Pre-Class Problems 11 for Wednesday, February 28
These are the type of problems that you will be working on in class.

You can go to the solution for each problem by clicking on the problem number or letter.
Discussion of zeros (roots) of polynomials and their multiplicity.

1.
Find the zeros (roots) and their multiplicities.  Discuss the implication of the multiplicity on the graph of the polynomial.
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Theorems on relative (local) extremum points (turning points).

2.
Find the zeros (roots) and their multiplicities.  Discuss the implication of the multiplicity on the graph of the polynomial.  Determine the sign of the infinity that the polynomial values approaches as  x  or  t  approaches positive infinity and negative infinity.  Determine whether the polynomial is even, odd, or neither in order to make use of symmetry if possible. Use this information to determine the number of relative (local) extremum points (turning points) that the graph of the polynomial has.  Sketch a graph of the polynomial.
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Problems available in the textbook:  Page 311 … 21 – 40, 59 – 80 and Examples 2 – 7 starting on page 304.
SOLUTIONS:

1a.
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Back to Problem 1.

Zeros (Roots) of  f :  
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Since the factor  x  produces the zero (root) of  0, its multiplicity is one.  Since the factor  
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Implication for the Graph
Zero (Root)
Multiplicity 

of the Polynomial
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Recall:  If the multiplicity of the zero (root) is odd, the graph of the polynomial crosses the x-axis, and if the multiplicity of the zero (root) is even, the graph of the polynomial touches the x-axis. 
1b.
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Back to Problem 1.

Zeros (Roots) of  g :  
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Since the factor  
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  produces the zero (root) of  0, its multiplicity is two.
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Implication for the Graph
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Multiplicity 

of the Polynomial
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Recall:  If the multiplicity of the zero (root) is odd, the graph of the polynomial crosses the x-axis, and if the multiplicity of the zero (root) is even, the graph of the polynomial touches the x-axis.
1c.
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Back to Problem 1.
To solve for the zeros (roots) of this polynomial, you we need to recall a technique of factoring called “factor by grouping.”


Zeros (Roots) of  h :  
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Since the factor  
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Recall:  If the multiplicity of the zero (root) is odd, the graph of the polynomial crosses the x-axis, and if the multiplicity of the zero (root) is even, the graph of the polynomial touches the x-axis.
1d.
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Back to Problem 1.

Zeros (Roots) of  p :  
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NOTE:  
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Since the factor  x  produces the zero (root) of  0, its multiplicity is one.  Since the factor  
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Recall:  If the multiplicity of the zero (root) is odd, the graph of the polynomial crosses the x-axis, and if the multiplicity of the zero (root) is even, the graph of the polynomial touches the x-axis.
1e.
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Back to Problem 1.

Zeros (Roots) of  q :  
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Since the factor  
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  produces the zero (root) of  6, its multiplicity is one.  Since the factor  
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Recall:  If the multiplicity of the zero (root) is odd, the graph of the polynomial crosses the x-axis, and if the multiplicity of the zero (root) is even, the graph of the polynomial touches the x-axis.
1f.
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Back to Problem 1.
For this problem, it will be helpful to recall the following special factoring formula:
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Of course, we also have that  
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Zeros (Roots) of  q :  
[image: image104.wmf]Þ

=

0

)

(

t

q

  
[image: image105.wmf]Þ

=

+

+

0

64

16

2

3

t

t

t




[image: image106.wmf]Þ

=

+

+

0

)

64

16

(

2

t

t

t

  
[image: image107.wmf]Þ

=

+

0

)

8

(

2

t

t

  
[image: image108.wmf]0

=

t

,  
[image: image109.wmf]8

-

=

t


Since the factor  t  produces the zero (root) of  0, its multiplicity is one.  Since the factor  
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Recall:  If the multiplicity of the zero (root) is odd, the graph of the polynomial crosses the t-axis, and if the multiplicity of the zero (root) is even, the graph of the polynomial touches the t-axis.
1g.
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Back to Problem 1.
NOTE:  The expression  
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  can be factored by grouping.


Zeros (Roots) of  f :  
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Since the factor  
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Recall:  If the multiplicity of the zero (root) is odd, the graph of the polynomial crosses the x-axis, and if the multiplicity of the zero (root) is even, the graph of the polynomial touches the x-axis.

1h.

