Earn one bonus point because you checked the Pre-Class problems. Send me an email with PC23 in the Subject line.

These are the type of problems that you will be working on in class.
$\underline{\text { Definition } \text { An arithmetic sequence }\left\{a_{n}\right\} \text { is a sequence of the form }}$

$$
a_{1}, a_{1}+d, a_{1}+2 d, a_{1}+3 d, \ldots, a_{1}+(n-1) d, \ldots
$$

NOTE: Each next term in the sequence is obtained by adding a fixed constant d to the previous term. This fixed constant d is called the common difference of the sequence since $d=a_{n+1}-a_{n}$ for all n. The nth term of the sequence is given by $a_{n}=a_{1}+(n-1) d$.

1. If $a_{10}=120$ and $a_{32}=428$ in the arithmetic sequence $\left\{a_{n}\right\}$, then find a_{1} and d.

Theorem The sum S_{n} of the first n terms of the arithmetic sequence $\left\{a_{n}\right\}$ is given by $S_{n}=\frac{n\left(a_{1}+a_{n}\right)}{2}$, where a_{1} is the first term of the sequence and a_{n} is the nth term of the sequence.
2. Find the sum of the following arithmetic sequences.
a. The sequence $16,20,24,28, \ldots, 184$.
b. The first fifteen terms in the sequence with $b_{1}=28$ and $d=12$.
c. The first 201 terms in the sequence with $b_{1}=12$ and $d=-5$.
d. The first 25 terms in the sequence with $c_{1}=-8$ and $c_{25}=136$.
e. The first 100 terms in the sequence with $a_{1}=57$ and $a_{100}=-636$.
f. $\quad \sum_{i=1}^{5}(4 i+7)$
g. $\quad \sum_{i=1}^{50}(4 i+7)$
h. $\sum_{j=1}^{100} j$
i. $\quad \sum_{i=1}^{n} i$
$\underline{\text { Definition An geometric sequence }\left\{a_{n}\right\} \text { is a sequence of the form }}$

$$
a_{1}, a_{1} r, a_{1} r^{2}, a_{1} r^{3}, \ldots, a_{1} r^{n-1}, \ldots \ldots
$$

NOTE: Each next term in the sequence is obtained by multiplying a fixed constant r to the previous term. This fixed constant r is called the common ratio of the sequence since $r=\frac{a_{n+1}}{a_{n}}$ for all n. The nth term of the sequence is given by $a_{n}=a_{1} r^{n-1}$.
3. Determine if the following sequences are geometric. If the sequence is geometric, then find the common ratio.
a. $4,8,16,32,64, \ldots$
b. $5,-\frac{10}{3}, \frac{20}{9},-\frac{40}{27}, \frac{80}{81} \ldots$
c. $1,3,12,60,360, \ldots$.
4. Write the first five terms of the geometric sequence $\left\{a_{n}\right\}$ with the given first term and common ratio.
a. $\quad a_{1}=-2$ and $r=4$
b. $\quad a_{1}=6$ and $r=-\frac{1}{2}$
5. Find the nth term of the geometric sequence $\left\{b_{n}\right\}$ with the given first term and common ratio. Then find the indicated term.
a. $\quad b_{1}=3$ and $r=-2$. Find b_{9}.
b. $\quad b_{1}=-\frac{4}{5}$ and $r=\frac{3}{2}$. Find b_{5}.
6. Find the seventh term of the geometric sequence with $c_{1}=12$ and $c_{4}=-324$.
7. Find the fifth term of the geometric sequence with $a_{1}=24$ and $a_{2}=32$.

Theorem The sum S_{n} of the first n terms of the geometric sequence $\left\{a_{n}\right\}$ is given by $S_{n}=\frac{a_{1}\left(r^{n}-1\right)}{r-1}$, where a_{1} is the first term of the sequence and r is the common ratio of the sequence, where $r \neq 1$.
8. Find the sum of the following geometric sequences.
a. $\quad \sum_{n=1}^{5}(-2) 4^{n-1}$
b. $\sum_{n=1}^{5} 6\left(-\frac{1}{2}\right)^{n-1}$
c. $\sum_{n=1}^{5} 4(2)^{n-1}$
d. $\quad \sum_{n=1}^{10} 4(2)^{n-1}$
e. $\sum_{n=1}^{15}\left(\frac{2}{3}\right)^{n-1}$

