Pre-Class Problems 17 for Monday, April 2
Earn one bonus point because you checked the Pre-Class problems. Send me an email with PC17 in the Subject line.

These are the type of problems that you will be working on in class.

You can go to the solution for each problem by clicking on the problem letter or number.

Since any exponential function is one-to-one, then $b^{u}=b^{v}$ if and only if $u=v$.

1. Solve the following exponential equations.
a. $3^{x}=81$
b. $5^{-t}=25$
c. $2^{3 x-11}=32$
d. $4^{x^{3}}=\frac{1}{16}$
e. $16^{t}=64$
f. $\quad 9^{x+4}=\frac{1}{27}$
g. $6^{x}=12$
h. $5^{t}=\frac{2}{3}$
i. $7^{-x}=\frac{3}{4}$
j. $8^{5-2 x}=65$
k. $3^{7 x+4}=49$
2. $2^{3 x-8}=6^{2 x+9}$
m. $e^{2 x}-2 e^{x}-24=0$
n. $9^{x}+16=10\left(3^{x}\right)$
o. $e^{-2 t}=5 e^{-t}$
3. Determine how long it will take an investment to double in value at an interest rate of 4% if compounded
a. yearly
b. quarterly
c. monthly
d. continuously
4. Determine how long it will take an investment to double in value at an interest rate of 10% compounded continuously.
5. Solve the following system of equations by using the substitution method.
$4 x+y=-7$
a. $3 x+5 y=16$
b. $\begin{aligned} 3 x+8 y & =24 \\ x-16 y & =-6\end{aligned}$
$x+2=8 y$
c. $3(x-9)+10 y=1$
d. $\begin{aligned} & 5 y=2 x-30 \\ & -6 x+y=8\end{aligned}$
$2(x+y)=11-14 x$
f. $x=2 y-5$
e. $y+8 x=15$
f. $6 y-3 x=15$
6. Solve the following system of equations by using the addition method.
$4 x+y=-7$
a. $3 x+5 y=16$
b. $\begin{aligned} 3 x+8 y & =24 \\ x-16 y & =-6\end{aligned}$
$4 x+3 y=10$
c. $-5 x+6 y=-32$
d. $2 x-5 y=19$
$8 x-6 y=-3$
$-12 x+2 y=5$
e. $5 x+4 y=-9$
f. $6 x-y=9$
7. How many liters of a 6% salt solution and how many liter of a 25% salt solution are needed to make 38 liters of a 20% salt solution?
8. Solve the following system of equations.
$x-3 y-2 z=-1$
a. $\quad 3 x+y+5 z=32$
$-4 x+6 y-z=-29$
$5 x+4 y-3 z=-36$
b. $\quad 3 x-2 y+7 z=-15$
$-2 x-6 y+9 z=21$

$$
\begin{aligned}
& 2 x-7 z=19 \\
& 2 x+3 y-5 z=-9 \\
& \text { c. } \quad 3 y+z=9 \\
& 4 x-5 y=-24 \\
& \text { d. } 6 x-9 y+7 z=5 \\
& 4 x-3 y+z=-2 \\
& 3 x-5 y+7 z=-11 \\
& \text { e. } \quad 9 x-14 y+27 z=-30 \\
& -12 x+23 y-10 z=57
\end{aligned}
$$

Problems available in the textbook: Page $462 \ldots 5-34,61-70$ and Examples 1 5 starting on page 453. Problems available in the textbook: Page 501 ... $7-10,15$ $-34,37-66$ and Examples $1-8$ starting on page 492. Page $514 \ldots 5-44$ and Examples $1-7$ starting on page 506.

SOLUTIONS:

1a. $\quad 3^{x}=81$
Back to Problem 1.

Using the one-to-one property: $3^{x}=81 \Rightarrow 3^{x}=3^{4} \Rightarrow x=4$

Using logarithms base 3: $3^{x}=81 \Rightarrow \log _{3} 3^{x}=\log _{3} 81 \Rightarrow$

$$
x \log _{3} 3=\log _{3} 81 \Rightarrow x=\log _{3} 81=4
$$

NOTE: $\log _{3} 3=1$

Using natural logarithms: $3^{x}=81 \Rightarrow \ln 3^{x}=\ln 81 \Rightarrow x \ln 3=\ln 81 \Rightarrow$

$$
x=\frac{\ln 81}{\ln 3} \Rightarrow x=4 \quad \text { (using a calculator) }
$$

Without a calculator: $\frac{\ln 81}{\ln 3}=\frac{\ln 3^{4}}{\ln 3}=\frac{4 \ln 3}{\ln 3}=4$

Answer: $x=4$

1b. $5^{-t}=25$
Back to Problem 1.

Using the one-to-one property: $5^{-t}=25 \Rightarrow 5^{-t}=5^{2} \Rightarrow-t=2 \Rightarrow$

$$
t=-2
$$

Using logarithms base 5: $5^{-t}=25 \Rightarrow \log _{5} 5^{-t}=\log _{5} 25 \Rightarrow$
$-t \log _{5} 5=\log _{5} 25 \Rightarrow-t=2 \Rightarrow t=-2$

NOTE: $\log _{5} 5=1$ and $\log _{5} 25=2$

Using natural logarithms: $5^{-t}=25 \Rightarrow \ln 5^{-t}=\ln 25 \Rightarrow$
$-t \ln 5=\ln 25 \Rightarrow t=-\frac{\ln 25}{\ln 5} \Rightarrow t=-2$ (using a calculator)

Without a calculator: $\frac{\ln 25}{\ln 5}=\frac{\ln 5^{2}}{\ln 5}=\frac{2 \ln 5}{\ln 5}=2$

Answer: $t=-2$

1c. $2^{3 x-11}=32$

Using the one-to-one property: $2^{3 x-11}=32 \Rightarrow 2^{3 x-11}=2^{5} \Rightarrow$

$$
3 x-11=5 \Rightarrow 3 x=16 \Rightarrow x=\frac{16}{3}
$$

Using logarithms base $2: 2^{3 x-11}=32 \Rightarrow \log _{2} 2^{3 x-11}=\log _{2} 32 \Rightarrow$
$(3 x-11) \log _{2} 2=\log _{2} 32 \Rightarrow 3 x-11=5 \Rightarrow 3 x=16 \Rightarrow x=\frac{16}{3}$