[image: image129.wmf]2

3

4

12

5

3

)

(

x

x

x

x

g

-

+

=





Back to Problem 1.

Zeros (Roots) of  g :  
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Since the factor  
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  produces the zero (root) of  0, its multiplicity is two.  Since the factor  
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Recall:  If the multiplicity of the zero (root) is odd, the graph of the polynomial crosses the x-axis, and if the multiplicity of the zero (root) is even, the graph of the polynomial touches the x-axis.
1i.
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Back to Problem 2.
NOTE:  The expression  
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Zeros (Roots) of  h :  
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Since the factor  
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[image: image162.wmf]25

2

-

x

  produces the zeros (roots) of  
[image: image163.wmf]5

-
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Recall:  If the multiplicity of the zero (root) is odd, the graph of the polynomial crosses the x-axis, and if the multiplicity of the zero (root) is even, the graph of the polynomial touches the x-axis.
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Back to Problem 1.
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Recall:  If the multiplicity of the zero (root) is odd, the graph of the polynomial crosses the x-axis, and if the multiplicity of the zero (root) is even, the graph of the polynomial touches the x-axis.
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Back to Problem 1.
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Recall:  If the multiplicity of the zero (root) is odd, the graph of the polynomial crosses the x-axis, and if the multiplicity of the zero (root) is even, the graph of the polynomial touches the x-axis.
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Back to Problem 1.
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Recall:  If the multiplicity of the zero (root) is odd, the graph of the polynomial crosses the x-axis, and if the multiplicity of the zero (root) is even, the graph of the polynomial touches the x-axis.
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Back to Problem 1.
NOTE:  The expression  
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Recalling the difference of cubes factoring formula:
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Recall:  If the multiplicity of the zero (root) is odd, the graph of the polynomial crosses the x-axis, and if the multiplicity of the zero (root) is even, the graph of the polynomial touches the x-axis.
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Back to Problem 1.
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Recall:  If the multiplicity of the zero (root) is odd, the graph of the polynomial crosses the x-axis, and if the multiplicity of the zero (root) is even, the graph of the polynomial touches the x-axis.
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Recall:  If the multiplicity of the zero (root) is odd, the graph of the polynomial crosses the x-axis, and if the multiplicity of the zero (root) is even, the graph of the polynomial touches the x-axis.
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Back to Problem 1.
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Recall:  If the multiplicity of the zero (root) is odd, the graph of the polynomial crosses the x-axis, and if the multiplicity of the zero (root) is even, the graph of the polynomial touches the x-axis.
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Recall:  If the multiplicity of the zero (root) is odd, the graph of the polynomial crosses the x-axis, and if the multiplicity of the zero (root) is even, the graph of the polynomial touches the x-axis.
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Thus, the graph of  f  is symmetric through the origin.
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      The Drawing of this Sketch

Since the degree of the polynomial is 3, then the graph of the polynomial can have at most 2 local extremum points (turning points).

The graph of the continuous polynomial must cross the x-axis at the point  
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Recall:  If the multiplicity of the zero (root) is odd, the graph of the polynomial crosses the x-axis, and if the multiplicity of the zero (root) is even, the graph of the polynomial touches the x-axis.
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The polynomial is neither even nor odd:  
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Thus, the graph of the polynomial is not symmetric with respect to the y-axis nor the origin.

Here is the information about the zeros (roots) of the polynomial and the graph of the polynomial as  
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       The Drawing of this Sketch

Since the degree of the polynomial is 3, then the graph of the polynomial can have at most 2 local extremum points (turning points).

Since the graph touches at the origin, then there is a local extremum point (turning point) at the origin.  Since the graph of the continuous polynomial  must cross the x-axis at the point  
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, then there is another local extremum point (turning point) whose x-coordinate is between 0 and  
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.  We would need calculus in order to obtain information about this x-coordinate.

Thus, the graph of the polynomial has two local extremum points (turning points).
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Back to Problem 2.
To solve for the zeros (roots) of this polynomial, you we need to recall a technique of factoring called “factor by grouping.”
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Recall:  If the multiplicity of the zero (root) is odd, the graph of the polynomial crosses the x-axis, and if the multiplicity of the zero (root) is even, the graph of the polynomial touches the x-axis.
For infinitely large values of x, 
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The polynomial is neither even nor odd:
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Thus, the graph of the polynomial is not symmetric with respect to the y-axis nor the origin.

