonhomogenous DE (NH) represents the evolution of the system when it is
subjected to some external excitation f(t).

We know that the general solution to the homogenous (H) is

zH(t) = Φ(t)c (SH)

with the vector-parameter c.

11.1 Variation of parameter method:

1. We conjecture that the general solution of the nonhomogenous (NH) takes the form

z(t) = Φ(t)u(t) (SNH)

In other words, to take into account the effect of the external excitation f(t), we
replace the vector-parameter c by a function of u(t). Of course u(t) will depend on
the external excitation f(t).

2. To try to find whether this is possible, we substitute (SNH) into (NH) and obtain

Φ(t)u̇(t) = f(t)

u̇(t) = Φ(t)−1f(t)

u(t) = c +

∫ t

a

Φ(s)−1f(s) ds

u(t) = c +

∫
Φ(t)−1f(t) dt

u(t) = c +

∫ t

to

Φ(s)−1f(s) ds

Thus,

z(t) = Φ(t)[c +

∫
Φ(t)−1f(t) dt] (11.1)
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= Φ(t)[c +

∫ t

a

Φ(s)−1f(s) ds]

= Φ(t)[c +

∫ t

to

Φ(s)−1f(s) ds]

where a and to can be any real numbers. As usual, we express z(t) in several
equivalent forms, each of which is useful in a way. Notice that the vector-parameter c
varies from one expression to the other.

3. To show that (11.1) is really the general solution, we need to show that given any
initial condition z(to) = zo, we can determine the vector-parameter c uniquely from
(11.1). The crucial point in showing that is that the fundamental matrix solution
Φ(t) has an inverse for all t ∈ R. Now,

c = Φ(to)
−1zo −

∫ to

a

Φ(s)−1f(s) ds
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f(t)
L−−−→ F (s)

left

y yright

ectf(t)
abcd−−−→ F (s− c)
L−→
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