These are the type of problems that you will be working on in class.

Discussion of Sequences

1. Find the first four terms of the sequence.
a. $\quad a_{n}=\frac{n+4}{3 n-2}$
b. $\quad b_{n}=\sqrt[3]{6-n^{2}}$
c. $\quad c_{n}=\left(-\frac{2}{5}\right)^{n}$
d. $\quad b_{n}=\frac{3}{10^{n}}$
e. $a_{n}=(-1)^{n} \frac{n^{2}}{e^{4 n}}$
f. $\quad c_{n}=\sqrt{2}$
g. $a_{n}=(-1)^{n+1} \frac{3^{n}}{n!}$

Definition The expression $\sum_{i=1}^{n} a_{i}=a_{1}+a_{2}+a_{3}+\cdots+a_{n-2}+a_{n-1}+a_{n}$ is a finite sum of the first n terms of the sequence $\left\{a_{i}\right\}$. The expression $\sum_{i=1}^{\infty} a_{i}=a_{1}+a_{2}+a_{3}+\cdots+a_{i}+\cdots \quad$ is an infinite sum of all the terms of the sequence $\left\{a_{i}\right\}$. You will study infinite series in a calculus course. We will study the infinite geometric series later in this course.

NOTATION: The i in the expression $\sum_{i=1}^{n} a_{i}$ is the index of summation. You should not confuse it with the i used for the complex number $\sqrt{-1}$. The number 1 is called the lower limit of summation and the number n is called the upper limit of summation. The other letters used for the index of summation are j, k, and n.
2. Find the following sums.
a. $\quad \sum_{i=1}^{5}(4 i+7)$
b. $\sum_{j=3}^{6}(-2)^{j}$
c. $\quad \sum_{k=2}^{7}(k+2)(k-5)$

Definition An arithmetic sequence $\left\{a_{n}\right\}$ is a sequence of the form

$$
a_{1}, a_{1}+d, a_{1}+2 d, a_{1}+3 d, \ldots, a_{1}+(n-1) d, \ldots .
$$

NOTE: Each next term in the sequence is obtained by adding a fixed constant d to the previous term. This fixed constant d is called the common difference of the sequence since $d=a_{n+1}-a_{n}$ for all n. The nth term of the sequence is given by $a_{n}=a_{1}+(n-1) d$.
3. Determine if the following sequences are arithmetic. If the sequence is arithmetic, then find the common difference.
a. $5,8,11,14,17, \ldots$
b. $12,7,2,-3,-8, \ldots$
c. $1,4,9,16,25, \ldots$
4. Write the first five terms of the arithmetic sequence $\left\{a_{n}\right\}$ with the given first term and common difference.
a. $\quad a_{1}=-3$ and $d=7$
b. $\quad a_{1}=10$ and $d=-4$
5. Find the nth term of the arithmetic sequence $\left\{b_{n}\right\}$ with the given first term and common difference. Then find the indicated term.
a. $\quad b_{1}=28$ and $d=12$. Find b_{15}.
b. $\quad b_{1}=12$ and $d=-5$. Find b_{201}.
6. Find the tenth term of the arithmetic sequence with $c_{1}=-8$ and $c_{25}=136$.
7. Find the thirty-fifth term of the arithmetic sequence with $a_{1}=57$ and $a_{100}=-636$.
8. Determine the number of terms in the finite arithmetic sequence $16,20,24$, 28,, 184.

Additional problems available in the textbook: Page 698 ... $7-12,21-24,45-$ 70. and Examples 1, 4, and 6 starting on page 691. Page $709 \ldots 7-14,15 \mathrm{a}-18 \mathrm{a}$, $19-24,31-38$. Examples 1, 2a, 4, and 5 starting on page 702 .