Theorem The infinite sum of the geometric sequence $\left\{a_{1} r^{n-1}\right\}$, denoted by $\sum_{n=1}^{\infty} a_{1} r^{n-1}$, is given by $\sum_{n=1}^{\infty} a_{1} r^{n-1}=\frac{a_{1}}{1-r}$ if $|r|<1$ and $\sum_{n=1}^{\infty} a_{1} r^{n-1}$ does not exist if $|r| \geq 1$. The expression $\sum_{n=1}^{\infty} a_{1} r^{n-1}$ is called a geometric series.
9. Find the sum of the following geometric series if possible.
a. $\sum_{n=1}^{\infty} 6\left(-\frac{1}{2}\right)^{n-1}$
b. $\sum_{n=1}^{\infty}\left(\frac{2}{3}\right)^{n-1}$
c. $\sum_{n=1}^{\infty}(-12)\left(-\frac{3}{4}\right)^{n-1}$
d. $\sum_{n=1}^{\infty} 18\left(\frac{7}{6}\right)^{n-1}$
e. $\sum_{n=1}^{\infty}(-2) 4^{n-1}$
f. $\sum_{n=1}^{\infty}\left(-\frac{2}{3}\right)^{n-1}$
g. $\quad \sum_{n=1}^{\infty}(-12)\left(\frac{3}{4}\right)^{n-1}$
h. $\sum_{n=1}^{\infty} 16\left(\frac{7}{11}\right)^{n-1}$
i. $\sum_{n=1}^{\infty} \frac{3}{10^{n}}$

Additional problems available in the textbook: Page $710 \ldots 39$ - 70. Examples 3, $6-9$ starting on page 702. Page $721 \ldots 9-24,35-44,49-68,73,74,77,78$. Examples 1, 2, 4, 6-9 starting on page 712 .

SOLUTIONS:

1. $a_{10}=120$ and $a_{32}=428$

Back to Problem 1.

$$
\begin{aligned}
& a_{n}=a_{1}+(n-1) d \Rightarrow a_{10}=a_{1}+(10-1) d=a_{1}+9 d \\
& a_{10}=a_{1}+9 d \text { and } a_{10}=120 \Rightarrow 120=a_{1}+9 d
\end{aligned}
$$

$$
\begin{aligned}
& a_{n}=a_{1}+(n-1) d \Rightarrow a_{32}=a_{1}+(32-1) d=a_{1}+31 d \\
& a_{32}=a_{1}+31 d \text { and } a_{32}=428 \Rightarrow 428=a_{1}+31 d
\end{aligned}
$$

In order to find a_{1} and d, we need to solve the system of equations:

$$
\begin{aligned}
& a_{1}+9 d=120 \\
& a_{1}+31 d=428
\end{aligned}
$$

Using the addition method, we obtain

$$
\begin{aligned}
& a_{1}+9 d=120 \quad \begin{aligned}
-a_{1}-9 d=-120 \\
a_{1}+31 d=428
\end{aligned} \rightarrow \frac{a_{1}+31 d=428}{22 d=308} \\
& 22 d=308 \Rightarrow 11 d=154 \Rightarrow d=14 \\
& a_{1}+9 d=120 \text { and } d=14 \Rightarrow a_{1}+126=120 \Rightarrow a_{1}=-6
\end{aligned}
$$

Answer: $a_{1}=-6$ and $d=14$

2a. $16,20,24,28, \ldots, 184$
Back to Problem 2.

In Problem 8 of Pre-Class Problems 22, we found that there are 43 terms in this finite arithmetic sequence. Thus, $a_{1}=16, n=43$, and $a_{43}=184$.

Thus, $S_{n}=\frac{n\left(a_{1}+a_{n}\right)}{2} \Rightarrow S_{43}=\frac{43(16+184)}{2}=\frac{43(200)}{2}=43(100)$
$=4300$

Answer: 4300

2b. $\quad b_{1}=28$ and $d=12$. Find b_{15}. Back to Problem 2.

In Problem 5a of Pre-Class Problems 22, we found that $b_{15}=196$. Thus, $b_{1}=28, n=15$, and $b_{15}=196$.

