LESSON 22  ABSOLUTE CONVERGENCE
Definition  A series  
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Example  The alternating series  
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  is absolutely convergent since the series  
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  is a convergent  p-series with 
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Theorem  If a series  
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Proof  Will be provided later.

Example  Since the alternating series  
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  is absolutely convergent, then by the theorem above, the alternating series   
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  is convergent.

NOTE:  It is easier to establish the convergence of the given alternating series by absolute convergence than using the Alternating Series Test (AST).
Definition  A series  
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Example  The alternating series  
[image: image15.wmf]å

¥

=

-

-

1

1

1

)

1

(

n

n

n

  is conditionally convergent since the series  
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  is the divergent harmonic series and the alternating series  
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  is convergent by the Alternating Series Test (AST).

NOTE:  We showed that the alternating series  
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  is convergent in Lesson 21.

Theorem  (The Ratio Test)  Let  
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  be a series of non-zero terms.
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3.
If  
[image: image24.wmf]1

lim

1

=

+

¥

®

n

n

n

a

a

, then the test fails.

Proof  Will be provided later.

Theorem  (The Root Test)  Let  
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  be a series on non-zero terms.
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Proof  Will be provided later.

Examples  Determine whether  (a)  a positive term series is convergent or divergent; or  (b)  a series with contains both positive and negative terms is absolutely convergent, conditionally convergent, or divergent.  Indicate which test(s) was(were) used.
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This is a positive term series.  We showed that it is convergent using the Integral Test in Lesson 20.
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Thus, the series  
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Answer:  Converges; Ratio Test
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This is a positive term series.


Let  
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Thus, the series  
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  is convergent by the Ratio Test.


Answer:  Converges; Ratio Test

3.
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This is a positive term series.  We showed that it is convergent using the Basic Comparison Test in Lesson 20.
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Thus, the series  
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Answer:  Converges; Ratio Test
4.
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This is a positive term series


Let  
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Thus, the series  
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  is divergent by the Ratio Test.


Answer:  Diverges; Ratio Test
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Consider the series  
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Thus, the series  
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  converges by the Limit Comparison Test (LCT).

Thus, the series  
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  is absolutely convergent.

Answer:  Absolutely Convergent; LCT

6.

[image: image80.wmf]å

¥

=

-

+

-

1

2

1

4

)

1

(

n

n

n

n




[image: image81.wmf]å

¥

=

-

+

-

1

2

1

4

)

1

(

n

n

n

n

  =  
[image: image82.wmf]å

¥

=

+

1

2

4

n

n

n


Consider the series  
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Thus, the series  
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  diverges by the Limit Comparison Test (LCT).

We showed that the alternating series  
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  is convergent in Lesson 21 using the Alternating Series Test (AST).
Thus, the series  
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  is conditionally convergent.
Answer:  Conditionally Convergent; LCT, AST
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Consider the series  
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Thus, the series  
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  converges by the Limit Comparison Test (LCT).

Thus, the series  
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  converges by the Basic Comparison Test (BCT).

Thus, the series  
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  is absolutely convergent.

Answer:  Absolutely Convergent; BCT, LCT
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Let  
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Thus, the series  
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Thus, the series  
[image: image129.wmf]å

¥

=

-

0

!

)

2

(

1

)

1

(

n

n

n

  is absolutely convergent by the Ratio Test.


Answer:  Absolutely Convergent; Ratio Test
NOTE:  We showed that the alternating series  
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  is convergent in Lesson 21 using the Alternating Series Test (AST).
9.
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Let  
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Thus, the series  
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  is absolutely convergent by the Ratio Test.


Answer:  Absolutely Convergent; Ratio Test
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This is a positive term series.


Let  
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Thus, the series  
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  is divergent by the Root Test.

Answer:  Diverges; Root Test
11.
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Since  
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Thus, the series  
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  is convergent by the Root Test.  Thus, the series  
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  is convergent.
Thus, the series  
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  is absolutely convergent by the Root Test.

Answer:  Absolutely Convergent; Root Test

12.
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This is a positive term series

Let  
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Thus, the series  
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  is convergent by the Root Test.

Answer:  Converges; Root Test
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