SOLUTIONS:

1a. $\quad a_{n}=\frac{n+4}{3 n-2}$
Back to Problem 1.
$a_{1}=\frac{5}{1}=5, \quad a_{2}=\frac{6}{4}=\frac{3}{2}, \quad a_{3}=\frac{7}{7}=1, \quad a_{4}=\frac{8}{10}=\frac{4}{5}$

Answer: $5, \frac{3}{2}, 1, \frac{4}{5}$

1b. $\quad b_{n}=\sqrt[3]{6-n^{2}}$

$$
b_{1}=\sqrt[3]{5}, \quad b_{2}=\sqrt[3]{2}, \quad b_{3}=\sqrt[3]{-3}=-\sqrt[3]{3}, \quad b_{4}=\sqrt[3]{-10}=-\sqrt[3]{10}
$$

Answer: $\sqrt[3]{5}, \sqrt[3]{2},-\sqrt[3]{3},-\sqrt[3]{10}$

1c. $c_{n}=\left(-\frac{2}{5}\right)^{n}$
Back to Problem 1.

$$
c_{1}=-\frac{2}{5}, \quad c_{2}=\frac{4}{25}, \quad c_{3}=-\frac{8}{125}, \quad c_{4}=\frac{16}{625}
$$

Answer: $-\frac{2}{5}, \frac{4}{25},-\frac{8}{125}, \frac{16}{625}$

1d. $\quad b_{n}=\frac{3}{10^{n}}$
Back to Problem 1.

$$
b_{1}=\frac{3}{10}=0.3, b_{2}=\frac{3}{100}=0.03, b_{3}=\frac{3}{1000}=0.003, b_{4}=\frac{3}{10000}=0.0003
$$

Answer: $\frac{3}{10}, \frac{3}{100}, \frac{3}{1000}, \frac{3}{10000}$

$$
\text { or } 0.3,0.03,0.003,0.0003
$$

1e. $a_{n}=(-1)^{n} \frac{n^{2}}{e^{4 n}}$

$$
a_{1}=-\frac{1}{e^{4}}, \quad a_{2}=\frac{4}{e^{8}}, \quad a_{3}=-\frac{9}{e^{12}}, \quad a_{4}=\frac{16}{e^{16}}
$$

Answer: $-\frac{1}{e^{4}}, \frac{4}{e^{8}},-\frac{9}{e^{12}}, \frac{16}{e^{16}}$

1f. $\quad c_{n}=\sqrt{2}$
Back to Problem 1.
$c_{1}=\sqrt{2}, \quad c_{2}=\sqrt{2}, \quad c_{3}=\sqrt{2}, \quad c_{4}=\sqrt{2}$

Answer: $\sqrt{2}, \sqrt{2}, \sqrt{2}, \sqrt{2}$
NOTE: This sequence is called a constant sequence.

1g. $a_{n}=(-1)^{n+1} \frac{3^{n}}{n!}$
Back to Problem 1.

Recall: $n!=n(n-1)(n-2) \cdots \cdots 3 \cdot 2 \cdot 1$
$a_{1}=\frac{3}{1}=3, \quad a_{2}=-\frac{9}{2}, \quad a_{3}=\frac{27}{6}=\frac{9}{2}, \quad a_{4}=-\frac{81}{24}=-\frac{27}{8}$

Answer: $3,-\frac{9}{2}, \frac{9}{2},-\frac{27}{8}$

2a. $\quad \sum_{i=1}^{5}(4 i+7)$
Back to Problem 2.

$$
\sum_{i=1}^{5}(4 i+7)=11+15+19+23+27=30+15+50=95
$$

Answer: 95

NOTE: $a_{i}=4 i+7$ and $a_{1}=4+7=11, a_{2}=8+7=15, a_{3}=12+7=19$,

$$
a_{4}=16+7=23, \text { and } a_{5}=20+7=27
$$

2b. $\sum_{j=3}^{6}(-2)^{j}$ Back to Problem 2.

