Pre-Class Problems 1 for Monday, January 22

These are the type of problems that you will be working on in class.

You can go to the solution for each problem by clicking on the problem letter or problem number.

1. Solve the following equations.

a.
$$\frac{3}{4}x + 7 = \frac{1}{2}x - \frac{11}{6}$$

b.
$$0.15y - 6 = 0.75 - 0.5y$$

2. Solve the following equations.

a.
$$\frac{1}{4} - \frac{7}{2t} = \frac{3}{t}$$

b.
$$\frac{3}{5w} - \frac{2}{3} = \frac{1}{3w} - \frac{11}{15}$$

c.
$$\frac{4x-7}{6x} = \frac{x+8}{3x} - \frac{19}{12}$$

d.
$$\frac{3}{v-3} - \frac{5}{8} = \frac{y}{v-3}$$

e.
$$\frac{15}{t-4} = \frac{64}{t^2-16}$$

f.
$$\frac{4}{w^2 - 36} - \frac{3}{w + 6} = \frac{11}{w - 6}$$

g.
$$\frac{5}{x+2} - \frac{8}{x-4} = \frac{3x-6}{x^2-2x-8}$$

h.
$$\frac{42}{3y^2 + 4y - 15} + \frac{2}{y+3} = \frac{9}{3y-5}$$

i.
$$\frac{42}{3y^2 + 4y - 15} + \frac{2}{y + 3} = \frac{9}{5 - 3y}$$

$$j. \quad \frac{3}{2x - 5} = \frac{2}{3 - 7x}$$

$$k. \quad \frac{3}{3x+4} = \frac{8}{8x-5}$$

3. Solve
$$V = \frac{h(b_1 + b_2)}{P}$$
 for b_2 .

Write each expression in terms of i and simplify. 4.

a.
$$\sqrt{-36}$$

b.
$$\sqrt{-48}$$

c.
$$-\sqrt{-23}$$

a.
$$\sqrt{-36}$$
 b. $\sqrt{-48}$ c. $-\sqrt{-23}$ d. $\sqrt{-3}$

e.
$$\sqrt{-6} \sqrt{-24}$$

e.
$$\sqrt{-6} \sqrt{-24}$$
 f. $\sqrt{-16} \sqrt{-49}$ g. $\frac{\sqrt{-75}}{\sqrt{-3}}$ h. $\frac{\sqrt{-140}}{\sqrt{7}}$

g.
$$\frac{\sqrt{-75}}{\sqrt{-3}}$$

$$h. \quad \frac{\sqrt{-140}}{\sqrt{7}}$$

Determine the real part and the imaginary part of the following complex 5. numbers.

a.
$$5 - 8i$$

b.
$$4i - 7$$

a.
$$5-8i$$
 b. $4i-7$ c. $-\frac{2}{3}+\frac{1}{2}i$ d. 9 e. $-11i$

Additional problems available in the textbook: Page $92 \dots 43 - 102$ and Examples 1, 2, 5 - 9 starting on page 83. Page 111 ... 5 - 28 and Examples 1 and 2 starting on page 104.

Solutions:

1a.
$$\frac{3}{4}x + 7 = \frac{1}{2}x - \frac{11}{6}$$

Back to Problem 1.

$$LCD(4, 2, 6) = 12$$

$$\frac{3}{4}x + 7 = \frac{1}{2}x - \frac{11}{6} \implies 12\left(\frac{3}{4}x + 7\right) = \left(\frac{1}{2}x - \frac{11}{6}\right)12 \implies$$

$$9x + 84 = 6x - 22 \implies 3x = -106 \implies x = -\frac{106}{3}$$

Answer:
$$x = -\frac{106}{3}$$
 or the set of solutions is $\left\{-\frac{106}{3}\right\}$

1b.
$$0.15 y - 6 = 0.75 - 0.5 y$$

Back to Problem 1.

NOTE:
$$0.15 = \frac{15}{100}$$
, $0.75 = \frac{75}{100}$, $0.5 = \frac{5}{10}$

LCD(100, 10) = 100

$$0.15y - 6 = 0.75 - 0.5y \implies 100(0.15y - 6) = (0.75 - 0.5y)100 \implies$$

$$15y - 600 = 75 - 50y \implies 65y = 675 \implies y = \frac{675}{65} = \frac{135}{13}$$

Answer: $y = \frac{135}{13}$ or the set of solutions is $\left\{\frac{135}{13}\right\}$

2a.
$$\frac{1}{4} - \frac{7}{2t} = \frac{3}{t}$$

Back to Problem 2.