Here is the information about the zeros (roots) of the polynomial and the graph of the polynomial as  
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  The Drawing of this Sketch

Since the degree of the polynomial is 3, then the graph of the polynomial can have at most 2 local extremum points (turning points).

The graph of the continuous polynomial must cross the x-axis at the point  
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  and  4.  We would need calculus in order to obtain information about the x-coordinate of these two local extremum points.

Thus, the graph of the polynomial has two local extremum points (turning points).
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Back to Problem 2.

Zeros (Roots) of  p :  
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Since the factor  x  produces the zero (root) of  0, its multiplicity is one.  Since the factor  
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  produces the zeros (roots) of  
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Recall:  If the multiplicity of the zero (root) is odd, the graph of the polynomial crosses the x-axis, and if the multiplicity of the zero (root) is even, the graph of the polynomial touches the x-axis.
For infinitely large values of x, 
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Thus, the graph of  p  is symmetric through the origin.

Here is the information about the zeros (roots) of the polynomial and the graph of the polynomial as  
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  The Drawing of this Sketch

Since the degree of the polynomial is 3, then the graph of the polynomial can have at most 2 local extremum points (turning points).

The graph of the continuous polynomial must cross the x-axis at the origin.  If the graph had a local extremum point (turning point) for some  
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, then it would have to have a second one in order to pass through the origin.  Because the graph is symmetric through the origin, the graph would have to have two local extremum points (turning points) for  
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Thus, the graph of the polynomial has no local extremum points (turning points).
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Back to Problem 2.

Zeros (Roots) of  q :  
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Since the factor  
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  produces the zero (root) of  6, its multiplicity is one.  Since the factor  
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  produces the zero (root) of  3, its multiplicity is two.
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Recall:  If the multiplicity of the zero (root) is odd, the graph of the polynomial crosses the x-axis, and if the multiplicity of the zero (root) is even, the graph of the polynomial touches the x-axis.
For infinitely large values of x, 
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The polynomial is neither even nor odd.  Thus, the graph of the polynomial is not symmetric with respect to the y-axis nor the origin.

Here is the information about the zeros (roots) of the polynomial and the graph of the polynomial as  
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  The Drawing of this Sketch

Since the degree of the polynomial is 3, then the graph of the polynomial can have at most 2 local extremum points (turning points).

Since the graph touches at the point  
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, then there is a local extremum point (turning point) at this point.  Since the graph of the continuous polynomial  must cross the x-axis at the point  
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, then there is another local extremum point (turning point) whose x-coordinate is between 3 and  6.  We would need calculus in order to obtain information about this x-coordinate.

Thus, the graph of the polynomial has two local extremum points (turning points).
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Back to Problem 2.
For this problem, it will be helpful to recall the following special factoring formula:
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Of course, we also have that  
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Zeros (Roots) of  q :  
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Since the factor  t  produces the zero (root) of  0, its multiplicity is one.  Since the factor  
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Recall:  If the multiplicity of the zero (root) is odd, the graph of the polynomial crosses the t-axis, and if the multiplicity of the zero (root) is even, the graph of the polynomial touches the t-axis.
For infinitely large values of t, 
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The polynomial is neither even nor odd.  Thus, the graph of the polynomial is not symmetric with respect to the y-axis nor the origin.  

Here is the information about the zeros (roots) of the polynomial and the graph of the polynomial as  
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  The Drawing of this Sketch

Since the degree of the polynomial is 3, then the graph of the polynomial can have at most 2 local extremum points (turning points).

Since the graph touches at the point  
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, then there is a local extremum point (turning point) at this point.  Since the graph of the continuous polynomial  must cross the t-axis at the origin, then there is another local extremum point (turning point) whose t-coordinate is between  
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 and  0.  We would need calculus in order to obtain information about this t-coordinate.

Thus, the graph of the polynomial has two local extremum points (turning points).
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Back to Problem 2.
NOTE:  The expression  
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  can be factored by grouping.


Zeros (Roots) of  f :  
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Since the factor  
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  produces the zero (root) of  2, its multiplicity is one.  Since the factor  
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Recall:  If the multiplicity of the zero (root) is odd, the graph of the polynomial crosses the x-axis, and if the multiplicity of the zero (root) is even, the graph of the polynomial touches the x-axis.
For infinitely large values of x, 
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The polynomial is neither even nor odd.  Thus, the graph of the polynomial is not symmetric with respect to the y-axis nor the origin.