Thus, $S_{n}=\frac{n\left(b_{1}+b_{n}\right)}{2} \Rightarrow S_{15}=\frac{15(28+196)}{2}=\frac{15(224)}{2}=15(112)$ $=1680$

Answer: 1680

2c. $\quad b_{1}=12$ and $d=-5$
Back to Problem 2.

In Problem 5b of Pre-Class Problems 22, we found that $b_{201}=-988$. Thus, $b_{1}=12, n=201$, and $b_{201}=-988$.

Thus, $S_{n}=\frac{n\left(b_{1}+b_{n}\right)}{2} \Rightarrow S_{201}=\frac{201(12-988)}{2}=\frac{201(-976)}{2}=$

$$
201(-488)=-98,088
$$

Answer: - 98,088

2d. $c_{1}=-8$ and $c_{25}=136$
Back to Problem 2.

Thus, $S_{n}=\frac{n\left(c_{1}+c_{n}\right)}{2} \Rightarrow S_{25}=\frac{25(-8+136)}{2}=\frac{25(128)}{2}=25(64)=$

$$
25(4)(16)=100(16)=1600
$$

Answer: 1600

2e. $a_{1}=57$ and $a_{100}=-636$
Back to Problem 2.

Thus, $S_{n}=\frac{n\left(a_{1}+a_{n}\right)}{2} \Rightarrow S_{100}=\frac{100(57-636)}{2}=\frac{100(-579)}{2}=$
$50(-579)=-28,950$

Answer: - 28,950

2f. $\quad \sum_{i=1}^{5}(4 i+7)$
Back to Problem 2.

This is Problem 2a from Pre-Class Problems 22.

First, let's verify that the sequence $\left\{a_{i}\right\}$, where $a_{i}=4 i+7$, is an arithmetic sequence. We just need to show that $a_{i+1}-a_{i}$ is a constant.
$a_{i+1}=4(i+1)+7=4 i+4+7=4 i+11$
$a_{i}=4 i+7$
$a_{i+1}-a_{i}=4 i+11-(4 i+7)=4 i+11-4 i-7=4$

Thus, $a_{i+1}-a_{i}=4$ for all i. Thus, the sequence $\left\{a_{i}\right\}$ is an arithmetic sequence.
$a_{i}=4 i+7 \Rightarrow a_{1}=11$ and $a_{5}=27$

Thus, $S_{n}=\frac{n\left(a_{1}+a_{n}\right)}{2} \Rightarrow S_{5}=\frac{5(11+27)}{2}=\frac{5(38)}{2}=5(19)=95$

Answer: 95
NOTE: Here's how we did this problem in Pre-Class Problems 22:
$\sum_{i=1}^{5}(4 i+7)=11+15+19+23+27=30+15+50=95$

NOTE: In general, you can show that any sequence $\left\{a_{i}\right\}$, where $a_{i}=m i+b$, is an arithmetic sequence, where the common difference d is m.

$$
\begin{array}{ll}
2 \mathrm{~g} . & \sum_{i=1}^{50}(4 i+7) \\
& a_{i}=4 i+7 \Rightarrow a_{1}=11 \text { and } a_{50}=207
\end{array}
$$

$$
\text { Back to Problem } 2 .
$$

Thus, $S_{n}=\frac{n\left(a_{1}+a_{n}\right)}{2} \Rightarrow S_{50}=\frac{50(11+207)}{2}=\frac{50(218)}{2}=50(109)$
$=5450$

Answer: 5450

2h. $\sum_{j=1}^{100} j$
Back to Problem 2.

The sequence $\left\{a_{j}\right\}$, where $a_{j}=j$, is an arithmetic sequence with $a_{1}=1$ and $d=1$.
$a_{j}=j \Rightarrow a_{1}=1$ and $a_{100}=100$

Thus, $S_{n}=\frac{n\left(a_{1}+a_{n}\right)}{2} \Rightarrow S_{100}=\frac{100(1+100)}{2}=\frac{100(101)}{2}=50(101)$
$=5050$

Answer: 5050

2i. $\sum_{i=1}^{n} i$
Back to Problem 2.

