Pre-Class Problems 18 for Wednesday, April 4

These are the type of problems that you will be working on in class.

You can go to the solution for each problem by clicking on the problem letter.

1. Solve the following system of equations.
a. $x^{2}+y^{2}=9$
b. $y=2 x^{2}$
b.
$y=5 x+12$
$3 x^{2}+y^{2}=76$
c. $x+2 y=3$
d. $y=4-x^{2}$
e. $\begin{aligned} 3 x^{2}-4 y^{2} & =25 \\ x^{2}+6 y^{2} & =12\end{aligned}$
2. Solve the following systems of equations using Gaussian elimination.

$$
\left.\begin{array}{rlrl}
x-3 y-2 z & =-1 & & 5 x+4 y-3 z
\end{array}\right)=-36
$$

Problems available in the textbook: Page $532 \ldots 3 b-14 b, 15-36,37-46,48-$ 56. and Examples $1-5$ starting on page 528. Page $573 \ldots 41-64$ and Examples $1-5$ starting on page 564 .

SOLUTIONS:

1a.

$$
x^{2}+y^{2}=9
$$

$y=x$

Notice in the second equation, the variable of y is solved for x. Thus, replace the y variable in the second equation of $x^{2}+y^{2}=9$ by x and then solve for x :
$x^{2}+y^{2}=9 \Rightarrow x^{2}+x^{2}=9 \Rightarrow 2 x^{2}=9 \Rightarrow x^{2}=\frac{9}{2} \Rightarrow x= \pm \frac{3}{\sqrt{2}}=$
$x= \pm \frac{3 \sqrt{2}}{2}$

Now, use the equation $y=x$ to solve for y.

When $x=\frac{3 \sqrt{2}}{2}, y=x=\frac{3 \sqrt{2}}{2}$. Thus, the ordered pair $\left(\frac{3 \sqrt{2}}{2}, \frac{3 \sqrt{2}}{2}\right)$ is a solution to the system of equations.

When $x=-\frac{3 \sqrt{2}}{2}, y=x=-\frac{3 \sqrt{2}}{2}$. Thus, the ordered pair $\left(-\frac{3 \sqrt{2}}{2},-\frac{3 \sqrt{2}}{2}\right)$ is a solution to the system of equations.

Answer: $\left(\frac{3 \sqrt{2}}{2}, \frac{3 \sqrt{2}}{2}\right),\left(-\frac{3 \sqrt{2}}{2},-\frac{3 \sqrt{2}}{2}\right)$

$$
y=2 x^{2}
$$

1 b.

$$
y=5 x+12
$$

Back to Problem 1.

Replace the y variable in the second equation by $2 x^{2}$:

$$
\begin{aligned}
& 2 x^{2}=5 x+12 \Rightarrow 2 x^{2}-5 x-12=0 \Rightarrow(x-4)(2 x+3)=0 \Rightarrow \\
& x=4, x=-\frac{3}{2}
\end{aligned}
$$

You can use either the first or second equation to find y when $x=4$:
Using the first equation of $y=2 x^{2}$ and $x=4: \quad y=2(16)=32$.
Using the second equation of $y=5 x+12, x=4: y=20+12=32$.
Thus, the ordered pair $(4,32)$ is a solution to the system of equations.

It is easier to use the first equation of $y=2 x^{2}$ to find y when $x=-\frac{3}{2}$:

$$
y=2 x^{2} \text { and } x=-\frac{3}{2} \Rightarrow y=2\left(\frac{9}{4}\right)=\frac{9}{2}
$$

Thus, the ordered pair $\left(-\frac{3}{2}, \frac{9}{2}\right)$ is a solution to the system of equations.

Answer: $(4,32),\left(-\frac{3}{2}, \frac{9}{2}\right)$

1c.
$3 x^{2}+y^{2}=76$
$x+2 y=3$
Back to Problem 1.