NOTE: $\log _{2} 2=1$

Using natural logarithms: $2^{3 x-11}=32 \Rightarrow \ln 2^{3 x-11}=\ln 32 \Rightarrow$ $(3 x-11) \ln 2=\ln 32 \Rightarrow 3 x \ln 2-11 \ln 2=\ln 32 \Rightarrow$
$3 x \ln 2=\ln 32+11 \ln 2 \Rightarrow x=\frac{\ln 32+11 \ln 2}{3 \ln 2}=\frac{\ln 32\left(2^{11}\right)}{\ln 8}=\frac{16}{3}$
(using a calculator)

Without a calculator: $\frac{\ln 32\left(2^{11}\right)}{\ln 8}=\frac{\ln 2^{5}\left(2^{11}\right)}{\ln 2^{3}}=\frac{\ln 2^{16}}{\ln 2^{3}}=\frac{16 \ln 2}{3 \ln 2}=\frac{16}{3}$

Answer: $x=\frac{16}{3}$

1d. $\quad 4^{x^{3}}=\frac{1}{16}$

Using the one-to-one property: $4^{x^{3}}=\frac{1}{16} \Rightarrow 4^{x^{3}}=4^{-2} \Rightarrow x^{3}=-2 \Rightarrow$

$$
x=\sqrt[3]{-2}=-\sqrt[3]{2}
$$

Using logarithms base 4: $4^{x^{3}}=\frac{1}{16} \Rightarrow \log _{4} 4^{x^{3}}=\log _{4} \frac{1}{16} \Rightarrow$
$x^{3} \log _{4} 4=\log _{4} \frac{1}{16} \Rightarrow x^{3}=-2 \Rightarrow x=\sqrt[3]{-2}=-\sqrt[3]{2}$
NOTE: $\log _{4} 4=1$ and $\log _{4} \frac{1}{16}=-2$

Using natural logarithms: $4^{x^{3}}=\frac{1}{16} \Rightarrow \ln 4^{x^{3}}=\ln \frac{1}{16} \Rightarrow$
$x^{3} \ln 4=\ln \frac{1}{16} \Rightarrow x^{3}=\frac{\ln \frac{1}{16}}{\ln 4} \Rightarrow x^{3}=-2 \Rightarrow x=\sqrt[3]{-2}=-\sqrt[3]{2}$

NOTE: $\frac{\ln \frac{1}{16}}{\ln 4}=-2$ (using a calculator)

Without a calculator: $\frac{\ln \frac{1}{16}}{\ln 4}=\frac{\ln 4^{-2}}{\ln 4}=\frac{-2 \ln 4}{\ln 4}=-2$

Answer: $x=-\sqrt[3]{2}$

1e. $\quad 16^{t}=64$

Using the one-to-one property: $16^{t}=64 \Rightarrow\left(4^{2}\right)^{t}=4^{3} \Rightarrow 4^{2 t}=4^{3} \Rightarrow$
$2 t=3 \Rightarrow t=\frac{3}{2}$

Using logarithms base 4: $16^{t}=64 \Rightarrow \log _{4} 16^{t}=\log _{4} 64 \Rightarrow$
$t \log _{4} 16=\log _{4} 64 \Rightarrow 2 t=3 \Rightarrow t=\frac{3}{2}$

NOTE: $\log _{4} 16=2$ and $\log _{4} 64=3$

Using natural logarithms: $16^{t}=64 \Rightarrow \ln 16^{t}=\ln 64 \Rightarrow$
$t \ln 16=\ln 64 \Rightarrow t=\frac{\ln 64}{\ln 16} \Rightarrow t=\frac{3}{2} \quad$ (using a calculator)

Without a calculator: $\frac{\ln 64}{\ln 16}=\frac{\ln 4^{3}}{\ln 4^{2}}=\frac{3 \ln 4}{2 \ln 4}=\frac{3}{2}$

Answer: $t=\frac{3}{2}$

1f. $\quad 9^{x+4}=\frac{1}{27}$

Using the one-to-one property: $9^{x+4}=\frac{1}{27} \Rightarrow\left(3^{2}\right)^{x+4}=3^{-3} \Rightarrow$
$3^{2(x+4)}=3^{-3} \Rightarrow 2(x+4)=-3 \Rightarrow 2 x+8=-3 \Rightarrow x=-\frac{11}{2}$

Using logarithms base 3: $9^{x+4}=\frac{1}{27} \Rightarrow \log _{3} 9^{x+4}=\log _{3} \frac{1}{27} \Rightarrow$

$$
\begin{aligned}
& (x+4) \log _{3} 9=\log _{3} \frac{1}{27} \Rightarrow 2(x+4)=-3 \Rightarrow 2 x+8=-3 \Rightarrow \\
& x=-\frac{11}{2}
\end{aligned}
$$

NOTE: $\log _{3} 9=2$ and $\log _{3} \frac{1}{27}=-3$

Using natural logarithms: $9^{x+4}=\frac{1}{27} \Rightarrow \ln 9^{x+4}=\ln \frac{1}{27} \Rightarrow$

$$
(x+4) \ln 9=\ln \frac{1}{27} \Rightarrow x \ln 9+4 \ln 9=-\ln 27 \Rightarrow
$$

$$
x \ln 9+4 \ln 9=-\ln 27 \Rightarrow x \ln 9=-\ln 27-4 \ln 9 \Rightarrow
$$

$$
x=-\frac{\ln 27+4 \ln 9}{\ln 9}=\frac{\ln 27+\ln 9^{4}}{\ln 9}=\frac{\ln 27\left(9^{4}\right)}{\ln 9}=-\frac{11}{2}(\text { using a }
$$

calculator)

NOTE: $\ln \frac{1}{27}=\ln 27^{-1}=-1 \cdot \ln 27=-\ln 27$

Without a calculator: $\frac{\ln 27\left(9^{4}\right)}{\ln 9}=\frac{\ln 3^{3}\left(3^{8}\right)}{\ln 3^{2}}=\frac{\ln 3^{11}}{\ln 3^{2}}=\frac{11 \ln 3}{2 \ln 3}=\frac{11}{2}$

Answer: $x=-\frac{11}{2}$

1g. $6^{x}=12$
Back to Problem 1.