The sequence $\left\{a_{i}\right\}$, where $a_{i}=i$, is an arithmetic sequence with $a_{1}=1$ and $d=1$.
$a_{i}=i \Rightarrow a_{1}=1$ and $a_{n}=n$

Thus, $S_{n}=\frac{n\left(a_{1}+a_{n}\right)}{2} \Rightarrow S_{n}=\frac{n(1+n)}{2}=\frac{n(n+1)}{2}$

Answer: $\sum_{i=1}^{n} i=\frac{n(n+1)}{2}$

NOTE: This is a formula that is used in calculus to calculate certain Riemann integrals using the definition of the Riemann integral.

3a. $4,8,16,32,64, \ldots$

$$
\begin{array}{ll}
\frac{a_{2}}{a_{1}}=\frac{8}{4}=2 & \frac{a_{3}}{a_{2}}=\frac{16}{8}=2 \\
\frac{a_{4}}{a_{3}}=\frac{32}{16}=2 & \frac{a_{5}}{a_{4}}=\frac{64}{32}=2
\end{array}
$$

NOTE: The ratio between each term and its preceding term is 2 .

Answer: Yes. The common ratio is 2.

3b. $5,-\frac{10}{3}, \frac{20}{9},-\frac{40}{27}, \frac{80}{81} \ldots$
Back to Problem 3.
$\frac{a_{2}}{a_{1}}=-\frac{10}{3} \cdot \frac{1}{5}=-\frac{2}{3}$
$\frac{a_{3}}{a_{2}}=\frac{20}{9}\left(-\frac{3}{10}\right)=\frac{2}{3}\left(-\frac{1}{1}\right)=-\frac{2}{3}$
$\frac{a_{4}}{a_{3}}=-\frac{40}{27} \cdot \frac{9}{20}=-\frac{2}{3} \cdot \frac{1}{1}=-\frac{2}{3}$
$\frac{a_{4}}{a_{3}}=\frac{80}{81}\left(-\frac{27}{40}\right)=\frac{2}{3}\left(-\frac{1}{1}\right)=-\frac{2}{3}$

NOTE: The ratio between each term and its preceding term is $-\frac{2}{3}$.

Answer: Yes. The common ratio is $-\frac{2}{3}$.

3c. $1,3,12,60,360, \ldots$.
Back to Problem 3.

$$
\frac{a_{2}}{a_{1}}=\frac{3}{1}=3 \quad \frac{a_{3}}{a_{2}}=\frac{12}{3}=4
$$

This sequence is not geometric. The ratio between the second term and the first term is 3 . However, the ratio between the third term and the second term is 4 .

Answer: No

4a. $\quad a_{1}=-2$ and $r=4$

Answer: - 2, - 8, - 32, - 128, - 512

4b. $\quad a_{1}=6$ and $r=-\frac{1}{2}$
Back to Problem 4.

Answer: $6,-3, \frac{3}{2},-\frac{3}{4}, \frac{3}{8}$

5a. $\quad b_{1}=3$ and $r=-2$. Find b_{9}.
Back to Problem 5.

$$
b_{n}=b_{1} r^{n-1} \Rightarrow b_{n}=3(-2)^{n-1}
$$

Thus, $b_{9}=3(-2)^{8}=3(256)=768$

Answer: $b_{n}=3(-2)^{n-1}, b_{9}=768$

5b. $\quad b_{1}=-\frac{4}{5}$ and $r=\frac{3}{2}$. Find b_{5}.
Back to Problem 5.

$$
b_{n}=b_{1} r^{n-1} \Rightarrow b_{n}=-\frac{4}{5}\left(\frac{3}{2}\right)^{n-1}
$$

Thus, $b_{5}=-\frac{4}{5}\left(\frac{3}{2}\right)^{4}=-\frac{4}{5}\left(\frac{81}{16}\right)=-\frac{1}{5}\left(\frac{81}{4}\right)=-\frac{81}{20}$

Answer: $b_{n}=-\frac{4}{5}\left(\frac{3}{2}\right)^{n-1}, b_{5}=-\frac{81}{20}$
6. $c_{1}=12$ and $c_{4}=-324$. Find c_{7}.

Back to Problem 6.
$c_{n}=c_{1} r^{n-1} \Rightarrow c_{n}=12 r^{n-1}$ since $c_{1}=12$

Then $c_{4}=12 r^{3}$. We were given that $c_{4}=-324$.