$$
\sum_{j=3}^{6}(-2)^{j}=-8+16+(-32)+64=-40+80=40
$$

Answer: 40

NOTE: $a_{j}=(-2)^{j}$ and $a_{3}=(-2)^{3}=-8, a_{4}=(-2)^{4}=16$,

$$
a_{5}=(-2)^{5}=-32, \text { and } a_{6}=(-2)^{6}=64
$$

2c. $\sum_{k=2}^{7}(k+2)(k-5)$

$$
\begin{aligned}
& \sum_{k=2}^{7}(k+2)(k-5)=4(-3)+5(-2)+6(-1)+7(0)+8(1)+9(2)= \\
& -12-10-6+0+8+18=-28+26=-2
\end{aligned}
$$

Answer: - 2

3a. $5,8,11,14,17 \ldots$
Back to Problem 3.

$$
\begin{array}{ll}
a_{2}-a_{1}=8-5=3 & a_{3}-a_{2}=11-8=3 \\
a_{4}-a_{3}=14-11=3 & a_{5}-a_{4}=17-14=3
\end{array}
$$

NOTE: The difference between each term and its preceding term is 3 .

Answer: Yes. The common difference is 3 .

3b. $12,7,2,-3,-8, \ldots$.
Back to Problem 3.

$$
\begin{aligned}
& a_{2}-a_{1}=7-12=-5 \\
& a_{4}-a_{3}=-3-2=-5
\end{aligned}
$$

$$
a_{3}-a_{2}=2-7=-5
$$

$$
a_{5}-a_{4}=-8-(-3)-8+3=-5
$$

NOTE: The difference between each term and its preceding term is -5 .

Answer: Yes. The common difference is -5 .

3c. $1,4,9,16,25, \ldots$
$a_{2}-a_{1}=4-1=3 \quad a_{3}-a_{2}=9-4=5$

This sequence is not arithmetic. The difference between the second term and the first term is 3 . However, the difference between the third term and the second term is 5 .

Answer: No

4a. $\quad a_{1}=-3$ and $d=7$ Back to Problem 4.

Answer: - 3, 4, 11, 18, 25

4b. $\quad a_{1}=10$ and $d=-4$ Back to Problem 4.

Answer: 10, 6, 2, - $2,-6$

5a. $\quad b_{1}=28$ and $d=12$. Find b_{15}.
Back to Problem 5.

$$
b_{n}=b_{1}+(n-1) d \Rightarrow b_{n}=28+(n-1) 12
$$

Simplifying, we have that

$$
b_{n}=28+(n-1) 12=28+12 n-12=12 n+16 .
$$

Thus, $b_{15}=12(15)+16=180+16=196$

Answer: $b_{n}=12 n+16, b_{15}=196$

5b. $b_{1}=12$ and $d=-5$. Find b_{201}.
Back to Problem 5.

$$
b_{n}=b_{1}+(n-1) d \Rightarrow b_{n}=12+(n-1)(-5)
$$

Simplifying, we have that

$$
b_{n}=12+(n-1)(-5)=12-5 n+5=17-5 n .
$$

Thus, $b_{201}=17-5(201)=17-1005=-988$

Answer: $b_{n}=17-5 n, b_{201}=-988$

NOTE: This is the sequence that we were given in Problem 1b above:
$12,7,2,-3,-8, \ldots$
6. $c_{1}=-8$ and $c_{25}=136$. Find c_{10}. Back to Problem 6.
$c_{n}=c_{1}+(n-1) d \Rightarrow c_{n}=-8+(n-1) d$ since $c_{1}=-8$

Then $c_{25}=-8+(25-1) d=-8+24 d$. We were given that $c_{25}=136$.

Thus, $c_{25}=-8+24 d$ and $c_{25}=136 \Rightarrow 136=-8+24 d \Rightarrow 144=24 d$
$\Rightarrow d=6$.

Thus, $c_{n}=-8+(n-1) d$ and $d=6 \Rightarrow c_{n}=-8+(n-1) 6$

Simplifying, we have that
$c_{n}=-8+(n-1) 6=-8+6 n-6=6 n-14$.