Use the second equation to solve for x in terms of y and substitute into the first equation.

$$
x+2 y=3 \Rightarrow x=3-2 y
$$

$3 x^{2}+y^{2}=76$ and $x=3-2 y \Rightarrow 3(3-2 y)^{2}+y^{2}=76 \Rightarrow$
$3\left(9-12 y+4 y^{2}\right)+y^{2}=76 \Rightarrow 27-36 y+12 y^{2}+y^{2}=76 \Rightarrow$
$13 y^{2}-36 y+27=76 \Rightarrow 13 y^{2}-36 y-49=0 \Rightarrow$
$(y+1)(13 y-49)=0 \Rightarrow y=-1, y=\frac{49}{13}$
$x=3-2 y$ and $y=-1 \Rightarrow x=3+2=5$
The ordered pair $(5,-1)$ is a solution to the system of equations.
$x=3-2 y$ and $y=\frac{49}{13} \Rightarrow x=3-\frac{98}{13}=\frac{39}{13}-\frac{98}{13}=-\frac{59}{13}$
The ordered pair $\left(-\frac{59}{13}, \frac{49}{13}\right)$ is a solution to the system of equations.

Answer: $(5,-1),\left(-\frac{59}{13}, \frac{49}{13}\right)$

$$
x^{2}+(y+6)^{2}=16
$$

1 d.

$$
y=4-x^{2}
$$

Back to Problem 1.

If we replace y in the first equation by $4-x^{2}$ since $y=4-x^{2}$ as given in the second equation, we obtain the equation $x^{2}+\left(4-x^{2}+6\right)^{2}=16$.

$$
\begin{aligned}
& x^{2}+\left(4-x^{2}+6\right)^{2}=16 \Rightarrow x^{2}+\left(10-x^{2}\right)^{2}=16 \Rightarrow \\
& x^{2}+100-20 x^{2}+x^{4}=16 \Rightarrow x^{4}-19 x^{2}+84=0 . \text { This last equation }
\end{aligned}
$$ is quadratic in x^{2}. This equation can be factored.

$$
\begin{aligned}
& x^{4}-19 x^{2}+84=0 \Rightarrow\left(x^{2}-7\right)\left(x^{2}-12\right)=0 \\
& x^{2}-7=0 \Rightarrow x^{2}=7 \Rightarrow x= \pm \sqrt{7} \\
& x^{2}-12=0 \Rightarrow x^{2}=12 \Rightarrow x= \pm \sqrt{12}
\end{aligned}
$$

$$
y=4-x^{2} \text { and } x=\sqrt{7} \Rightarrow y=4-7=-3
$$

Thus, the point $(\sqrt{7},-3)$ is a solution to the system of equations.

$$
y=4-x^{2} \text { and } x=-\sqrt{7} \Rightarrow y=4-7=-3
$$

Thus, the point $(-\sqrt{7},-3)$ is a solution to the system of equations.
$y=4-x^{2}$ and $x=\sqrt{12} \Rightarrow y=4-12=-8$
Thus, the point $(2 \sqrt{3},-8)$ is a solution to the system of equations.
$y=4-x^{2}$ and $x=-\sqrt{12} \Rightarrow y=4-12=-8$
Thus, the point $(-2 \sqrt{3},-8)$ is a solution to the system of equations.

$$
x^{2}+(y+6)^{2}=16
$$

The system of equations $y=4-x^{2}$ has an easier solution. Use the second equation of $y=4-x^{2}$ to solve for x^{2} and substitution in the first equation.

$$
y=4-x^{2} \Rightarrow x^{2}=4-y
$$

$$
x^{2}+(y+6)^{2}=16 \text { and } x^{2}=4-y \Rightarrow 4-y+(y+6)^{2}=16
$$

$$
4-y+(y+6)^{2}=16 \Rightarrow 4-y+y^{2}+12 y+36=16 \Rightarrow
$$

$$
y^{2}+11 y+40=16 \Rightarrow y^{2}+11 y+24=0 \Rightarrow(y+3)(y+8)=0 \Rightarrow
$$

$$
y=-3,-8
$$

$x^{2}=4-y$ and $y=-3 \Rightarrow x^{2}=7 \Rightarrow x= \pm \sqrt{7}$
Thus, the points $(\sqrt{7},-3)$ and $(-\sqrt{7},-3)$ are solutions to the system of equations.
$x^{2}=4-y$ and $y=-8 \Rightarrow x^{2}=12 \Rightarrow x= \pm \sqrt{12}= \pm 2 \sqrt{3}$
Thus, the points $(2 \sqrt{3},-8)$ and $(-2 \sqrt{3},-8)$ are solutions to the system of equations.