Thus, $c_{4}=12 r^{3}$ and $c_{4}=-324 \Rightarrow 12 r^{3}=-324 \Rightarrow 6 r^{3}=-162 \Rightarrow$ $3 r^{3}=-81 \Rightarrow r^{3}=-27 \Rightarrow r=\sqrt[3]{-27}=-3$.

Thus, $c_{n}=12 r^{n-1}$ and $r=-3 \Rightarrow c_{n}=12(-3)^{n-1}$

Thus, $c_{7}=12(-3)^{6}=12(729)=8748$ (Yes. I used a calculator.)

Answer: $c_{7}=8748$
7. $a_{1}=24$ and $a_{2}=32$. Find a_{5}.

$$
a_{n}=a_{1} r^{n-1} \Rightarrow a_{n}=24 r^{n-1} \text { since } a_{1}=24
$$

Since a_{1} and a_{2} are consecutive terms in a geometric sequence, then $r=\frac{a_{2}}{a_{1}}$
$=\frac{32}{24}=\frac{4}{3}$.

Thus, $a_{n}=24 r^{n-1}$ and $r=\frac{4}{3} \Rightarrow a_{n}=24\left(\frac{4}{3}\right)^{n-1}$

Thus, $a_{5}=24\left(\frac{4}{3}\right)^{4}=24\left(\frac{256}{81}\right)=8\left(\frac{256}{27}\right)=\frac{2048}{27}$

Answer: $a_{5}=\frac{2048}{27}$

8a. $\sum_{n=1}^{5}(-2) 4^{n-1}$ Back to Problem 8.
$a_{1}=-2, r=4$, and $n=5$

Thus, $S_{n}=\frac{a_{1}\left(r^{n}-1\right)}{r-1} \Rightarrow S_{5}=\frac{-2\left(4^{5}-1\right)}{4-1}=\frac{-2(1024-1)}{3}=$
$\frac{-2(1023)}{3}=-2(341)=-682$

Answer: - 682

NOTE: The geometric sequence, which we are summing, is the geometric sequence in Problem 2a above. In this problem, we found that the first five terms were $-2,-8,-32,-128,-512$. Thus,
$-2+(-8)+(-32)+(-128)+(-512)=-(42+640)=-682$

8b. $\sum_{n=1}^{5} 6\left(-\frac{1}{2}\right)^{n-1}$
Back to Problem 8.
$a_{1}=6, r=-\frac{1}{2}$, and $n=5$

NOTE: $S_{n}=\frac{a_{1}\left(r^{n}-1\right)}{r-1} \Rightarrow S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}$

Thus, $S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \Rightarrow S_{5}=\frac{6\left[1-\left(-\frac{1}{2}\right)^{5}\right]}{1+\frac{1}{2}}=\frac{6\left[1-\left(-\frac{1}{32}\right)\right]}{\frac{3}{2}}=$

$$
\frac{6\left(1+\frac{1}{32}\right)}{\frac{3}{2}}=\frac{6\left(1+\frac{1}{32}\right)}{\frac{3}{2}} \cdot \frac{32}{32}=\frac{6(32+1)}{48}=\frac{1(33)}{8}=\frac{33}{8}
$$

Answer: $\frac{33}{8}$

NOTE: The geometric sequence, which we are summing, is the geometric sequence in Problem 2 b above. In this problem, we found that the first five terms were $6,-3, \frac{3}{2},-\frac{3}{4}, \frac{3}{8}$. Thus,

$$
\begin{aligned}
& 6-3+\frac{3}{2}-\frac{3}{4}+\frac{3}{8}=3+\frac{3}{2}-\frac{3}{4}+\frac{3}{8}=\frac{24}{8}+\frac{12}{8}-\frac{6}{8}+\frac{3}{8}= \\
& \frac{24+12-6+3}{8}=\frac{39-6}{8}=\frac{33}{8}
\end{aligned}
$$

8c. $\sum_{n=1}^{5} 4(2)^{n-1}$
Back to Problem 8.
$a_{1}=4, r=2$, and $n=5$

Thus, $S_{n}=\frac{a_{1}\left(r^{n}-1\right)}{r-1} \Rightarrow S_{5}=\frac{4\left(2^{5}-1\right)}{2-1}=\frac{4(32-1)}{1}=$
$4(31)=124$