Here is the information about the zeros (roots) of the polynomial and the graph of the polynomial as  
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Since the degree of the polynomial is 3, then the graph of the polynomial can have at most 2 local extremum points (turning points).

The graph of the continuous polynomial could have no local extremum points (turning points) or it could have two local extremum points (turning points).  There is not enough information from the zeros (roots) and the graph is not symmetric to the y-axis nor the origin.  We need calculus in order to get information about the local extremum point(s).
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Back to Problem 2.

Zeros (Roots) of  g :  
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The polynomial is neither even nor odd.  Thus, the graph of the polynomial is not symmetric with respect to the y-axis nor the origin.
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   The Drawing of this Sketch

Since the degree of the polynomial is 4, then the graph of the polynomial can have at most 3 local extremum points (turning points).
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Recall:  If the multiplicity of the zero (root) is odd, the graph of the polynomial crosses the x-axis, and if the multiplicity of the zero (root) is even, the graph of the polynomial touches the x-axis.
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The polynomial is even.  Thus, the graph of  h  is symmetric about the y-axis.  
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      The Drawing of this Sketch

Since the degree of the polynomial is 4, then the graph of the polynomial can have at most 3 local extremum points (turning points).

The graph of the continuous polynomial must cross the x-axis at the point  
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2j.

[image: image579.wmf]49

56

16

)

(

2

4

-

+

-

=

x

x

x

f





Back to Problem 2.
The expression  
[image: image580.wmf]49

56

16

2

4

-

+

-

x

x

  is quadratic in  
[image: image581.wmf]2

x

.  Thus, it factors like  
[image: image582.wmf]49

56

16

2

-

+

-

u

u

, where  
[image: image583.wmf]2

x

u

=

.  Since  
[image: image584.wmf]49

56

16

2

-

+

-

u

u

  =  
[image: image585.wmf])

49

56

16

(

2

+

-

-

u

u

  =  
[image: image586.wmf]2

)

7

4

(

-

-

u

, then  
[image: image587.wmf]49

56

16

2

4

-

+

-

x

x

  = 
[image: image588.wmf]2

2

)

7

4

(

-

-

x


NOTE:  We used the special factoring formula  
[image: image589.wmf]2

2

2

)

(

2

b

a

b

b

a

a

-

=

+

-

 to factor  
[image: image590.wmf]49

56

16

2

+

-

u

u

  since  
[image: image591.wmf]49

56

16

2

+

-

u

u

  =


[image: image592.wmf]2

2

7

)

28

(

2

)

4

(

+

-

u

u

.


Zeros (Roots) of  f :  
[image: image593.wmf]Þ

=

0

)

(

x

f

  
[image: image594.wmf]Þ

=

-

+

-

0

49

56

16

2

4

x

x




[image: image595.wmf]Þ

=

-

-

0

)

7

4

(

2

2

x

  
[image: image596.wmf]Þ

=

-

0

7

4

2

x

  
[image: image597.wmf]2

7

±

=

x


Since the factor  
[image: image598.wmf]2

2

)

7

4

(

-

x

  produces the zeros (roots) of  
[image: image599.wmf]2

7

-

  and  
[image: image600.wmf]2

7

, the multiplicity of each zero (root) is two.









Implication for the Graph
Zero (Root)
Multiplicity 

of the Polynomial

  
[image: image601.wmf]2

7

-


       
        2


Touches the x-axis at  
[image: image602.wmf]÷

÷

ø

ö

ç

ç

è

æ

-

0

,

2

7



   
[image: image603.wmf]2

7



       
        2


Touches the x-axis at  
[image: image604.wmf]÷

÷

ø

ö

ç

ç

è

æ

0

,

2

7


Recall:  If the multiplicity of the zero (root) is odd, the graph of the polynomial crosses the x-axis, and if the multiplicity of the zero (root) is even, the graph of the polynomial touches the x-axis.
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The polynomial is even.  Thus, the graph of  f  is symmetric about the y-axis.  
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    The Drawing of this Sketch

Since the degree of the polynomial is 4, then the graph of the polynomial can have at most 3 local extremum points (turning points).