Using natural logarithms: $6^{x}=12 \Rightarrow \ln 6^{x}=\ln 12 \Rightarrow$
$x \ln 6=\ln 12 \Rightarrow x=\frac{\ln 12}{\ln 6}$

NOTE: $x=\frac{\ln 12}{\ln 6} \approx 1.38685$ and $6^{1.38685} \approx 11.99994$

Using logarithms base 6: $6^{x}=12 \Rightarrow \log _{6} 6^{x}=\log _{6} 12 \Rightarrow$
$x \log _{6} 6=\log _{6} 12 \Rightarrow x=\log _{6} 12 \quad$ NOTE: $\log _{6} 6=1$

Since your calculator does not have logarithm base 6 key, you would have to do a change of bases to obtain an approximation for $\log _{6} 12$. Since your calculator has a natural logarithm key LN , then we obtain that $\log _{6} 12=$ $\frac{\ln 12}{\ln 6}$ using the change of base formula that $\log _{b} u=\frac{\log _{a} u}{\log _{a} b}$, where $u=12, b=6$, and $a=e$. Or, Since your calculator has a common logarithm key LOG, then we obtain that $\log _{6} 12=\frac{\log 12}{\log 6}$ using the change of base formula that $\log _{b} u=\frac{\log _{a} u}{\log _{a} b}$, where $u=12, b=6$, and $a=10$.

NOTE: $x=\frac{\ln 12}{\ln 6} \approx 1.38685$ and $6^{1.38685} \approx 11.99994$

Answer: $x=\frac{\ln 12}{\ln 6}$ or $x=\log _{6} 12$

1h. $\quad 5^{t}=\frac{2}{3}$
Back to Problem 1.

Using natural logarithms: $5^{t}=\frac{2}{3} \Rightarrow \ln 5^{t}=\ln \frac{2}{3} \Rightarrow t \ln 5=\ln \frac{2}{3} \Rightarrow$
$t=\frac{\ln \frac{2}{3}}{\ln 5}$
NOTE: $t=\frac{\ln \frac{2}{3}}{\ln 5} \approx-0.25193$ and $5^{-0.25193} \approx 0.666666277$

Using logarithms base 5: $5^{t}=\frac{2}{3} \Rightarrow \log _{5} 5^{t}=\log _{5} \frac{2}{3} \Rightarrow$
$t \log _{5} 5=\log _{5} \frac{2}{3} \Rightarrow t=\log _{5} \frac{2}{3} \quad$ NOTE: $\log _{5} 5=1$
Since your calculator does not have logarithm base 5 key, you would have to do a change of bases to obtain an approximation for $\log _{5} \frac{2}{3}$. Since your calculator has a natural logarithm key LN , then we obtain that $\log _{5} \frac{2}{3}=$
$\frac{\ln \frac{2}{3}}{\ln 5}$ using the change of base formula that $\log _{b} u=\frac{\log _{a} u}{\log _{a} b}$, where $u=\frac{2}{3}, b=5$, and $a=e$. Or, Since your calculator has a common logarithm key LOG, then we obtain that $\log \frac{2}{3}=\frac{\log \frac{2}{3}}{\log 5}$ using the change of base formula that $\log _{b} u=\frac{\log _{a} u}{\log _{a} b}$, where $u=\frac{2}{3}, b=5$, and $a=10$.

Answer: $t=\frac{\ln \frac{2}{3}}{\ln 5}$ or $t=\log _{5} \frac{2}{3}$

1i. $\quad 7^{-x}=\frac{3}{4}$

Using natural logarithms: $7^{-x}=\frac{3}{4} \Rightarrow \ln 7^{-x}=\ln \frac{3}{4} \Rightarrow$
$-x \ln 7=\ln \frac{3}{4} \Rightarrow x=-\frac{\ln \frac{3}{4}}{\ln 7}$

NOTE: $\quad x=-\frac{\ln \frac{3}{4}}{\ln 7} \approx 0.14784$ and $7^{-0.14784} \approx 0.749999037$

Answer: $x=-\frac{\ln \frac{3}{4}}{\ln 7}$ or $x=-\log _{7} \frac{3}{4}$

1j. $\quad 8^{5-2 x}=65$
Using natural logarithms: $8^{5-2 x}=65 \Rightarrow \ln 8^{5-2 x}=\ln 65 \Rightarrow$
$(5-2 x) \ln 8=\ln 65 \Rightarrow 5 \ln 8-2 x \ln 8=\ln 65 \Rightarrow$
$5 \ln 8-\ln 65=2 x \ln 8 \Rightarrow x=\frac{5 \ln 8-\ln 65}{2 \ln 8}=\frac{\ln \frac{8^{5}}{65}}{\ln 64}$

NOTE: $x=\frac{\ln \frac{8^{5}}{65}}{\ln 64} \approx 1.49627,5-2 x \approx 2.00746$, and $8^{2.00746} \approx 65.00055$

Answer: $x=\frac{5 \ln 8-\ln 65}{2 \ln 8}$

1k. $\quad 3^{7 x+4}=49$ Back to Problem 1.

Using natural logarithms: $3^{7 x+4}=49 \Rightarrow \ln 3^{7 x+4}=\ln 49 \Rightarrow$
$(7 x+4) \ln 3=\ln 49 \Rightarrow 7 x \ln 3+4 \ln 3=\ln 49 \Rightarrow$
$7 x \ln 3=\ln 49-4 \ln 3 \Rightarrow x=\frac{\ln 49-4 \ln 3}{7 \ln 3}=\frac{\ln \frac{49}{81}}{\ln 2187}$

NOTE: $4 \ln 3=\ln 3^{4}=\ln 81$ and $7 \ln 3=\ln 3^{7}=\ln 2187$

NOTE: $x=\frac{\ln \frac{49}{81}}{\ln 2187} \approx-0.065359,7 x+4 \approx 3.542487$, and
$3^{3.542487} \approx 48.99997$

Answer: $x=\frac{\ln 49-4 \ln 3}{7 \ln 3}$
11. $2^{3 x-8}=6^{2 x+9}$

Back to Problem 1.
Using natural logarithms: $2^{3 x-8}=6^{2 x+9} \Rightarrow \ln 2^{3 x-8}=\ln 6^{2 x+9} \Rightarrow$
$(3 x-8) \ln 2=(2 x+9) \ln 6 \Rightarrow 3 x \ln 2-8 \ln 2=2 x \ln 6+9 \ln 6 \Rightarrow$
$3 x \ln 2-2 x \ln 6=9 \ln 6+8 \ln 2 \Rightarrow x(3 \ln 2-2 \ln 6)=9 \ln 6+8 \ln 2 \Rightarrow$
$x=\frac{9 \ln 6+8 \ln 2}{3 \ln 2-2 \ln 6}$

Answer: $x=\frac{9 \ln 6+8 \ln 2}{3 \ln 2-2 \ln 6}$

1m. $e^{2 x}-2 e^{x}-24=0$
Back to Problem 1.