This system of equations can also be solved by the addition method.

$$
\begin{aligned}
& x^{2}+(y+6)^{2}=16 \\
& y=4-x^{2}
\end{aligned} \Rightarrow \frac{x^{2}+(y+6)^{2}=16}{} \begin{aligned}
& (y+6)^{2}-y=12
\end{aligned}, \begin{aligned}
& x^{2}+y=4 \\
& (y+6)^{2}-y=12 \Rightarrow y^{2}+12 y+36-y=12 \Rightarrow y^{2}+11 y+24=0
\end{aligned}
$$

We solved this quadratic equation above.

Answer: $(\sqrt{7},-3),(-\sqrt{7},-3),(2 \sqrt{3},-8),(-2 \sqrt{3},-8)$

$$
3 x^{2}-4 y^{2}=25
$$

1 e.

$$
x^{2}+6 y^{2}=12
$$

This system of equations can also be solved by the addition method.

$$
\begin{aligned}
3 x^{2}-4 y^{2} & =25 \\
x^{2}+6 y^{2} & =12
\end{aligned} \Rightarrow \begin{aligned}
3 x^{2}-4 y^{2} & =25 \\
-3 x^{2}-18 y^{2} & =-36 \\
-22 y^{2} & =-11
\end{aligned}
$$

$-22 y^{2}=-11 \Rightarrow y^{2}=\frac{1}{2} \Rightarrow y= \pm \frac{1}{\sqrt{2}}= \pm \frac{\sqrt{2}}{2}$
$x^{2}+6 y^{2}=12$ and $y= \pm \frac{1}{\sqrt{2}} \Rightarrow x^{2}+6\left(\frac{1}{2}\right)=12 \Rightarrow x^{2}+3=12 \Rightarrow$
$x^{2}=9 \Rightarrow x= \pm 3$

Answer: $\left(3, \frac{\sqrt{2}}{2}\right),\left(3,-\frac{\sqrt{2}}{2}\right),\left(-3, \frac{\sqrt{2}}{2}\right),\left(-3,-\frac{\sqrt{2}}{2}\right)$

$$
x-3 y-2 z=-1
$$

2 a .

$$
\begin{aligned}
3 x+y+5 z & =32 \\
-4 x+6 y-z & =-29
\end{aligned}
$$

Back to Problem 2.

First, form the augmented matrix for this system of equations:

$$
\left[\begin{array}{cccc}
1 & -3 & -2 & -1 \\
3 & 1 & 5 & 32 \\
-4 & 6 & -1 & -29
\end{array}\right]
$$

Multiply Row 1 by -3 and add it to Row $2\left(-3 R_{1}+R_{2}\right)$ and multiply Row 1 by 4 and add it to Row $3\left(4 R_{1}+R_{3}\right)$:

$$
\left[\begin{array}{cccc}
1 & -3 & -2 & -1 \\
3 & 1 & 5 & 32 \\
-4 & 6 & -1 & -29
\end{array}\right] \xrightarrow{\substack{-3 R_{1}+R_{2} \\
4 R_{1}+R_{3}}}
$$

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
1 & -3 & -2 & -1 \\
-3+3 & 9+1 & 6+5 & 3+32 \\
4+(-4) & -12+6 & -8+(-1) & -4+(-29)
\end{array}\right]} \\
& {\left[\begin{array}{cccc}
1 & -3 & -2 & -1 \\
0 & 10 & 11 & 35 \\
0 & -6 & -9 & -33
\end{array}\right]}
\end{aligned}
$$

Divide Row 3 by $-3\left(-\frac{1}{3} R_{3}\right)$:

$$
\left[\begin{array}{cccc}
1 & -3 & -2 & -1 \\
0 & 10 & 11 & 35 \\
0 & -6 & -9 & -33
\end{array}\right] \xrightarrow{-\frac{1}{3} R_{3}}\left[\begin{array}{cccc}
1 & -3 & -2 & -1 \\
0 & 10 & 11 & 35 \\
0 & 2 & 3 & 11
\end{array}\right]
$$

Interchange Row 2 and Row $3\left(R_{2} \leftrightarrow R_{3}\right)$:

$$
\left[\begin{array}{cccc}
1 & -3 & -2 & -1 \\
0 & 10 & 11 & 35 \\
0 & 2 & 3 & 11
\end{array}\right] \xrightarrow{R_{2} \leftrightarrow R_{3}}\left[\begin{array}{cccc}
1 & -3 & -2 & -1 \\
0 & 2 & 3 & 11 \\
0 & 10 & 11 & 35
\end{array}\right]
$$

