LESSON 18  SEQUENCES
Notation:  The symbol  
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Definition  A sequence is a function whose domain is a set of the form  
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, where  N is a positive integer.
Up to this point, we have worked with functions of a real variable.  That is, the domain of the function was either the set of real numbers or was a subset of the set of real numbers.

Example  Consider the sequence  
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The domain of this sequence is  
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If  f  is a sequence, then for each positive integer  n  in the domain of the sequence, there corresponds a real number  
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 in the range of the sequence.  If the domain of the sequence is the set  
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, where  N  is a positive integer , then the numbers in the range of the sequence may be listed by writing
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The number  
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  is called the first term of the sequence,  
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  is called the n th term of the sequence.  Of course if  
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and the number  
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COMMENT:  This is the reason that some people define a sequence to be a function whose domain is the set of positive integers  
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  would not be a sequence because it is not defined at 
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NOTATION:  When working with a sequence, it is customary to use a subscript notation.  Thus, instead of writing  
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COMMENT:  The most common names for functions of a real variable are  f,  g,  h,  and  k.  The most common names for sequences are  a,  b, and  c.
Examples  Find the domain of the following sequences.  Then find the first four terms of the sequence.
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The domain of this sequence is the set 
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NOTE:
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The domain of this sequence is the set 
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The domain of this sequence is the set 
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NOTE:
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NOTE:  Sometimes, sequences are given this way.

The domain of this sequence is the set 
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The first term of the sequence is  
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Definition  A sequence 
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If a sequence has a limit, then we say that the sequence converges.  If a sequence does not have a limit, then we say that the sequence diverges.

We have the following limit properties for sequences.

Theorem (Properties of Limits for Sequences)  If  
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Proof  Will be provided later.

Theorem  (The Sandwich Theorem for Sequences)  Given the sequences 
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Proof  Will be provided later.

Since sequences are not differentiable, then L’Hopital’s Rule does not hold for sequences.  However, we have the following theorem which will allow us is to apply L’Hopital’s Rule.
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Proof  Will be provided later.

NOTE:  Let 
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We will need the following theorem in order to determine the limit of certain sequences.

Theorem  If  
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Proof  Will be provided later.
Theorem  If  
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Proof  Will be provided later.
Examples  Determine whether the following sequences converge or diverge.  If the sequence converges, then give its limit.
1.
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This sequence is one of our examples given above.
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NOTE:  If you want to apply L’Hopital’s Rule, then you would have to do the following.
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Answer:  Converges; 0
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We will apply L’Hopital’s Rule to  
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Answer:  Diverges
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Answer:  Converges; 3
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Answer:  Converges; 4
9.
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Answer:  Diverges
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Answer:  Diverges
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Answer:  Converges; 0
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