This equation is quadratic in the expression e^{x}. Let $a=e^{x}$. Then $a^{2}=\left(e^{x}\right)^{2}=e^{2 x}$. Thus,
$e^{2 x}-2 e^{x}-24=0 \Rightarrow a^{2}-2 a-24=0 \Rightarrow(a+4)(a-6)=0 \Rightarrow$
$\left(e^{x}+4\right)\left(e^{x}-6\right)=0 \Rightarrow e^{x}+4=0, e^{x}-6=0$
$e^{x}+4=0 \Rightarrow e^{x}=-4$. Since $e^{x}>0$ for all x, then this equation has no solution.

$$
e^{x}-6=0 \Rightarrow e^{x}=6 \Rightarrow \ln e^{x}=\ln 6 \Rightarrow x \ln e=\ln 6 \Rightarrow x=\ln 6
$$

Answer: $x=\ln 6$

1n. $9^{x}+16=10\left(3^{x}\right)$ Back to Problem 1.
$9^{x}+16=10\left(3^{x}\right) \Rightarrow\left(3^{2}\right)^{x}+16=10\left(3^{x}\right) \Rightarrow 3^{2 x}+16=10\left(3^{x}\right) \Rightarrow$
$3^{2 x}-10\left(3^{x}\right)+16=0$

This equation is quadratic in the expression 3^{x}. Let $a=3^{x}$. Then $a^{2}=\left(3^{x}\right)^{2}=3^{2 x}$. Thus,
$3^{2 x}-10\left(3^{x}\right)+16=0 \Rightarrow a^{2}-10 a+16=0 \Rightarrow(a-2)(a-8)=0 \Rightarrow$
$\left(3^{x}-2\right)\left(3^{x}-8\right)=0 \Rightarrow 3^{x}-2=0,3^{x}-8=0$
$3^{x}-2=0 \Rightarrow 3^{x}=2 \Rightarrow \ln 3^{x}=\ln 2 \Rightarrow x \ln 3=\ln 2 \Rightarrow x=\frac{\ln 2}{\ln 3}$
$3^{x}-8=0 \Rightarrow 3^{x}=8 \Rightarrow \ln 3^{x}=\ln 8 \Rightarrow x \ln 3=\ln 8 \Rightarrow x=\frac{\ln 8}{\ln 3}$

Answer: $x=\frac{\ln 2}{\ln 3}, \frac{\ln 8}{\ln 3}$ or $x=\log _{3} 2, \log _{3} 8$
10. $e^{-2 t}=5 e^{-t}$

This equation is quadratic in the expression e^{-t}. Let $a=e^{-t}$. Then $a^{2}=\left(e^{-t}\right)^{2}=e^{-2 t}$. Thus,

$$
\begin{aligned}
& e^{-2 t}=5 e^{-t} \Rightarrow a^{2}=5 a \Rightarrow a^{2}-5 a=0 \Rightarrow a(a-5)=0 \Rightarrow \\
& e^{-t}\left(e^{-t}-5\right)=0 \Rightarrow e^{-t}=0, e^{-t}-5=0
\end{aligned}
$$

Since $e^{-t}>0$ for all t, then the equation $e^{-t}=0$ has no solution.

$$
\begin{aligned}
& e^{-t}-5=0 \Rightarrow e^{-t}=5 \Rightarrow \ln e^{-t}=\ln 5 \Rightarrow-t \ln e=\ln 5 \Rightarrow \\
& -t=\ln 5 \Rightarrow t=-\ln 5
\end{aligned}
$$

Answer: $t=-\ln 5$

2a. $\quad A=P\left(1+\frac{r}{n}\right)^{n t}$
Back to Problem 2.

$$
A=2 P, r=4 \%=0.04, n=1
$$

$$
A=P\left(1+\frac{r}{n}\right)^{n t} \Rightarrow 2 P=P\left(1+\frac{0.04}{1}\right)^{1 t} \Rightarrow 2=(1+0.04)^{t} \Rightarrow
$$

$$
2=(1.04)^{t} \Rightarrow \ln 2=\ln (1.04)^{t} \Rightarrow \ln 2=t \ln (1.04) \Rightarrow
$$

$t=\frac{\ln 2}{\ln 1.04} \approx 17.67299$
0.67299 year $=0.67299 \cdot 12 \approx 8.07588$ months

Thus, it will take approximately 17 years and 8 months for the investment to double in value if the interest is compounded yearly at a rate of 4%.

Answer: 17 years and 8 months

2b. $\quad A=P\left(1+\frac{r}{n}\right)^{n t}$
Back to Problem 2.
$A=2 P, r=4 \%=0.04, n=4$
$A=P\left(1+\frac{r}{n}\right)^{n t} \Rightarrow 2 P=P\left(1+\frac{0.04}{4}\right)^{4 t} \Rightarrow 2=(1+0.01)^{4 t} \Rightarrow$
$2=(1.01)^{4 t} \Rightarrow \ln 2=\ln (1.01)^{4 t} \Rightarrow \ln 2=4 t \ln (1.01) \Rightarrow$
$t=\frac{\ln 2}{4 \ln 1.01} \approx 17.41518$
0.41518 year $=0.41518 \cdot 12 \approx 4.98216$ months

Thus, it will take approximately 17 years and 5 months for the investment to double in value if the interest is compounded quarterly at a rate of 4%.

Answer: 17 years and 5 months

2c. $\quad A=P\left(1+\frac{r}{n}\right)^{n t}$
Back to Problem 2.
$A=2 P, r=4 \%=0.04, n=12$
$A=P\left(1+\frac{r}{n}\right)^{n t} \Rightarrow 2 P=P\left(1+\frac{0.04}{12}\right)^{12 t} \Rightarrow 2=\left(1+\frac{0.04}{12}\right)^{12 t} \Rightarrow$
$2=\left(1+\frac{0.01}{3}\right)^{12 t} \Rightarrow 2=\left(\frac{3.01}{3}\right)^{12 t} \Rightarrow \ln 2=\ln \left(\frac{3.01}{3}\right)^{12 t} \Rightarrow$
$\ln 2=12 t \ln \left(\frac{3.01}{3}\right) \Rightarrow t=\frac{\ln 2}{12 \ln \left(\frac{3.01}{3}\right)} \approx 17.35754$
0.35754 year $=0.35754 \cdot 12 \approx 4.29048$ months

Thus, it will take approximately 17 years and 4 months for the investment to double in value if the interest is compounded monthly at a rate of 4%.