Multiply Row 2 by -5 and add to Row $3\left(-5 R_{2}+R_{3}\right)$:

$$
\left[\begin{array}{cccc}
1 & -3 & -2 & -1 \\
0 & 2 & 3 & 11 \\
0 & 10 & 11 & 35
\end{array}\right] \xrightarrow{-5 R_{2}+R_{3}}\left[\begin{array}{cccc}
1 & -3 & -2 & -1 \\
0 & 2 & 3 & 11 \\
0 & -10+10 & -15+11 & -55+35
\end{array}\right]
$$

$$
\left[\begin{array}{cccc}
1 & -3 & -2 & -1 \\
0 & 2 & 3 & 11 \\
0 & 0 & -4 & -20
\end{array}\right]
$$

Divide Row 2 by $2\left(\frac{1}{2} R_{2}\right)$ and divide Row 3 by $-4\left(-\frac{1}{4} R_{3}\right)$:

$$
\left[\begin{array}{cccc}
1 & -3 & -2 & -1 \\
0 & 2 & 3 & 11 \\
0 & 0 & -4 & -20
\end{array}\right] \xrightarrow{\frac{1}{2} R_{2},-\frac{1}{4} R_{3}}\left[\begin{array}{cccc}
1 & -3 & -2 & -1 \\
0 & 1 & \frac{3}{2} & \frac{11}{2} \\
0 & 0 & 1 & 5
\end{array}\right]
$$

Row 3 reads $0 x+0 y+z=5 \Rightarrow z=5$

Row 2 reads $0 x+y+\frac{3}{2} z=\frac{11}{2} \Rightarrow y+\frac{3}{2} z=\frac{11}{2}$
Since $z=5$, then $y+\frac{15}{2}=\frac{11}{2} \Rightarrow y=-\frac{4}{2}=-2$

Row 1 reads $x-3 y-2 z=-1$
Since $y=-2$ and $z=5$, then $x+6-10=-1 \Rightarrow x-4=-1 \Rightarrow x=3$

Answer: (3, - 2, 5)
NOTE: Geometrically, if you graph the three planes in the system of equations, the planes will intersect at the point $(3,-2,5)$.
$5 x+4 y-3 z=-36$
2b. $\quad 3 x-2 y+7 z=-15$
Back to Problem 2.

First, form the augmented matrix for this system of equations:

$$
\left[\begin{array}{cccc}
5 & 4 & -3 & -36 \\
3 & -2 & 7 & -15 \\
-2 & -6 & 9 & 21
\end{array}\right]
$$

Multiply Row 3 by 2 and add to Row $1\left(2 R_{3}+R_{1}\right)$:

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
5 & 4 & -3 & -36 \\
3 & -2 & 7 & -15 \\
-2 & -6 & 9 & 21
\end{array}\right] \xrightarrow{2 R_{3}+R_{1}}} \\
& {\left[\begin{array}{cccc}
-4+5 & -12+4 & 18+(-3) & 42+(-36) \\
3 & -2 & 7 & -15 \\
-2 & -6 & 9 & 21
\end{array}\right]} \\
& {\left[\begin{array}{cccc}
1 & -8 & 15 & 6 \\
3 & -2 & 7 & -15 \\
-2 & -6 & 9 & 21
\end{array}\right]}
\end{aligned}
$$

Multiply Row 1 by -3 and add it to Row $2\left(-3 R_{1}+R_{2}\right)$ and multiply Row 1 by 2 and add it to Row $3\left(2 R_{1}+R_{3}\right)$:

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
1 & -8 & 15 & 6 \\
3 & -2 & 7 & -15 \\
-2 & -6 & 9 & 21
\end{array}\right] \xrightarrow{\substack{-3 R_{1}+R_{2} \\
2 R_{1}+R_{2}}}} \\
& {\left[\begin{array}{cccc}
1 & -8 & 15 & 6 \\
-3+3 & 24+(-2) & -45+7 & -18+(-15) \\
2+(-2) & -16+(-6) & 30+9 & 12+21
\end{array}\right]} \\
& {\left[\begin{array}{cccc}
1 & -8 & 15 & 6 \\
0 & 22 & -38 & -33 \\
0 & -22 & 39 & 33
\end{array}\right]}
\end{aligned}
$$