NOTE:
$$t \neq 0$$

$$LCD(4, 2t, t) = 4t$$

$$\frac{1}{4} - \frac{7}{2t} = \frac{3}{t} \implies 4t \left(\frac{1}{4} - \frac{7}{2t}\right) = \left(\frac{3}{t}\right) 4t \implies t - 14 = 12 \implies t = 26$$

Answer: 26 or the set of solutions is {26}

2b.
$$\frac{3}{5w} - \frac{2}{3} = \frac{1}{3w} - \frac{11}{15}$$

Back to Problem 2.

NOTE:
$$w \neq 0$$

LCD(5w, 3, 3w, 15) = 15w

$$\frac{3}{5w} - \frac{2}{3} = \frac{1}{3w} - \frac{11}{15} \implies 15w \left(\frac{3}{5w} - \frac{2}{3}\right) = \left(\frac{1}{3w} - \frac{11}{15}\right)15w \implies$$

$$9 - 10w = 5 - 11w \implies w = -4$$

Answer: w = -4 or the set of solutions is $\{-4\}$

2c.
$$\frac{4x-7}{6x} = \frac{x+8}{3x} - \frac{19}{12}$$

Back to Problem 2.

NOTE:
$$x \neq 0$$

LCD(6x, 3x, 12) = 12x

$$\frac{4x-7}{6x} = \frac{x+8}{3x} - \frac{19}{12} \Rightarrow 12x \left(\frac{4x-7}{6x}\right) = \left(\frac{x+8}{3x} - \frac{19}{12}\right) 12x \Rightarrow$$

$$2(4x - 7) = 4(x + 8) - 19x \implies 8x - 14 = 4x + 32 - 19x \implies$$

$$8x - 14 = -15x + 32 \implies 23x = 46 \implies x = 2$$

Answer: x = 2 or the set of solutions is $\{2\}$

2d.
$$\frac{3}{y-3} - \frac{5}{8} = \frac{y}{y-3}$$

Back to Problem 2.

NOTE:
$$y \neq 3$$

$$LCD(y-3, 8) = 8(y-3)$$

$$\frac{3}{y-3} - \frac{5}{8} = \frac{y}{y-3} \implies 8(y-3) \left(\frac{3}{y-3} - \frac{5}{8}\right) = \left(\frac{y}{y-3}\right) 8(y-3) \implies$$

$$24 - 5(y - 3) = 8y \implies 24 - 5y + 15 = 8y \implies 39 = 13y \implies y = 3$$

This equation does not have a solution because $y \ne 3$. If y = 3, then two of the fractions in the equation are undefined because you would have division by zero.

Answer: No solution, or the set of solutions is the empty set.

2e.
$$\frac{15}{t-4} = \frac{64}{t^2-16}$$

Back to Problem 2.

Since
$$t^2 - 16 = (t + 4)(t - 4)$$
, then $t \neq -4$, $t \neq 4$.

$$\frac{15}{t-4} = \frac{64}{t^2-16} \implies \frac{15}{t-4} = \frac{64}{(t+4)(t-4)}$$

$$LCD[t - 4, (t + 4)(t - 4)] = (t + 4)(t - 4)$$

$$\frac{15}{t-4} = \frac{64}{(t+4)(t-4)} \Rightarrow (t+4)(t-4) \left(\frac{15}{t-4}\right) = \left[\frac{64}{(t+4)(t-4)}\right](t+4)(t-4) \Rightarrow$$

$$15(t+4) = 64 \implies 15t + 60 = 64 \implies 15t = 4 \implies t = \frac{4}{15}$$

Answer: $t = \frac{4}{15}$ or the set of solutions is $\left\{\frac{4}{15}\right\}$

2f.
$$\frac{4}{w^2 - 36} - \frac{3}{w + 6} = \frac{11}{w - 6}$$

Back to Problem 2.

Since $w^2 - 36 = (w + 6)(w - 6)$, then $w \ne -6$, $w \ne 6$.

$$\frac{4}{w^2 - 36} - \frac{3}{w + 6} = \frac{11}{w - 6} \Rightarrow \frac{4}{(w + 6)(w - 6)} - \frac{3}{w + 6} = \frac{11}{w - 6}$$

LCD[(w+6)(w-6), w+6, w-6)] = (w+6)(w-6)

$$\frac{4}{(w+6)(w-6)} - \frac{3}{w+6} = \frac{11}{w-6} \Rightarrow$$

$$(w+6)(w-6)\left[\frac{4}{(w+6)(w-6)} - \frac{3}{w+6}\right] = \left(\frac{11}{w-6}\right)(w+6)(w-6) \implies$$

$$4 - 3(w - 6) = 11(w + 6) \implies 4 - 3w + 18 = 11w + 66 \implies$$

$$\Rightarrow 22 - 3w = 11w + 66 \Rightarrow -44 = 14w \Rightarrow w = -\frac{44}{14} = -\frac{22}{7}$$

Answer: $w = -\frac{22}{7}$ or the set of solutions is $\left\{-\frac{22}{7}\right\}$

2g.
$$\frac{5}{x+2} - \frac{8}{x-4} = \frac{3x-6}{x^2-2x-8}$$

Back to Problem 2.

