LESSON 1  INVERSE FUNCTIONS
First, we will review inverse functions.

Example  Consider the following function 
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 and its inverse 
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NOTE:  The function 
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 maps x in the set D to y in the set E and 
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 maps y back to x.  Of course, this is what an inverse function is suppose to do.

Example  Consider the following function 
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.  Does 
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 have an inverse? 
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The function 
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 maps x in the set D to a in the set E.  So, the inverse function would map a back to x.  The function 
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 maps y in the set D to b in the set E.  So, the inverse function would map b back to y.  However, where does the inverse function map c.  Note that the domain of the function 
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 is the set 
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 and the range of the function 
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 is the set 
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The function 
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 is not an onto function.  In order for a function to be an onto function, every element in the set E must be used.  For the given function 
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, the element c in the set E was not used.  In order for a function to have an inverse, it must be an onto function.  If a function is not an onto function, then the lack of this needed condition is easy to fix.  To fix the lack of the onto condition, replace the set E by the range of the function.
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Now, this function has an inverse function.  Notice the following relationship above:  The domain of the inverse function 
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 is equal to the range of the function 
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Example  Consider the following function 
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.  Does 
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Note that the domain of the function 
[image: image25.wmf]f

 is the set D, which is the set 
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 and the range of the function 
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 is the set 
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.  Also, note that the function 
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 is an onto function.  The set E is the range of the function 
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.  The function 
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 maps x in the set D to c in the set E. The function 
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 also maps y in the set D to c in the set E.  So, the inverse function would map c back to either x or y.  Which one do you use?  The problem here is that the function 
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 is not a one-to-one function.  In order for a function to be a one-to-one function, you may only use each element in the set E once.  In order for a function to have an inverse, it must be a one-to-one function.  If a function is not a one-to-one function, then the lack of this needed condition is not as easy to fix as the lack of the onto condition.  In order to fix the lack of the one-to-one condition, you must put a restriction on the domain of the function.  In other words, you must eliminate elements from the set D.  What elements in the set D are you going to chose to eliminate?  This is the reason that fixing the lack of the one-to-one condition is harder.  For the function 
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, the domain is the set D = 
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.  Thus, we will either eliminate x or y.  Each restricted domain will produce an inverse function.  Thus, these two choices for the restricted domain will produce two inverse functions.  

If we eliminate y, then we get the following inverse function:
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Restricted domain of 
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If we eliminate x, then we get the following inverse function:
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The function 
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 has two possible inverse functions depending on the restricted domain that is chosen.

Notice the following relationship for both inverse functions above:  The restricted domain of the function 
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 is equal to the range of the function 
[image: image50.wmf]1

-

f

.

Theorem  A function 
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 has an inverse function, denoted by 
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 if and only if the function 
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 is one-to-one and onto.

We have the following relationships:
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We also have the following two relationships between a function and its inverse function:

1.

[image: image62.wmf]x

x

f

f

=

-

)

)

(

(

1

  for all x in the restricted domain of 
[image: image63.wmf]f


2.

[image: image64.wmf]y

y

f

f

=

-

)

)

(

(

1

  for all y in the domain of 
[image: image65.wmf]1

-

f


Example  Find the inverse function of the function 
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Information about the domain of the function 
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can be determined by the x-coordinate of the points on the graph.  Since the value of the x-coordinates range in value from negative infinity to positive infinity, then the domain of 
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 is all real numbers.  Information about the range of the function 
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can be determined by the y-coordinate of the points on the graph.  Since the value of the y-coordinates range in value from zero to positive infinity, then the range of 
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 is all real numbers greater than or equal to zero.  In interval notation, we have the following:
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Recall the following test for checking the graph of a function for being one-to-one:

The Horizontal Line Test:  If a horizontal line intersects the graph of a function in more than one place, then the function is not one-to-one.

By the horizontal line test, the function 
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 is not one-to-one.  We will have to put a restriction on the domain of the function in order to fix this.  We have the following two choices for the restricted domain:  1) the interval of numbers 
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; that is,  the set of numbers greater than or equal to zero or 2) the interval of numbers 
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; that is, the set of numbers less than or equal to zero.  Each restricted domain will produce an inverse function.  Thus, these two choices for the restricted domain will produce two inverse functions.

For the first choice of 
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 on the restricted domain looks like the following:
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Since the restricted domain of 
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For the second choice of 
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Since the restricted domain of 
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Now, let’s find the inverse function(s) algebraically.

Set 
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Solve for x in terms of  y:
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Notice, as predicted above the domain of 
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Now, let’s verify the two relationships for this function and its two inverse functions are true.
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Thus, the two relationships for this function and its two inverse functions hold.

Definition  A function  f  is said to be monotonic on the open interval 
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Theorem  If a function  f  is defined and continuous on an open interval 
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, then  f  has an inverse on the interval if and only if  f  is monotonic on the interval.
Proof  The prove will be provided later.
Theorem  If a function  f  is differentiable and monotonic on an open interval 
[image: image145.wmf])

,

(

b

a

, then  f  is differentiable at 
[image: image146.wmf])

(

x

f

y

=

 and 
[image: image147.wmf])

)

(

(

1

)

(

)

(

1

1

y

f

f

y

f

-

-

¢

=

¢

 =  
[image: image148.wmf])

(

1

x

f

¢

 for all x in 
[image: image149.wmf])

,

(

b

a

.
Proof  Since  f  is differentiable on the interval 
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Since  f  is a polynomial, then  f  is continuous for all real numbers.  Since 
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Answer:
Tangent Line:
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Normal Line:
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