Answer: 17 years and 4 months

2d. $A=P e^{r t}$
Back to Problem 2.

$$
A=2 P, \quad r=4 \%=0.04
$$

$A=P e^{r t} \Rightarrow 2 P=P e^{0.04 t} \Rightarrow 2=e^{0.04 t} \Rightarrow \ln 2=\ln e^{0.04 t} \Rightarrow$
$\ln 2=0.04 t \ln e \Rightarrow \ln 2=0.04 t \Rightarrow \ln 2=\frac{4}{100} t \Rightarrow \ln 2=\frac{1}{25} t \Rightarrow$
$t=25 \ln 2=\ln 2^{25} \approx 17.32868$
0.32868 year $=0.32868 \cdot 12 \approx 3.94416$ months

Thus, it will take approximately 17 years and 4 months for the investment to double in value if the interest is compounded continuously at a rate of 4%.

Answer: 17 years and 4 months
3. $A=P e^{r t}$

Back to Problem 3.
$A=2 P, r=10 \%=0.1$
$A=P e^{r t} \Rightarrow 2 P=P e^{0.1 t} \Rightarrow 2=e^{0.1 t} \Rightarrow \ln 2=\ln e^{0.1 t} \Rightarrow$
$\ln 2=0.1 t \ln e \Rightarrow \ln 2=0.1 t \Rightarrow \ln 2=\frac{1}{10} t \Rightarrow$
$t=10 \ln 2=\ln 2^{10} \approx 6.931472$
0.931472 year $=0.931472 \cdot 12 \approx 11.17766$ months

Thus, it will take approximately 6 years and 11 months for the investment to double in value if the interest is compounded continuously at a rate of 10%.

Answer: 6 years and 11 months

4a.
$4 x+y=-7$
$3 x+5 y=16$
Back to Problem 4.

Use the first equation of $4 x+y=-7$ to solve for y in terms of x :

$$
4 x+y=-7 \Rightarrow y=-4 x-7
$$

Now, replace the y variable in the second equation of $3 x+5 y=16$ by the expression $-4 x-7$ and then solve for x :

$$
\begin{aligned}
& 3 x+5 y=16 \Rightarrow 3 x+5(-4 x-7)=16 \Rightarrow 3 x-20 x-35=16 \Rightarrow \\
& -17 x-35=16 \Rightarrow-17 x=51 \Rightarrow x=-3
\end{aligned}
$$

Now, use the equation $y=-4 x-7$ to find the value of y when $x=-3$:

$$
y=-4 x-7, x=-3 \Rightarrow y=-4(-3)-7=12-7=5
$$

Answer: (-3, 5)

NOTE: Geometrically, if you graph the two lines in the system of equations, the lines will intersect at the point $(-3,5)$.

$$
3 x+8 y=24
$$

$$
\text { 4b. } \quad x-16 y=-6
$$

Use the second equation of $x-16 y=-6$ to solve for x in terms of y :

$$
x-16 y=-6 \Rightarrow x=16 y-6
$$

Now, replace the x variable in the first equation of $3 x+8 y=24$ by the expression $16 y-6$ and then solve for y :
$3 x+8 y=24 \Rightarrow 3(16 y-6)+8 y=24 \Rightarrow 48 y-18+8 y=24 \Rightarrow$
$56 y-18=24 \Rightarrow 56 y=42 \Rightarrow y=\frac{42}{56}=\frac{21}{28}=\frac{3}{4}$
Now, use the equation $x=16 y-6$ to find the value of x when $y=\frac{3}{4}$:

$$
x=16 y-6, y=\frac{3}{4} \Rightarrow x=16\left(\frac{3}{4}\right)-6=12-6=6
$$

Answer: $\left(6, \frac{3}{4}\right)$
NOTE: Geometrically, if you graph the two lines in the system of equations, the lines will intersect at the point $\left(6, \frac{3}{4}\right)$.

4c.

$$
x+2=8 y
$$

$$
3(x-9)+10 y=1
$$

Back to Problem 4.

Simplifying the second equation, we obtain the equation $3 x+10 y=28$:

$$
3(x-9)+10 y=1 \Rightarrow 3 x-27+10 y=1 \Rightarrow 3 x+10 y=28
$$

Use the first equation of $x+2=8 y$ to solve for x in terms of y :

$$
x+2=8 y \Rightarrow x=8 y-2
$$

Now, replace the x variable in the simplified second equation of $3 x+10 y=28$ by the expression $x=8 y-2$ and then solve for y :

$$
\begin{aligned}
& 3 x+10 y=28 \Rightarrow 3(8 y-2)+10 y=28 \Rightarrow 24 y-6+10 y=28 \Rightarrow \\
& 34 y-6=28 \Rightarrow 34 y=34 \Rightarrow y=1
\end{aligned}
$$

Now, use the equation $x=8 y-2$ to find the value of x when $y=1$:

$$
x=8 y-2, y=1 \Rightarrow x=8(1)-2=8-2=6
$$

Answer: $(6,1)$
NOTE: Geometrically, if you graph the two lines in the system of equations, the lines will intersect at the point $(6,1)$.

4d.

$$
5 y=2 x-30
$$

$-6 x+y=8$
Back to Problem 4.

Use the second equation of $-6 x+y=8$ to solve for y in terms of x :

$$
-6 x+y=8 \Rightarrow y=6 x+8
$$

Now, replace the y variable in the first equation of $5 y=2 x-30$ by the expression $6 x+8$ and then solve for x :
$5 y=2 x-30 \Rightarrow 5(6 x+8)=2 x-30 \Rightarrow 30 x+40=2 x-30 \Rightarrow$
$28 x=-70 \Rightarrow x=-\frac{70}{28}=-\frac{10}{4}=-\frac{5}{2}$

Now, use the equation $y=6 x+8$ to find the value of y when $x=-\frac{5}{2}$:

$$
y=6 x+8, x=-\frac{5}{2} \Rightarrow y=6\left(-\frac{5}{2}\right)+8=-15+8=-7
$$

Answer: $\left(-\frac{5}{2},-7\right)$
NOTE: Geometrically, if you graph the two lines in the system of equations, the lines will intersect at the point $\left(-\frac{5}{2},-7\right)$.

$$
2(x+y)=11-14 x
$$

4 e.
$y+8 x=15$
Back to Problem 4.