Add Row 2 to Row $3\left(R_{2}+R_{3}\right)$:

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
1 & -8 & 15 & 6 \\
0 & 22 & -38 & -33 \\
0 & -22 & 39 & 33
\end{array}\right] \xrightarrow{R_{2}+R_{3}}} \\
& {\left[\begin{array}{cccc}
1 & -8 & 15 & 6 \\
0 & 22 & -38 & -33 \\
0 & 22+(-22) & -38+39 & -33+33
\end{array}\right]} \\
& {\left[\begin{array}{cccc}
1 & -8 & 15 & 6 \\
0 & 22 & -38 & -33 \\
0 & 0 & 1 & 0
\end{array}\right]}
\end{aligned}
$$

Divide Row 2 by $22\left(\frac{1}{22} R_{2}\right)$:

$$
\left[\begin{array}{cccc}
1 & -8 & 15 & 6 \\
0 & 22 & -38 & -33 \\
0 & 0 & 1 & 0
\end{array}\right] \xrightarrow{\frac{1}{22} R_{2}}\left[\begin{array}{cccc}
1 & -8 & 15 & 6 \\
0 & 1 & -\frac{19}{11} & -\frac{3}{2} \\
0 & 0 & 1 & 0
\end{array}\right]
$$

Row 3 reads $0 x+0 y+z=0 \Rightarrow z=0$

Row 2 reads $0 x+y-\frac{19}{11} z=-\frac{3}{2} \Rightarrow y-\frac{19}{11} z=-\frac{3}{2}$
Since $z=0$, then $y-\frac{19}{11} z=-\frac{3}{2} \Rightarrow y-0=-\frac{3}{2} \Rightarrow y=-\frac{3}{2}$

Row 1 reads $x-8 y+15 z=6$

Since $y=-\frac{3}{2}$ and $z=0$, then $x+12+0=6 \Rightarrow x=-6$

Answer: $\left(-6,-\frac{3}{2}, 0\right)$

NOTE: Geometrically, if you graph the three planes in the system of equations, the planes will intersect at the point $\left(-6,-\frac{3}{2}, 0\right)$.

$$
2 x \quad-7 z=19
$$

2c.

$$
3 y+z=9
$$

$$
4 x-5 y=-24
$$

First, form the augmented matrix for this system of equations:

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
2 & 0 & -7 & 19 \\
0 & 3 & 1 & 9 \\
4 & -5 & 0 & -24
\end{array}\right]} \\
& {\left[\begin{array}{cccc}
2 & 0 & -7 & 19 \\
0 & 3 & 1 & 9 \\
4 & -5 & 0 & -24
\end{array}\right] \xrightarrow{-2 R_{1}+R_{3}}\left[\begin{array}{ccc}
2 & 0 & -7 \\
0 & 3 & 1 \\
0 & -5 & 14 \\
0 & -62
\end{array}\right] \xrightarrow{2 R_{2}+R_{3}}} \\
& {\left[\begin{array}{cccc}
2 & 0 & -7 & 19 \\
0 & 3 & 1 & 9 \\
0 & 1 & 16 & -44
\end{array}\right] \xrightarrow{R_{2} \leftrightarrow R_{3}}\left[\begin{array}{cccc}
2 & 0 & -7 & 19 \\
0 & 1 & 16 & -44 \\
0 & 3 & 1 & 9
\end{array}\right] \xrightarrow{-3 R_{2}+R_{3}}} \\
& {\left[\begin{array}{cccc}
2 & 0 & -7 & 19 \\
0 & 1 & 16 & -44 \\
0 & 0 & -47 & 141
\end{array}\right] \xrightarrow{-\frac{1}{47} R_{3}}\left[\begin{array}{cccc}
2 & 0 & -7 & 19 \\
0 & 1 & 16 & -44 \\
0 & 0 & 1 & -3
\end{array}\right]}
\end{aligned}
$$

Row 3 reads $z=-3$

Row 2 reads $y+16 z=-44$

Since $z=-3$, then $y-48=-44 \Rightarrow y=4$

Row 1 reads $2 x-7 z=19$

Since $z=-3$, then $2 x+21=19 \Rightarrow 2 x=-2 \Rightarrow x=-1$

Answer: (-1, 4, - 3)

NOTE: Geometrically, if you graph the three planes in the system of equations, the planes will intersect at the point $(-1,4,-3)$.

