LESSON 23  POWER SERIES
Definition  A power series in the variable of  x  is a series of the form  
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Definition  Let  c  be a real number.  A power series in 
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Example  Find all values of  x  for which the power series  
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We will use the Ratio Test.  Let  
[image: image7.wmf]n

n

n

n

x

u

3

=

.  Then

[image: image8.wmf]n

n

n

u

u

1

lim

+

¥

®

  =  
[image: image9.wmf]n

n

n

n

n

x

n

n

x

3

3

)

1

(

lim

1

1

×

+

+

+

¥

®

  =  
[image: image10.wmf]1

lim

3

+

¥

®

n

n

x

n

  =  
[image: image11.wmf]n

x

n

1

1

1

lim

3

+

¥

®

  =  
[image: image12.wmf]3

x

  since  
[image: image13.wmf]1

1

1

1

lim

=

+

¥

®

n

n

.
By the Ratio Test, the series  
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By the Ratio Test, the series  
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The Ratio Test is inconclusive when  
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For  
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.  You can show that this series converges by the Alternating Series Test (AST).

For  
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Thus, the power series  
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  is convergent for all real numbers in the interval  
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Animation of the power series  
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Example  Find all values of  x  for which the power series  
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We will use the Ratio Test.  Let  
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By the Ratio Test, the series  
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Solving this inequality, we have that  
[image: image61.wmf]Þ

<

-

2

1

5

x

  
[image: image62.wmf]Þ

<

-

<

-

2

1

5

2

1

x

  
[image: image63.wmf]2

11

2

9

<

<

x

.  This is the set of real numbers given by the open interval  
[image: image64.wmf]÷

ø

ö

ç

è

æ

2

11

,

2

9

.

The Ratio Test is inconclusive when  
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Thus, the power series  
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  is convergent for all real numbers in the closed interval  
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Answer:  
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COMMENT:  The answers for this two examples have been intervals.  The following theorem will give an explanation for this.

Theorem  If a power series  
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  converges for a non-zero real number  c, then it is absolutely convergent for all real numbers  x  such that  
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  diverges for a non-zero real number  d, then it diverges for all real numbers  x  such that  
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Proof  Will be provided later.

COMMENT:  This theorem tells us that the real numbers for which a power series will converge are contained in an interval.  The interval can be open, closed, or half-open, half-closed.  This interval is called the interval of convergence of the power series.  When you are asked to find the interval of convergence of a power series, you will use the Ratio Test and you will have to remember to check the endpoints of the interval for convergence.
COMMENT:  The inequality  
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  and is the one-dimensional case of a circle whose center is the number  0 and whose radius is  r.  The inequality  
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  and is the one-dimensional case of a circle whose center is the number  c and whose radius is  r.  The number  r  is called the radius of convergence of the power series.  When you are asked to find the radius of convergence of a power series, you will use the Ratio Test and you will NOT have to check the endpoints of the interval for convergence.
Examples  Find the interval and the radius of convergence for the following power series.
1.
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We will use the Ratio Test.  Let  
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We need to calculate the two limits.
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By the Ratio Test, the series  
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Now, we will need to check for convergence at the two endpoints of  
[image: image126.wmf]1

-

=

x

  and  
[image: image127.wmf]1

=

x

.
For  
[image: image128.wmf]1

-

=

x

, we obtain the series  
[image: image129.wmf]å

¥

=

+

-

1

4

16

)

1

(

n

n

n

n

 .  You can show that the series  
[image: image130.wmf]å

¥

=

+

-

1

4

16

)

1

(

n

n

n

n

  =  
[image: image131.wmf]å

¥

=

+

1

4

16

n

n

n

  is convergent using the Limit Comparison Test (LCT) using the convergent  p-series  
[image: image132.wmf]å

¥

=

1

3

1

n

n

.  Thus, the alternating series  
[image: image133.wmf]å

¥

=

+

-

1

4

16

)

1

(

n

n

n

n

  is absolutely convergent.  Thus, it is convergent.
For  
[image: image134.wmf]1

=

x

, we obtain the series  
[image: image135.wmf]å

¥

=

+

1

4

16

n

n

n

 .  You can show that this positive term series is convergent using the Limit Comparison Test (LCT) using the convergent  p-series  
[image: image136.wmf]å

¥

=

1

3

1

n

n

.

Thus, the power series  
[image: image137.wmf]å

¥

=

+

1

4

16

n

n

n

x

n

  is convergent for all real numbers in the closed interval  
[image: image138.wmf]]

1

,

1

[

-

.

Animation of the power series  
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Answer:
Interval of Convergence:  
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Radius of Convergence:  1
2.
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We will use the Ratio Test.  Let  
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By the Ratio Test, the series  
[image: image151.wmf]å

¥

=

+

-

1

6

)

4

(

)

1

(

n

n

n

n

n

x

  is absolutely convergent if  
[image: image152.wmf]1

lim

1

<

+

¥

®

n

n

n

u

u

.

Since  
[image: image153.wmf]6

4

lim

1

+

=

+

¥

®

x

u

u

n

n

n

, then the series is absolutely convergent for all real number  x  such that  
[image: image154.wmf]1

6

4

<

+

x

.  Rewriting this inequality, we have that  
[image: image155.wmf]Þ

<

+

1

6

4

x

  
[image: image156.wmf]Þ

<

+

6

4

x

  
[image: image157.wmf]Þ

<

+

<

-

6

4

6

x

  
[image: image158.wmf]2

10

<

<

-

x

.  This is the set of real numbers given by the open interval  
[image: image159.wmf])

2

,

10

(

-

.
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By the Ratio Test, the series  
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We will use the Ratio Test.  Let  
[image: image196.wmf]n

x

u

n

n

n

)

1

(

)

1

(

1

-

-

=

-

.  Then


[image: image197.wmf]n

n

n

u

u

1

lim

+

¥

®

  =  
[image: image198.wmf]n

n

n

x

n

n

x

)

1

(

1

)

1

(

lim

1

-

×

+

-

+

¥

®

  =  
[image: image199.wmf]1

lim

1

+

-

¥

®

n

n

x

n

  =


[image: image200.wmf]n

x

n

1

1

1

lim

1

+

-

¥

®

  =  
[image: image201.wmf]1

-

x

  since  
[image: image202.wmf]n

n

1

1

1

lim

+

¥

®

  =  
[image: image203.wmf]1

0

1

1

=

+
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Radius of Convergence:  1
NOTE:  In a later lesson, we will show that  
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By the Ratio Test, the series  
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Animation of the power series  
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Radius of Convergence:  
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NOTE:  In a later lesson, we will show that  
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