Simplifying the first equation, we obtain the equation $16 x+2 y=11$:

$$
2(x+y)=11-14 x \Rightarrow 2 x+2 y=11-14 x \Rightarrow 16 x+2 y=11
$$

Use the second equation of $y+8 x=15$ to solve for y in terms of x :

$$
y+8 x=15 \Rightarrow y=15-8 x
$$

Now, replace the y variable in the simplified first equation of $16 x+2 y=11$ by the expression $15-8 x$ and then solve for x :
$16 x+2 y=11 \Rightarrow 16 x+2(15-8 x)=11 \Rightarrow 16 x+30-16 x=11 \Rightarrow$
$30=11$. This is a false equation. Thus, the system of equations does not have a solution.

Answer: No solution
NOTE: Geometrically, the two lines in the system of equations are parallel. Thus, the line will not intersect.

4f.

$$
\begin{aligned}
& x=2 y-5 \\
& 6 y-3 x=15
\end{aligned}
$$

Back to Problem 4.

NOTE: In the first equation, the x variable is already solved in terms of y : $x=2 y-5$

Replace the x variable in the second equation of $6 y-3 x=15$ by the expression $2 y-5$ and then solve for y :
$6 y-3 x=15 \Rightarrow 6 y-3(2 y-5)=15 \Rightarrow 6 y-6 y+15=15 \Rightarrow$
$15=15$. This is a true equation. Thus, solution to the system of equations is every point on the line $x=2 y-5$ or $y=\frac{1}{2} x+\frac{5}{2}$.

NOTE: The two equations in the system of equations represent the same line. If you solve both equations for y, you will obtain the equation

$$
y=\frac{1}{2} x+\frac{5}{2} .
$$

Answer: Every point on the line $y=\frac{1}{2} x+\frac{5}{2}$.
NOTE: Geometrically, the two lines in the system of equations are the same.
NOTE: We may also write the solution to this system of equations in the following way. Since $x=2 y-5$, then let $y=t$, where t represents any
real number. Then $x=2 y-5=2 t-5$. Then the solution to this system of equations may be written as the set $\{(2 t-5, t): t$ is any real number $\}$.

5a. $\begin{array}{r}4 x+y=-7 \\ 3 x+5 y=16\end{array}$ Back to Problem 5.

Multiply both sides of the first equation by -5 and then add both sides of the equations.

$$
\begin{aligned}
& 4 x+y=-7 \\
& 3 x+5 y=16
\end{aligned} \Rightarrow \begin{aligned}
&-20 x-5 y=35 \\
& \frac{3 x+5 y}{}=16 \\
&-17 x=51
\end{aligned} \Rightarrow x=-3
$$

Now, use the first equation to find the value of y when $x=-3$:
$4 x+y=-7 \Rightarrow-12+y=-7 \Rightarrow y=5$

Answer: (-3, 5)

NOTE: This is the same system of equations that we solve in Problem 4 a above.
$3 x+8 y=24$
5b.

$$
x-16 y=-6
$$

Back to Problem 5.

Multiply both sides of the second equation by -3 and then add both sides of the equations.

$$
\begin{aligned}
& 3 x+8 y=24 \\
& x-16 y=-6
\end{aligned} \Rightarrow \begin{array}{r}
3 x+8 y=24 \\
-3 x+48 y=18 \\
56 y=42
\end{array} \Rightarrow y=\frac{42}{56}=\frac{21}{28}=\frac{3}{4}
$$

Now, use the second equation to find the value of x when $y=\frac{3}{4}$:

$$
x-16 y=-6 \Rightarrow x-16\left(\frac{3}{4}\right)=-6 \Rightarrow x-12=-6 \Rightarrow x=6
$$

Answer: $\left(6, \frac{3}{4}\right)$
NOTE: This is the same system of equations that we solve in Problem 4b above.

5c.

$$
4 x+3 y=10
$$

$$
-5 x+6 y=-32
$$

Back to Problem 5.

Multiply both sides of the first equation by -2 and then add both sides of the equations.

$$
\begin{aligned}
& 4 x+3 y=10 \\
& -5 x+6 y=-32
\end{aligned} \Rightarrow \begin{aligned}
&-8 x-6 y=-20 \\
& \frac{-5 x+6 y}{}=-32 \\
&-13 x=-52
\end{aligned} \Rightarrow x=4
$$

Now, use the first equation to find the value of y when $x=4$:
$4 x+3 y=10, x=4 \Rightarrow 16+3 y=10 \Rightarrow 3 y=-6 \Rightarrow y=-2$

Answer: (4, - 2)

NOTE: Geometrically, if you graph the two lines in the system of equations, the lines will intersect at the point $(4,-2)$.
$8 x+3 y=-16$
5d.

$$
2 x-5 y=19
$$

Back to Problem 5.

Multiply both sides of the second equation by -4 and then add both sides of the equations.

$$
\begin{aligned}
& 8 x+3 y=-16 \\
& 2 x-5 y=19
\end{aligned} \Rightarrow \begin{aligned}
8 x+3 y & =-16 \\
\hline-8 x+20 y & =-76 \\
23 y & =-92
\end{aligned} \Rightarrow y=-4
$$

Now, use the second equation to find the value of x when $y=-4$:
$2 x-5 y=19, y=-4 \Rightarrow 2 x+20=19 \Rightarrow 2 x=-1 \Rightarrow x=-\frac{1}{2}$

Answer: $\left(-\frac{1}{2},-4\right)$
NOTE: Geometrically, if you graph the two lines in the system of equations, the lines will intersect at the point $\left(-\frac{1}{2},-4\right)$.
$8 x-6 y=-3$
5 e.

$$
5 x+4 y=-9
$$

Back to Problem 5.

Multiply both sides of the first equation by 2 and multiply the second equation by 3 and then add both sides of the equations.

$$
\begin{aligned}
& 16 x-12 y=-6 \\
& \begin{array}{l}
8 x-6 y=-3 \\
5 x+4 y=-9
\end{array} \Rightarrow \underline{15 x+12 y=-27} \\
& 31 x=-33 \Rightarrow x=-\frac{33}{31}
\end{aligned}
$$

Multiply the first equation by -5 and multiply the second equation by 8 and then add both sides of the equations.

$$
\begin{aligned}
8 x-6 y & =-3 \\
5 x+4 y & =-9
\end{aligned} \Rightarrow \begin{aligned}
-40 x+30 y & =15 \\
40 x+32 y & =-72 \\
62 y & =-57
\end{aligned} \Rightarrow y=-\frac{57}{62}
$$

Answer: $\left(-\frac{33}{31},-\frac{57}{62}\right)$
NOTE: Geometrically, if you graph the two lines in the system of equations, the lines will intersect at the point $\left(-\frac{33}{31},-\frac{57}{62}\right)$.
$-12 x+2 y=5$
$5 f$.
$6 x-y=9$
Back to Problem 5.

