Pre-Class Problems 16  for Wednesday, March 28
These are the type of problems that you will be working on in class.

You can go to the solution for each problem by clicking on the problem letter.

Properties of Logarithmic Functions

1.
Use the properties of logarithms to write the following as a sum and/or difference of logarithms.  All variables represent positive numbers.
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2.
Write the following as a single logarithm.


a.   


b.   

c.   


d.   


e.   


f.   


g.   


h.   


i.   


j.   

3.
Use the change of base formula and a calculator to approximate the following.

a.   

b.   

c.   

d.   
4.
Solve the following logarithmic equations.
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Problems available in the textbook:  Page 450 … 7 – 68, 79b – 84b and Examples 1 – 6, 8 starting on page 443.    Problems available in the textbook:  Page 463 … 37 – 60 and Examples 6 – 10 starting on page 457.
SOLUTIONS:
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Back to Problem 1.


[image: image22.wmf]x

x

x

2

2

2

2

log

5

log

32

log

32

log

+

=

+

=



NOTE:  Since 
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Back to Problem 1.
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Back to Problem 1.
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NOTE:  Since 
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Back to Problem 1.
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Back to Problem 1.
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Back to Problem 1.
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Answer:  
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Back to Problem 1.
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NOTE:

[image: image54.wmf]4

6

3

7

6

4

3

7

6

log

log

log

y

x

y

x

+

=






[image: image55.wmf]x

x

x

6

3

/

7

6

3

7

6

log

3

7

log

log

=

=






[image: image56.wmf]y

y

y

6

4

/

1

6

4

6

log

4

1

log

log

=

=



Answer:  
[image: image57.wmf]y

x

6

6

log

4

1

log

3

7

+


1h.

[image: image58.wmf]8

2

4

/

1

)

5

3

(

4

log

+

+

x

x







Back to Problem 1.
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Back to Problem 1.
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NOTE:
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Back to Problem 1.
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[image: image74.wmf]3

4

3

2

3

4

3

2

)

7

4

(

ln

)

5

(

ln

)

7

4

(

)

5

(

ln

+

-

-

=

+

-

x

x

x

x

x

x





[image: image75.wmf])

5

(

ln

3

ln

)

5

(

ln

ln

)

5

(

ln

2

3

2

3

2

-

+

=

-

+

=

-

x

x

x

x

x

x





[image: image76.wmf])

7

4

(

ln

3

4

)

7

4

(

ln

)

7

4

(

ln

3

/

4

3

4

+

=

+

=

+

x

x

x


Answer:  
[image: image77.wmf])

7

4

(

ln

3

4

)

5

(

ln

3

ln

2

+

-

-

+

x

x

x


1k.

[image: image78.wmf])

9

4

(

)

7

(

5

3

log

3

2

4

3

3

/

1

-

+

+

x

x

x

x






Back to Problem 1.
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Back to Problem 1.
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Answer:  
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Back to Problem 2.
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Back to Problem 3.
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Back to Problem 4.

Using the definition of logarithm  (
[image: image93.wmf]x

y

b

log

=

 if and only if 
[image: image94.wmf]x

b

y

=
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Using square roots to solve the equation  
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Since the base of a logarithm can not be negative, then the solution of  
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Back to Problem 4.

Using the definition of logarithm  (
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Back to Problem 4.

Using the definition of logarithm  (
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We need to check that the number  
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  makes the argument of the logarithm positive since the logarithm of a negative number or zero is undefined.  The argument of  
[image: image114.wmf]x

3

log

  is  x.  Thus,  x  will be positive when  
[image: image115.wmf]9

1

=

x

.  Thus,  
[image: image116.wmf]9

1

 is a solution of the equation 
[image: image117.wmf]2

log

3

-

=

x

.  Of course, it is the only solution.

Answer:  
[image: image118.wmf]9

1

=

x


4d.

[image: image119.wmf]2

)

9

4

(

log

=

-

t







Back to Problem 4.

Recall that log is the notation for the common logarithm, and the base of the common logarithm is 10.  Using the definition of logarithm  (
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Solving the equation  
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Back to Problem 4.

First, we’ll use the property of logarithms that  
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Back to Problem 4.

In order to solve this equation, we will use the fact that any logarithm function is one-to-one.  Thus,  
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