Since $x^2 - 2x - 8 = (x + 2)(x - 4)$, then $x \ne -2$, $x \ne 4$.

$$\frac{5}{x+2} - \frac{8}{x-4} = \frac{3x-6}{x^2-2x-8} \Rightarrow \frac{5}{x+2} - \frac{8}{x-4} = \frac{3x-6}{(x+2)(x-4)}$$

$$LCD[x + 2, x - 4, (x + 2)(x - 4)] = (x + 2)(x - 4)$$

$$\frac{5}{x+2} - \frac{8}{x-4} = \frac{3x-6}{(x+2)(x-4)} \Rightarrow$$

$$(x+2)(x-4)\left(\frac{5}{x+2} - \frac{8}{x-4}\right) = \left[\frac{3x-6}{(x+2)(x-4)}\right](x+2)(x-4) \Rightarrow$$

$$5(x-4) - 8(x+2) = 3x - 6 \implies 5x - 20 - 8x - 16 = 3x - 6 \implies$$

$$-3x - 36 = 3x - 6 \implies -30 = 6x \implies x = -5$$

Answer: x = -5 or the set of solutions is $\{-5\}$

2h.
$$\frac{42}{3v^2 + 4v - 15} + \frac{2}{v + 3} = \frac{9}{3v - 5}$$
 Back to Problem 2.

Since
$$3y^2 + 4y - 15 = (y + 3)(3y - 5)$$
, then $y \neq -3$, $x \neq \frac{5}{3}$.

$$\frac{42}{3y^2 + 4y - 15} + \frac{2}{y + 3} = \frac{9}{3y - 5} \Rightarrow \frac{42}{(y + 3)(3y - 5)} + \frac{2}{y + 3} = \frac{9}{3y - 5}$$

$$LCD[(y+3)(3y-5), y+3, 3y-5] = (y+3)(3y-5)$$

$$\frac{42}{(y+3)(3y-5)} + \frac{2}{y+3} = \frac{9}{3y-5} \Rightarrow$$

$$(y+3)(3y-5)\left[\frac{42}{(y+3)(3y-5)} + \frac{2}{y+3}\right] = \left(\frac{9}{3y-5}\right)(y+3)(3y-5) \implies$$

$$42 + 2(3y - 5) = 9(y + 3) \implies 42 + 6y - 10 = 9y + 27 \implies$$

$$6y + 32 = 9y + 27 \implies 5 = 3y \implies y = \frac{5}{3}$$

This equation does not have a solution because $y \neq \frac{5}{3}$. If $y = \frac{5}{3}$, then two of the fractions in the equation are undefined because you would have division by zero.

Answer: No solution, or the set of solutions is the empty set.

2i.
$$\frac{42}{3y^2 + 4y - 15} + \frac{2}{y + 3} = \frac{9}{5 - 3y}$$
 Back to Problem 2.

Since
$$3y^2 + 4y - 15 = (y + 3)(3y - 5)$$
, then $y \neq -3$, $y \neq \frac{5}{3}$.

NOTE:
$$5 - 3y = -(3y - 5)$$

$$\frac{42}{3y^2 + 4y - 15} + \frac{2}{y + 3} = \frac{9}{5 - 3y} \Rightarrow \frac{42}{(y + 3)(3y - 5)} + \frac{2}{y + 3} = \frac{9}{-(3y - 5)}$$

$$\frac{42}{(y+3)(3y-5)} + \frac{2}{y+3} = \frac{-9}{3y-5}$$

$$LCD[(y + 3)(3y - 5), y + 3, 3y - 5] = (y + 3)(3y - 5)$$

$$\frac{42}{(y+3)(3y-5)} + \frac{2}{y+3} = \frac{-9}{3y-5} \Rightarrow$$

$$(y+3)(3y-5)\left[\frac{42}{(y+3)(3y-5)} + \frac{2}{y+3}\right] = \left(\frac{-9}{3y-5}\right)(y+3)(3y-5) \implies$$

$$42 + 2(3y - 5) = -9(y + 3) \implies 42 + 6y - 10 = -9y - 27 \implies$$

$$6y + 32 = -9y - 27 \implies 15y = -59 \implies y = -\frac{59}{15}$$

Answer: $y = -\frac{59}{15}$ or the set of solutions is $\left\{-\frac{59}{15}\right\}$

$$2j. \quad \frac{3}{2x - 5} = \frac{2}{3 - 7x}$$

Back to Problem 2.

