MATH-1320 Sample Exam 1 Spring 2017

Simplify the following. Write your answer in a + b i form. 1.

a.
$$\frac{-24 + \sqrt{-48}}{12}$$
 b. $(7 - 4i)^2$ c. $\frac{3 + 8i}{5 - 2i}$

b.
$$(7-4i)^2$$

c.
$$\frac{3 + 8i}{5 - 2i}$$

Solve the following equations by the indicated method. 2.

a.
$$4(x - 6)^2 - 25 = 87$$
 (using square roots)

b.
$$3y^2 + 48 = 0$$
 (using square roots)

c.
$$3t^2 = 7 - 4t$$
 (using the Quadratic Formula)

3. Solve the following equations.

a.
$$45w^3 - 27w^2 - 20w + 12 = 0$$

b.
$$y^4 = 64 y$$

c.
$$\frac{6x}{x-3} - \frac{4}{x+6} = \frac{5x^2 + 39x}{x^2 + 3x - 18}$$

d.
$$4|3t-5|-7=17$$

e.
$$\sqrt{3x+16} - \sqrt{x+13} = -1$$

Solve the following inequalities. Write the solution set in interval notation. 4.

a.
$$3 \le \frac{4x - 9}{5} < 11$$

b.
$$-11 > -2|y + 9| - 5$$

A motorboat travels 75 miles with a current of 5 mph. The return trip against 5. the current takes 2 hours longer. Set up an equation that will find the average rate of the motorboat in still water. Do <u>NOT</u> solve the equation. Don't forget to identify your variable.

SOLUTIONS:

1a.
$$\frac{-24 + \sqrt{-48}}{12} = \frac{-24 + i\sqrt{16 \cdot 3}}{12} = \frac{-24 + 4i\sqrt{3}}{12} = \frac{-24}{12} + \frac{4i\sqrt{3}}{12} = \frac{4i\sqrt{3}}{12} = \frac{-24}{12} + \frac{4i\sqrt{3}}{12} = \frac{-24}{12}$$

$$-2+\frac{\sqrt{3}}{3}i$$

Answer:
$$-2 + \frac{\sqrt{3}}{3}i$$

Back to **Problem 1**.

1b.
$$(7-4i)^2$$

NOTE: We will use the following special product formula.

$$(a - b)^2 = a^2 - 2ab + b^2$$

$$(7-4i)^2 = 49 - 56i + 16i^2 = 33 - 56i$$

NOTE:
$$i^2 = -1$$
 and $16i^2 = -16$

Answer:
$$33 - 56i$$
 Back to Problem 1.

1c.
$$\frac{3+8i}{5-2i}$$

The conjugate of 5 - 2i is 5 + 2i.

$$\frac{3+8i}{5-2i} = \frac{3+8i}{5-2i} \cdot \frac{5+2i}{5+2i} = \frac{15+6i+40i+16i^2}{25+4} = \frac{-1+46i}{29} =$$

$$-\frac{1}{29} + \frac{46}{29}i$$

Answer: $-\frac{1}{29} + \frac{46}{29}i$

Back to **Problem 1**.

2a.
$$4(x-6)^2 - 25 = 87$$

Back to **Problem 2**.

$$4(x-6)^2 - 25 = 87 \implies 4(x-6)^2 = 112 \implies (x-6)^2 = 28 \implies$$

$$x - 6 = \pm 2\sqrt{7} \implies x = 6 \pm 2\sqrt{7}$$

Answer: $x = 6 \pm 2\sqrt{7}$ or $\{6 \pm 2\sqrt{7}\}$

$$2b. \quad 3y^2 + 48 = 0$$

Back to Problem 2.

$$3y^2 + 48 = 0 \implies 3y^2 = -48 \implies y^2 = -16 \implies y = \pm 4i$$

Answer: $y = \pm 4i$ **or** $\{\pm 4i\}$

$$2c. 3t^2 = 7 - 4t$$

Back to **Problem 2**.

$$3t^2 = 7 - 4t \implies 3t^2 + 4t - 7 = 0$$

$$a = 3, b = 4, c = -7$$

$$t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-4 \pm \sqrt{16 - 4(3)(-7)}}{6} = \frac{-4 \pm \sqrt{16 + 84}}{6} =$$

$$\frac{-4 \pm \sqrt{100}}{6} = \frac{-4 \pm 10}{6}$$

$$t = \frac{-4 - 10}{6} = \frac{-14}{6} = -\frac{7}{3}$$
 $t = \frac{-4 + 10}{6} = \frac{6}{6} = 1$

$$t = \frac{-4 + 10}{6} = \frac{6}{6} = 1$$

Answer: $t = -\frac{7}{3}, t = 1$ or $\left\{-\frac{7}{3}, 1\right\}$

3a.
$$45w^3 - 27w^2 - 20w + 12 = 0$$

Back to Problem 3.