Thus, $c_{10}=6(10)-14=60-14=46$

Answer: $c_{10}=46$
7. $a_{1}=57$ and $a_{100}=-636$. Find a_{35}.
$a_{n}=a_{1}+(n-1) d \Rightarrow a_{n}=57+(n-1) d$ since $a_{1}=57$

Then $a_{100}=57+(100-1) d=57+99 d$. We were given that $a_{100}=-636$.

Thus, $a_{100}=57+99 d$ and $a_{100}=-636 \Rightarrow-636=57+99 d \Rightarrow$ $-693=99 d \Rightarrow-231=33 d \Rightarrow d=-7$.

Thus, $a_{n}=57+(n-1) d$ and $d=-7 \Rightarrow a_{n}=57+(n-1)(-7)$

Simplifying, we have that

$$
a_{n}=57+(n-1)(-7)=57-7 n+7=64-7 n .
$$

Thus, $a_{35}=64-7(35)=64-245=-181$

Answer: $a_{35}=-181$
8. $16,20,24,28, \ldots, 184$

Back to Problem 8.

NOTE: $a_{1}=16$ and $d=4$

Find the value of n so that $a_{n}=184$
$a_{n}=a_{1}+(n-1) d \Rightarrow a_{n}=16+(n-1) 4$

Simplifying, we have that
$a_{n}=16+(n-1) 4=16+4 n-4=4 n+12$
$a_{n}=4 n+12$ and $a_{n}=184 \Rightarrow 184=4 n+12 \Rightarrow 172=4 n \Rightarrow$
$n=43$

Answer: 43

Notation: The symbol Z^{+}is used to denote the set of positive integers. Thus, $Z^{+}=\{1,2,3, \ldots .$.$\} .$

Definition A sequence is a function whose domain is the set $Z^{+}=\{1,2,3, \ldots .$.$\} .$
Up to this point, we have worked with functions of a real variable. That is, the domain of the function was either the set of real numbers or was a subset of the set of real numbers.

Example Consider the sequence $f(n)=\sqrt{n+3}$.
The domain of this sequence is Z^{+}, and we have that

$$
\begin{aligned}
& f(1)=\sqrt{4}=2 \\
& f(2)=\sqrt{5} \\
& f(3)=\sqrt{6} \\
& f(4)=\sqrt{7} \\
& f(5)=\sqrt{8}=2 \sqrt{2}
\end{aligned}
$$

If f is a sequence, then for each positive integer n in the domain of the sequence, there corresponds a real number $f(n)$ in the range of the sequence. Then the numbers in the range of the sequence would be

$$
f(1), f(2), f(3), f(4) \ldots \ldots, f(n), \ldots \ldots
$$

and the number $f(1)$ is called the first term of the sequence, $f(2)$ is called the second term of the sequence, $f(3)$ is called the third term of the sequence, $f(4)$ is called the fourth term of the sequence, and $f(n)$ is called the nth term of the sequence.

NOTATION: When working with a sequence, it is customary to use a subscript notation. Thus, instead of writing $f(n)$, we write f_{n}. Thus, for our example above, instead of having $f(n)=\sqrt{n+3}$, we would have $f_{n}=\sqrt{n+3}$. Then we would have written the following

$$
\begin{aligned}
& f_{1}=\sqrt{4}=2 \text { instead of } f(1)=\sqrt{4}=2 \\
& f_{2}=\sqrt{5} \text { instead of } f(2)=\sqrt{5} \\
& f_{3}=\sqrt{6} \text { instead of } f(3)=\sqrt{6} \\
& f_{4}=\sqrt{7} \text { instead of } f(4)=\sqrt{7} \\
& f_{5}=\sqrt{8}=2 \sqrt{2} \text { instead of } f(5)=\sqrt{8}=2 \sqrt{2}
\end{aligned}
$$

COMMENT: The most common names for functions of a real variable are f, g, h, and k. The most common names for sequences are a, b, and c.

Back to the top.