Multiply both sides of the second equation by 2 and then add both sides of the equations.
$-12 x+2 y=5$
$6 x-y=9$$\Rightarrow \begin{aligned} &-12 x+2 y=5 \\ & \frac{12 x-2 y}{}=18 \\ & 0=23\end{aligned}$
$0=23$ is a false equation. Thus, the system of equations doesn't have a solution.

Answer: No solution
NOTE: You can show that the two lines in this system of equations are parallel. Thus, they don't intersect.
6. Back to Problem 6.

Solution	Amount of Solution	Percent of Salt	Amount of Salt
6% Salt	x	$6 \%=0.06$	$0.06 x$
25% Salt	y	$25 \%=0.25$	$0.25 y$
20% Salt	38	$20 \%=0.2$	$0.2(38)=7.6$

We obtain the following equations: $x+y=38$ and $0.06 x+0.25 y=7.6$.

Thus, we need to solve the following system of equations:
$x+y=38$
$0.06 x+0.25 y=7.6$

We can simplify the second equation by multiplying both sides of the equation by 100 :

$$
0.06 x+0.25 y=7.6 \Rightarrow 6 x+25 y=760
$$

Use the first equation of $x+y=38$ to solve for x in terms of y :

$$
x+y=38 \Rightarrow x=38-y
$$

Now, replace the x variable in the simplified second equation of $6 x+25 y=760$ by the expression $38-y$ and then solve for y :
$6 x+25 y=760 \Rightarrow 6(38-y)+25 y=760 \Rightarrow$
$228-6 y+25 y=760 \Rightarrow 228+19 y=760 \Rightarrow 19 y=532 \Rightarrow$
$y=28$

Now, use the equation $x=38-y$ to find the value of x when $y=28$:
$x=38-y, y=28 x=38-28=10$

Answer: Amount of 6% salt solution: 10 liters
Amount of 25% salt solution: 28 liters

$$
\text { 7a. } \begin{aligned}
x-3 y-2 z & =-1 \\
3 x+y+5 z & =32 \\
-4 x+6 y-z & =-29
\end{aligned}
$$

Multiply the first equation by -3 and add this new equation to the second equation:

$$
\begin{aligned}
& \begin{array}{c}
x-3 y-2 z=-1 \\
3 x+y+5 z=32
\end{array} \Rightarrow \begin{array}{c}
-3 x+9 y+6 z=3 \\
3 x+y+5 z=32 \\
10 y+11 z=35
\end{array} \\
& x-3 y-2 z=-1 \\
& 3 x+y+5 z=32 \\
& -4 x+6 y-z=-29
\end{aligned}
$$

Now, multiply the first equation by 4 and add this new equation to the third equation:

$$
\begin{gathered}
x-3 y-2 z=-1 \\
x+6 y-z=-29
\end{gathered} \Rightarrow \frac{4 x-12 y-8 z=-4}{} \begin{gathered}
4 x+6 y-z=-29 \\
-6 y-9 z=-33
\end{gathered} \Rightarrow 2 y+3 z=11
$$

Now, solve this new system of equations: $\begin{aligned} 10 y+11 z & =35 \\ 2 y+3 z & =11\end{aligned}$

Multiply the second equation by -5 and then add both sides of the equations:

$$
\begin{array}{r}
10 y+11 z=35 \\
2 y+3 z=11
\end{array} \Rightarrow \begin{aligned}
10 y+11 z & =35 \\
-10 y-15 z & =-55 \\
-4 z & =-20
\end{aligned} \Rightarrow z=5
$$

Now, use the second equation in the new system of equations to find the value of y when $z=5$:

$$
2 y+3 z=11, z=5 \Rightarrow 2 y+15=11 \Rightarrow 2 y=-4 \Rightarrow y=-2
$$

Now, use the first equation in the original system of equations to find the value of x when $y=-2$ and $z=5$:
$x-3 y-2 z=-1, y=-2, z=5 \Rightarrow x+6-10=-1 \Rightarrow$
$x-4=-1 \Rightarrow x=3$

Answer: (3, - 2, 5)
NOTE: Geometrically, if you graph the three planes in the system of equations, the planes will intersect at the point $(3,-2,5)$.

$$
5 x+4 y-3 z=-36
$$

7 b .

$$
\begin{aligned}
3 x-2 y+7 z & =-15 \\
-2 x-6 y & +9 z
\end{aligned}=21
$$

Multiply the second equation by 2 and add this new equation to the first equation:

$$
\begin{aligned}
5 x+4 y-3 z & =-36 \\
3 x-2 y+7 z & =-15
\end{aligned} \Rightarrow \begin{aligned}
& 5 x+4 y-3 z=-36 \\
& \frac{6 x-4 y+14 z}{}=-30 \\
& 11 x+11 z=-66
\end{aligned} \Rightarrow x+z=-6
$$

Now, multiply the second equation by -3 and add this new equation to the third equation:

$$
\begin{aligned}
3 x-2 y+7 z & =-15 \\
-2 x-6 y+9 z & =21
\end{aligned} \Rightarrow \begin{aligned}
& -9 x+6 y-21 z=45 \\
& -2 x-6 y+9 z=21 \\
& -11 x-12 z=66
\end{aligned}
$$

$$
x+z=-6
$$

Now, solve this new system of equations:

$$
-11 x-12 z=66
$$

Multiply the first equation by 11 and then add both sides of the equations:

$$
\begin{aligned}
x+z & =-6 \\
-11 x-12 z & =66
\end{aligned} \Rightarrow \begin{aligned}
11 x+11 z & =-66 \\
-11 x-12 z & =66 \\
-z & =0
\end{aligned} \Rightarrow z=0
$$

Now, use the first equation in the new system of equations to find the value of x when $z=0$:
$x+z=-6, z=0 \Rightarrow x+0=-6 \Rightarrow x=-6$