We can factor the expression $45w^3 - 27w^2 - 20w + 12$ by grouping:

$$45w^3 - 27w^2 - 20w + 12 = 9w^2(5w - 3) - 4(5w - 3) = (5w - 3)(9w^2 - 4)$$

$$45w^3 - 27w^2 - 20w + 12 = 0 \implies 9w^2(5w - 3) - 4(5w - 3) = 0 \implies$$

$$(5w - 3)(9w^2 - 4) = 0$$

$$5w - 3 = 0 \implies w = \frac{3}{5}$$

$$9w^2 - 4 = 0 \implies w^2 = \frac{4}{9} \implies w = \pm \frac{2}{3}$$

Answer: $w = \pm \frac{2}{3}, \frac{3}{5}$ or $\{\pm \frac{2}{3}, \frac{3}{5}\}$

3b.
$$y^4 = 64 y$$

Back to Problem 3.

$$y^4 = 64y \implies y^4 - 64y = 0 \implies y(y^3 - 64) = 0$$

NOTE: In order to factor the expression $y^3 - 64$, which is a difference of cubes, you will need the following factoring formula:

$$a^{3} - b^{3} = (a - b)(a^{2} + ab + b^{2})$$

Thus,
$$y^3 - 64 = y^3 - 4^3 = (y - 4)(y^2 + 4y + 16)$$

$$y^4 = 64 y \implies y^4 - 64 y = 0 \implies y(y^3 - 64) = 0 \implies$$

$$y(y-4)(y^2+4y+16)=0$$

$$y = 0$$

$$y - 4 = 0 \implies y = 4$$

$$y^2 + 4y + 16 = 0$$

$$a = 1, b = 4, c = 16$$

$$y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-4 \pm \sqrt{16 - 4(1)(16)}}{2} = \frac{-4 \pm \sqrt{16(1 - 4)}}{2} = \frac{-4 \pm$$

$$\frac{-4 \pm 4\sqrt{-3}}{2} = \frac{-4 \pm 4i\sqrt{3}}{2} = -2 \pm 2i\sqrt{3}$$

Answer: $y = 0, 4, -2 \pm 2i\sqrt{3}$ or $\{0, 4, -2 \pm 2i\sqrt{3}\}$

3c.
$$\frac{6x}{x-3} - \frac{4}{x+6} = \frac{5x^2 + 39x}{x^2 + 3x - 18}$$

$$x^{2} + 3x - 18 = (x + 6)(x - 3)$$

$$\frac{6x}{x-3} - \frac{4}{x+6} = \frac{5x^2 + 39x}{x^2 + 3x - 18} \implies \frac{6x}{x-3} - \frac{4}{x+6} = \frac{5x^2 + 39x}{(x+6)(x-3)}$$

Back to **Problem 3**.

NOTE: $x \neq -6$, $x \neq 3$

$$LCD = (x+6)(x-3)$$

$$\frac{6x}{x-3} - \frac{4}{x+6} = \frac{5x^2 + 39x}{(x+6)(x-3)} \Rightarrow$$

$$(x+6)(x-3)\left(\frac{6x}{x-3}-\frac{4}{x+6}\right) = \left[\frac{5x^2+39x}{(x+6)(x-3)}\right](x+6)(x-3)$$

$$\Rightarrow 6x(x+6) - 4(x-3) = 5x^2 + 39x \Rightarrow$$

$$6x^2 + 36x - 4x + 12 = 5x^2 + 39x \implies 6x^2 + 32x + 12 = 5x^2 + 39x \implies$$

$$x^{2} - 7x + 12 = 0 \implies (x - 3)(x - 4) = 0 \implies x = 3, 4$$

If x = 3, then two of the fractions in the equation are undefined because you would have division by zero. Thus, x = 4 is the only solution.