Since the graph of the continuous polynomial touches the x-axis at the point  
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Thus, the graph of the polynomial has three local extremum points (turning points).
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Recall:  If the multiplicity of the zero (root) is odd, the graph of the polynomial crosses the x-axis, and if the multiplicity of the zero (root) is even, the graph of the polynomial touches the x-axis.
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The polynomial is even.  Thus, the graph of  p  is symmetric about the y-axis.  
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   The Drawing of this Sketch

Since the degree of the polynomial is 4, then the graph of the polynomial can have at most 3 local extremum points (turning points).

The graph of the continuous polynomial must cross the x-axis at the point  
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Thus, the graph of the polynomial has one local extremum points (turning points).
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Back to Problem 2.
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Recall:  If the multiplicity of the zero (root) is odd, the graph of the polynomial crosses the x-axis, and if the multiplicity of the zero (root) is even, the graph of the polynomial touches the x-axis.
For infinitely large values of x, 
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The polynomial is neither even nor odd.  Thus, the graph of the polynomial is not symmetric with respect to the y-axis nor the origin.
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Since the degree of the polynomial is 4, then the graph of the polynomial can have at most 3 local extremum points (turning points).

The graph of the continuous polynomial must cross the x-axis at the origin.  Then the graph must cross the x-axis at the point  
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Thus, the graph of the polynomial has one or three local extremum points (turning points).
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Back to Problem 2.
NOTE:  The expression  
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Recalling the difference of cubes factoring formula:
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Using the Quadratic Formula to solve  
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Recall:  If the multiplicity of the zero (root) is odd, the graph of the polynomial crosses the x-axis, and if the multiplicity of the zero (root) is even, the graph of the polynomial touches the x-axis.
For infinitely large values of x, 
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The polynomial is neither even nor odd.

Here is the information about the zeros (roots) of the polynomial and the graph of the polynomial as  
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Since the degree of the polynomial is 4, then the graph of the polynomial can have at most 3 local extremum points (turning points).

The graph of the continuous polynomial must cross the x-axis at the point  
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Thus, the graph of the polynomial has one or three local extremum points (turning points).
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Back to Problem 2.

Zeros (Roots) of  g :  
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Since the factor  
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Recall:  If the multiplicity of the zero (root) is odd, the graph of the polynomial crosses the x-axis, and if the multiplicity of the zero (root) is even, the graph of the polynomial touches the x-axis.
For infinitely large values of t, 
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The polynomial is neither even nor odd. 

Here is the information about the zeros (roots) of the polynomial and the graph of the polynomial as  
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      The Drawing of this Sketch

Since the degree of the polynomial is 4, then the graph of the polynomial can have at most 3 local extremum points (turning points).

Since the graph of the continuous polynomial touches the t-axis at the origin, then there is a local extremum point (turning point) at the origin.   Then the graph must touch the t-axis at the point  
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.  In order for this to happen, there must be a local extremum point (turning point) whose t-coordinate is between  0  and  4.    We would need calculus in order to obtain information about the t-coordinate of this local extremum point (turning point).  Since the graph touches at the point 
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Thus, the graph of the polynomial has three local extremum points (turning points).

COMMENT:  It appears that the graph of the polynomial g is symmetric about the vertical line  
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The polynomial  h  is an even function since  
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  Thus, the graph of the polynomial  h  is symmetric about the y-axis in the  xy-plane.
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Definition  A real or complex number z  is called a zero or a root of the polynomial  p  if and only if  
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Proof  Recall the following properties for conjugates.
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NOTE:  This proof is easier to read (and type) if we make use of summation notation
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Theorem  Let  a  be a real number.  Let  p  be any polynomial.  Then the following statements are equivalent.
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Definition  Let  p  be any polynomial.  If  
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Theorem  Let  p  be any polynomial.  Let  a  be a real number.  If  
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Back to Top
Theorem  (The Fundamental Theorem of Algebra)  An  nth degree polynomial has at most  n  zeros (roots).  If you count the multiplicity of the zero (root), then an  nth degree polynomial has exactly  n  zeros (roots).

Theorem  An  nth degree polynomial has at most 
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 relative (local) extremum points (turning points).

Information about local extremum points can be obtained using calculus.

Theorem  If  a  and  b  are real zeros (roots) of a polynomial and  
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, then the polynomial has at least one relative (local) extremum point whose x-coordinate is between  a  and  b.
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