Now, use the second equation in the original system of equations to find the value of y when $x=-6$ and $z=0$:
$3 x-2 y+7 z=-15, x=-6, z=0 \Rightarrow-18-2 y+0=-15 \Rightarrow$
$-18-2 y=-15 \Rightarrow-2 y=3 \Rightarrow y=-\frac{3}{2}$

Answer: $\left(-6,-\frac{3}{2}, 0\right)$

NOTE: Geometrically, if you graph the three planes in the system of equations, the planes will intersect at the point $\left(-6,-\frac{3}{2}, 0\right)$.

$$
2 x-7 z=19
$$

7c.

$$
3 y+z=9
$$

Back to Problem 7.

$$
4 x-5 y=-24
$$

Multiply the second equation by 7 and add this new equation to the first equation:

$$
2 x \quad \begin{aligned}
-7 z & =19 \\
3 y+z & =9
\end{aligned} \Rightarrow \begin{aligned}
-7 z & =19 \\
2 x y+7 z & =63 \\
2 x+21 y & =82
\end{aligned}
$$

Notice that the third equation in the system of equations is $4 x-5 y=-24$.

Now, solve this new system of equations: $\begin{aligned} & 2 x+21 y=82 \\ & 4 x-5 y=-24\end{aligned}$

Multiply the first equation by -2 and then add both sides of the equations:

$$
\begin{aligned}
& 2 x+21 y=82 \\
& 4 x-5 y=-24
\end{aligned} \Rightarrow \begin{array}{r}
-4 x-42 y=-164 \\
\frac{4 x-5 y=-24}{-47 y}=-188
\end{array} \Rightarrow y=4
$$

Now, use the second equation in the new system of equations to find the value of x when $y=4$:

$$
4 x-5 y=-24, y=4 \Rightarrow 4 x-20=-24 \Rightarrow 4 x=-4 \Rightarrow x=-1
$$

Now, use the second equation in the original system of equations to find the value of z when $y=4$:

$$
3 y+z=9, y=4 \Rightarrow 12+z=9 \Rightarrow z=-3
$$

Answer: (-1, 4, - 3)
NOTE: Geometrically, if you graph the three planes in the system of equations, the planes will intersect at the point $(-1,4,-3)$.

$$
2 x+3 y-5 z=-9
$$

7d.

$$
\begin{aligned}
& 6 x-9 y+7 z=5 \\
& 4 x-3 y+z=-2
\end{aligned}
$$

Multiply the third equation by 5 and add this new equation to the first equation:

$$
\begin{aligned}
& 2 x+3 y-5 z=-9 \\
& 4 x-3 y+z=-2
\end{aligned} \Rightarrow \begin{aligned}
& 2 x+3 y-5 z=-9 \\
& \frac{20 x-15 y+5 z}{}=-10 \\
& 22 x-12 y=-19 \\
& 2 x+3 y-5 z=-9 \\
& 6 x-9 y+7 z=5 \\
& 4 x-3 y+z=-2
\end{aligned}
$$

Now, multiply the third equation by -7 and add this new equation to the second equation:

$$
\begin{array}{r}
6 x-9 y+7 z=5 \\
4 x-3 y+z=-2
\end{array} \Rightarrow \begin{array}{r}
6 x-9 y+7 z=5 \\
\frac{-28 x+21 y-7 z}{}=14 \\
-22 x+12 y=19
\end{array}
$$

$$
22 x-12 y=-19
$$

Now, solve this new system of equations: $-22 x+12 y=19$

Notice that if you multiply the first equation by -1 , you will obtain the second equation in this new system. These two equations are the same equation.

Let $y=t$, where t is any real number. Now, use the first equation in the new system of equations to find the value of x when $y=t$:
$22 x-12 y=-19, y=t \Rightarrow 22 x-12 t=-19 \Rightarrow 22 x=12 t-19 \Rightarrow$
$x=\frac{12 t-19}{22}=\frac{6}{11} t-\frac{19}{22}$

Now, use the third equation in the original system of equations to find the value of z when $x=\frac{6}{11} t-\frac{19}{22}$ and $y=t$:
$4 x-3 y+z=-2, x=\frac{6}{11} t-\frac{19}{22}, y=t \Rightarrow$
$\frac{24}{11} t-\frac{38}{11}-3 t+z=-2 \Rightarrow \frac{24}{11} t-\frac{38}{11}-\frac{33}{11} t+z=-2 \Rightarrow$
$-\frac{9}{11} t-\frac{38}{11}+z=-\frac{22}{11} \Rightarrow z=\frac{9}{11} t+\frac{16}{11}$

Answer: $\left(\frac{6}{11} t-\frac{19}{22}, t, \frac{9}{11} t+\frac{16}{11}\right)=\left(\frac{12 t-19}{22}, t, \frac{9 t+16}{11}\right)$, where t is any real number

7e. $\quad 9 x-14 y+27 z=-30$

$$
3 x-5 y+7 z=-11
$$

Back to Problem 7.
$-12 x+23 y-10 z=57$

Multiply the first equation by -3 and add this new equation to the second equation:

$$
\begin{aligned}
3 x-5 y+7 z & =-11 \\
9 x-14 y+27 z & =-30
\end{aligned} \Rightarrow \begin{aligned}
-9 x+15 y-21 z & =33 \\
9 x-14 y+27 z & =-30 \\
y+6 z & =3
\end{aligned}
$$

$$
\begin{aligned}
3 x-5 y+7 z= & -11 \\
9 x-14 y+27 z= & -30 \\
-12 x+23 y-10 z= & 57
\end{aligned}
$$

Now, multiply the first equation by 4 and add this new equation to the third equation:

$$
\begin{aligned}
& 3 x-5 y+7 z=-11 \\
&-12 x+23 y-10 z=57
\end{aligned} \Rightarrow \begin{aligned}
12 x-20 y+28 z & =-44 \\
-12 x+23 y-10 z & =57 \\
\hline 3 y+18 z & =13
\end{aligned}
$$

$$
y+6 z=3
$$

Now, solve this new system of equations: $3 y+18 z=13$

Multiply the first equation by -3 and then add both sides of the equations:
$\begin{aligned} y+6 z & =3 \\ 3 y+18 z & =13\end{aligned} \Rightarrow \begin{aligned}-3 y-18 z & =-9 \\ 3 y+18 z & =13 \\ 0 & =4\end{aligned}$

The equation $0=4$ is a false equation. This means that this new system of equation in variables of y and z does not have a solution. This then means that the original system of equations also does not have a solution.

Answer: No Solution