NOTE:
$$x \neq \frac{5}{2}$$
, $x \neq \frac{3}{7}$

LCD
$$(2x - 5, 3 - 7x) = (2x - 5)(3 - 7x)$$

$$\frac{3}{2x-5} = \frac{2}{3-7x} \Rightarrow$$

$$(2x-5)(3-7x)\left(\frac{3}{2x-5}\right) = \left(\frac{2}{3-7x}\right)(2x-5)(3-7x) \Rightarrow$$

$$3(3-7x) = 2(2x-5) \implies 9-21x = 4x-10 \implies 19 = 25x \implies x = \frac{19}{25}$$

NOTE: We could have obtained the equation 3(3 - 7x) = 2(2x - 5) by cross multiplying. That is,

$$\frac{3}{2x-5} \underbrace{}^{2} \underbrace{}^{2} \underbrace{}^{2}$$

Answer: $x = \frac{19}{25}$ or the set of solutions is $\left\{\frac{19}{25}\right\}$

$$2k. \quad \frac{3}{3t+4} = \frac{8}{8t-5}$$

Back to Problem 2.

NOTE:
$$t \neq -\frac{4}{3}, t \neq \frac{5}{8}$$

Cross multiplying, we obtain 3(8t - 5) = 8(3t + 4).

$$3(8t - 5) = 8(3t + 4) \implies 24t - 15 = 24t + 32 \implies -15 = 32$$

This is a false equation. Thus, the given equation does not have a solution.

Answer: No solution, or the set of solutions is the empty set.

3.
$$V = \frac{h(b_1 + b_2)}{P} \Rightarrow PV = h(b_1 + b_2) \Rightarrow PV = hb_1 + hb_2 \Rightarrow$$

$$PV - hb_1 = hb_2 \implies b_2 = \frac{PV - hb_1}{h}$$

Answer:
$$b_2 = \frac{PV - hb_1}{h}$$

Back to Problem 3.

4a.
$$\sqrt{-36} = \sqrt{-1} \sqrt{36} = i6 = 6i$$

Answer: 6*i*

Back to Problem 4.

4b.
$$\sqrt{-48} = \sqrt{-1} \sqrt{48} = i\sqrt{16 \cdot 3} = i\sqrt{16} \sqrt{3} = i4\sqrt{3} = 4i\sqrt{3}$$

Answer: $4i\sqrt{3}$ or $4\sqrt{3}i$

Back to Problem 4.

4c.
$$-\sqrt{-23} = -\sqrt{-1}\sqrt{23} = -i\sqrt{23}$$

Answer: $-i\sqrt{23}$ **or** $-\sqrt{23}i$

Back to Problem 4.

4d.
$$\sqrt{-3} \sqrt{-15} = i\sqrt{3} i\sqrt{15} = i^2\sqrt{45} = -1\sqrt{9}\sqrt{5} = -1\cdot 3\sqrt{5} = -3\sqrt{5}$$

Answer: $-3\sqrt{5}$

Back to Problem 4.

4e.
$$\sqrt{-6} \sqrt{-24} = i\sqrt{6} i\sqrt{24} = i^2\sqrt{144} = -1 \cdot 12 = -12$$

Answer: -12

Back to Problem 4.

4f.
$$\sqrt{-16} \sqrt{-49} = i\sqrt{16} i\sqrt{49} = i^2 4 \cdot 7 = -1 \cdot 28 = -28$$

Answer: – 28

Back to Problem 4.

4g.
$$\frac{\sqrt{-75}}{\sqrt{-3}} = \frac{i\sqrt{75}}{i\sqrt{3}} = \frac{\sqrt{75}}{\sqrt{3}} = \sqrt{\frac{75}{3}} = \sqrt{25} = 5$$

Answer: 5

Back to Problem 4.

4h.
$$\frac{\sqrt{-140}}{\sqrt{7}} = \frac{i\sqrt{140}}{\sqrt{7}} = i\frac{\sqrt{140}}{\sqrt{7}} = i\sqrt{\frac{140}{7}} = i\sqrt{20} = 2i\sqrt{5}$$

Answer: $2i\sqrt{5}$ or $2\sqrt{5}i$

Back to Problem 4.

5a. 5 - 8i

Back to Problem 5.

Answer: Real part: 5 Imaginary part: -8

5b. 4i - 7 Back to Problem 5.

Answer: Real part: -7 Imaginary part: 4

5c. $-\frac{2}{3} + \frac{1}{2}i$ Back to Problem 5.

Answer: Real part: $-\frac{2}{3}$ Imaginary part: $\frac{1}{2}$

5d. 9 Back to Problem 5.

Answer: Real part: 9 Imaginary part: 0

5e. -11i Back to Problem 5.

Answer: Real part: 0 Imaginary part: - 11