Answer: 124

NOTE: The geometric sequence, which we are summing, is first five term of the geometric sequence in Problem 1a above. In this problem, we have that the first five terms were $4,8,16,32,64$. Thus,

$$
4+8+16+32+64=20+40+64=124
$$

8d. $\quad \sum_{n=1}^{10} 4(2)^{n-1}$
Back to Problem 8.

$$
a_{1}=4, r=2, \text { and } n=10
$$

Thus, $S_{n}=\frac{a_{1}\left(r^{n}-1\right)}{r-1} \Rightarrow S_{10}=\frac{4\left(2^{10}-1\right)}{2-1}=\frac{4(1024-1)}{1}=$

$$
4(1023)=4092
$$

Answer: 4092

8e. $\sum_{n=1}^{15}\left(\frac{2}{3}\right)^{n-1}$

Back to Problem 8.

$a_{1}=1, r=\frac{2}{3}$, and $n=15$

NOTE: $S_{n}=\frac{a_{1}\left(r^{n}-1\right)}{r-1} \Rightarrow S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}$

Thus, $S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \Rightarrow S_{5}=\frac{1\left[1-\left(\frac{2}{3}\right)^{15}\right]}{1-\frac{2}{3}}=\frac{1-\frac{32768}{14348907}}{\frac{1}{3}}=$
$3\left(\frac{14348907}{14348907}-\frac{32768}{14348907}\right)=3\left(\frac{14316139}{14348907}\right)=\frac{14316139}{4782969}$

Answer: $\frac{14316139}{4782969}$

9a. $\sum_{n=1}^{\infty} 6\left(-\frac{1}{2}\right)^{n-1}$
Back to Problem 9.
$r=-\frac{1}{2} \Rightarrow|r|=\frac{1}{2}<1 \Rightarrow$ the series is summable; $a_{1}=6$

Thus, $S=\frac{a_{1}}{1-r} \Rightarrow S=\frac{6}{1+\frac{1}{2}}=\frac{6}{1+\frac{1}{2}} \cdot \frac{2}{2}=\frac{12}{2+1}=\frac{12}{3}=4$

Answer: 4

NOTE: In Problem 6 b above, we found that $\sum_{n=1}^{5} 6\left(-\frac{1}{2}\right)^{n-1}=\frac{33}{8}$.

9b. $\sum_{n=1}^{\infty}\left(\frac{2}{3}\right)^{n-1}$
Back to Problem 9.
$r=\frac{2}{3} \Rightarrow|r|=\frac{2}{3}<1 \Rightarrow$ the series is summable; $a_{1}=1$

Thus, $S=\frac{a_{1}}{1-r} \Rightarrow S=\frac{1}{1-\frac{2}{3}}=\frac{1}{1-\frac{2}{3}} \cdot \frac{3}{3}=\frac{3}{3-2}=\frac{3}{1}=3$

Answer: 3

NOTE: In Problem 6e above, we found that $\sum_{n=1}^{15}\left(\frac{2}{3}\right)^{n-1}=$ $\frac{14316139}{4782969} \approx 2.99314$.

9c. $\sum_{n=1}^{\infty}(-12)\left(-\frac{3}{4}\right)^{n-1}$
Back to Problem 9.
$r=-\frac{3}{4} \Rightarrow|r|=\frac{3}{4}<1 \Rightarrow$ the series is summable; $a_{1}=-12$

Thus, $S=\frac{a_{1}}{1-r} \Rightarrow S=\frac{-12}{1+\frac{3}{4}}=-\frac{12}{1+\frac{3}{4}} \cdot \frac{4}{4}=-\frac{48}{4+3}=-\frac{48}{7}$

Answer: $-\frac{48}{7}$

9d. $\quad \sum_{n=1}^{\infty} 18\left(\frac{7}{6}\right)^{n-1}$
Back to Problem 9.
$r=\frac{7}{6} \Rightarrow|r|=\frac{7}{6}>1 \Rightarrow$ the series is not summable

Answer: Sum does not exist

9e. $\sum_{n=1}^{\infty}(-2) 4^{n-1}$ Back to Problem 9.
$r=4 \Rightarrow|r|=4>1 \Rightarrow$ the series is not summable

Answer: Sum does not exist
NOTE: In Problem 6a above, we found that $\sum_{n=1}^{5}(-2) 4^{n-1}=-682$.