Answer: x = 4 **or** $\{4\}$

3d.
$$4|3t-5|-7=17$$

Back to Problem 3.

$$4|3t - 5| - 7 = 17 \implies 4|3t - 5| = 24 \implies |3t - 5| = 6 \implies$$

$$3t - 5 = \pm 6 \implies 3t = 5 \pm 6 \implies t = \frac{5 \pm 6}{3}$$

$$t = \frac{5-6}{3} = -\frac{1}{3}$$
, $t = \frac{5+6}{3} = \frac{11}{3}$

Answer: $t = -\frac{1}{3}, \frac{11}{3}$ or $\left\{-\frac{1}{3}, \frac{11}{3}\right\}$

3e.
$$\sqrt{3x+16} - \sqrt{x+13} = -1$$

Back to Problem 3.

$$\sqrt{3x+16} - \sqrt{x+13} = -1 \implies \sqrt{3x+16} = \sqrt{x+13} - 1 \implies$$
$$(\sqrt{3x+16})^2 = (\sqrt{x+13} - 1)^2 \implies 3x+16 = x+13-2\sqrt{x+13} + 1$$

$$\Rightarrow 3x + 16 = x + 14 - 2\sqrt{x + 13} \Rightarrow 2x + 2 = -2\sqrt{x + 13} \Rightarrow 2(x + 1) = -2\sqrt{x + 13} \Rightarrow x + 1 = -\sqrt{x + 13} \Rightarrow (x + 1)^2 = (-\sqrt{x + 13})^2 \Rightarrow x^2 + 2x + 1 = x + 13 \Rightarrow x^2 + x - 12 = 0 \Rightarrow (x + 4)(x - 3) = 0 \Rightarrow x = -4, x = 3$$

Check for
$$x = -4$$
: $\sqrt{-12 + 16} - \sqrt{-4 + 13} \stackrel{?}{=} -1 \Rightarrow \sqrt{4 - \sqrt{9}} \stackrel{?}{=} -1 \Rightarrow 2 - 3 \stackrel{?}{=} -1 \Rightarrow -1 \stackrel{?}{=} -1$ True

Check for
$$x = 3: \sqrt{9 + 16} - \sqrt{3 + 13} \stackrel{?}{=} -1 \Rightarrow \sqrt{25} - \sqrt{16} \stackrel{?}{=} -1 \Rightarrow 5 - 4 \stackrel{?}{=} -1 \Rightarrow 1 \stackrel{?}{=} -1$$
 False

Answer: x = -4 **or** $\{-4\}$

4a.
$$3 \le \frac{4x-9}{5} < 11$$
 Back to Problem 4.

$$3 \le \frac{4x - 9}{5} < 11 \implies 15 \le 4x - 9 < 55 \implies 24 \le 4x < 64 \implies$$
$$6 \le x < 16$$

Answer: [6, 16)

4b.
$$-11 > -2|y + 9| - 5$$

Back to Problem 4.

$$-11 > -2|y + 9| -5 \Rightarrow -6 > -2|y + 9| \Rightarrow 3 < |y + 9| \Rightarrow$$
$$|y + 9| > 3$$

$$|y + 9| > 3 \implies y + 9 > 3$$
 or $y + 9 < -3$
 $y > -6$ $y < -12$

Answer: $(-\infty, -12) \cup (-6, \infty)$

5. A motorboat travels 75 miles with a current of 5 mph. The return trip against the current takes 2 hours longer. Set up an equation that will find the average rate of the motorboat in still water. Do **NOT** solve the equation. Don't forget to identify your variable.

Let m = the rate of the motorboat in still water

$$R T = \frac{D}{R} D$$

With the current
$$m + 5$$
 $\frac{75}{m + 5}$ 75

Against the current
$$m-5$$
 $\frac{75}{m-5}$ 75

NOTE: The time for the return trip against the current, which is $\frac{75}{m-5}$, is 2 hours longer than the time for the trip with the current, which is $\frac{75}{m+5}$.

Thus,
$$\frac{75}{m+5} + 2 = \frac{75}{m-5}$$
.

NOTE: In order to set up your equation for this problem, it might have been easier to realize that the difference in the two times is 2 hours. The difference of the time to travel against the current and the time to travel with

the current is 2 hours. That is,
$$\frac{75}{m-5} - \frac{75}{m+5} = 2$$
.

Answer:
$$\frac{75}{m+5} + 2 = \frac{75}{m-5}$$
 or $\frac{75}{m-5} - \frac{75}{m+5} = 2$

Back to **Problem 5**.