9f. $\quad \sum_{n=1}^{\infty}\left(-\frac{2}{3}\right)^{n-1}$
Back to Problem 9.
$r=-\frac{2}{3} \Rightarrow|r|=\frac{2}{3}<1 \Rightarrow$ the series is summable; $a_{1}=1$

Thus, $S=\frac{a_{1}}{1-r} \Rightarrow S=\frac{1}{1+\frac{2}{3}}=\frac{1}{1+\frac{2}{3}} \cdot \frac{3}{3}=\frac{3}{3+2}=\frac{3}{5}$

Answer: $\frac{3}{5}$

NOTE: In Problem 7 b above, we found that $\sum_{n=1}^{\infty}\left(\frac{2}{3}\right)^{n-1}=3$.

9g. $\quad \sum_{n=1}^{\infty}(-12)\left(\frac{3}{4}\right)^{n-1}$
$r=\frac{3}{4} \Rightarrow|r|=\frac{3}{4}<1 \Rightarrow$ the series is summable; $a_{1}=-12$

Thus, $S=\frac{a_{1}}{1-r} \Rightarrow S=\frac{-12}{1-\frac{3}{4}}=-\frac{12}{1-\frac{3}{4}} \cdot \frac{4}{4}=-\frac{48}{4-3}=-\frac{48}{1}=$ -48

Answer: - 48

NOTE: In Problem 7c above, we found that $\sum_{n=1}^{\infty}(-12)\left(-\frac{3}{4}\right)^{n-1}=-\frac{48}{7}$.

9h. $\sum_{n=1}^{\infty} 16\left(\frac{7}{11}\right)^{n-1}$
Back to Problem 9 .
$r=\frac{7}{11} \Rightarrow|r|=\frac{7}{11}<1 \Rightarrow$ the series is summable; $a_{1}=16$

Thus, $S=\frac{a_{1}}{1-r} \Rightarrow S=\frac{16}{1-\frac{7}{11}}=\frac{16}{1-\frac{7}{11}} \cdot \frac{11}{11}=\frac{176}{11-7}=\frac{176}{4}=44$

Answer: 44

9i. $\quad \sum_{n=1}^{\infty} \frac{3}{10^{n}}$

NOTE: $\sum_{n=1}^{\infty} \frac{3}{10^{n}}=\sum_{n=1}^{\infty} 3\left(\frac{1}{10}\right)^{n}=\sum_{n=1}^{\infty} \frac{3}{10}\left(\frac{1}{10}\right)^{n-1}$
$r=\frac{1}{10} \Rightarrow|r|=\frac{1}{10}<1 \Rightarrow$ the series is summable; $a_{1}=\frac{3}{10}$

NOTE: This geometric series is summing all the terms in the sequence $b_{n}=\frac{3}{10^{n}}$ in Problem 1d of Pre-Class Problems 22.

In that problem, we found that $b_{1}=\frac{3}{10}=0.3, b_{2}=\frac{3}{100}=0.03$,
$b_{3}=\frac{3}{1000}=0.003, b_{4}=\frac{3}{10000}=0.0003$

Thus, $\sum_{n=1}^{1} \frac{3}{10^{n}}=\frac{3}{10}=0.3$
$\sum_{n=1}^{2} \frac{3}{10^{n}}=\frac{3}{10}+\frac{3}{100}=0.3+0.03=0.33$
$\sum_{n=1}^{3} \frac{3}{10^{n}}=\frac{3}{10}+\frac{3}{100}+\frac{3}{1000}=0.3+0.03+0.003=0.333$
$\sum_{n=1}^{4} \frac{3}{10^{n}}=\frac{3}{10}+\frac{3}{100}+\frac{3}{1000}+\frac{3}{10000}=0.3+0.03+0.003+0.0003=$
0.3333

It appears that $\sum_{n=1}^{\infty} \frac{3}{10^{n}}=0 . \overline{3}=\frac{1}{3}$. Let's see if this is true.
$S=\frac{a_{1}}{1-r} \Rightarrow S=\frac{\frac{3}{10}}{1-\frac{1}{10}}=\frac{\frac{3}{10}}{1-\frac{1}{10}} \cdot \frac{10}{10}=\frac{3}{10-1}=\frac{3}{9}=\frac{1}{3}$

Answer: $\frac{1}{3}$

