\qquad
\qquad
INSTRUCTIONS: You must show enough work to justify your answer on ALL problems. Correct answers with no work (or inconsistent work) shown will not receive full credit. All answers are to be exact; no decimal approximations. You are NOT allowed to use any electronic device for this exam.

1. Find the domain of the function $f(x)=\frac{x+2}{x^{2}-16}$. Write your answer using interval notation. (4 pts.)

Answer \qquad
2. Write the equation of the circle in standard form given the following information. Put a box around your answer.
a. Center: $(-3,7)$; Radius: 6 (4 pts.)
b. The center is $(2,-5)$ and the point $(-6,4)$ is a point on the circle. (6 pts.)
3. Write the quadratic function $y=3 x^{2}-8 x-5$ in standard form. Then identify the vertex and the axis of symmetry. (8 pts .)
\qquad
\qquad
4. If $g(x)=2 x^{2}-9 x$, then find the average rate of change of the function g on the interval [4, $\left.4+h\right]$, where $h>0$. (8 pts.)

Answer \qquad
5. If $f(x)=5 x^{2}+2 x$ and $g(x)=x-3$, then find $(f \circ g)(x)$. (5 pts.)

Answer \qquad
6. Sketch the graph of $h(x)=\sqrt[3]{6 x-18}$. (5 pts.)

7. Sketch the graph of the function $f(x)=4(x+7)^{2}-12$ and identify the following.
a. horizontal shift \qquad (2 pts.)
b. vertical shift \qquad (2 pts.)
c. range of the function \qquad (3 pts.)
d. interval(s) on which the function is increasing \qquad (2 pts.)
e. interval(s) on which the function is decreasing \qquad (2 pts.)
f. value of relative (local) maximum(s) and location(s) \qquad (2 pts.)
g. value of relative (local) minimum(s) and location(s) \qquad (2 pts.)
h. $\quad x$-intercept(s) \qquad (5 pts.)
i. sketch: (3 pts.)

8. If $g(x)=2 x^{4}+9 x^{3}-12 x-28$, then use the Remainder Theorem to find $g(-6)$. (5 pts.)

Answer \qquad
9. Identify the possible rational zeros (roots) of the polynomial $h(x)=3 x^{3}-8 x^{2}-20 x+16$. Then find the zeros (roots), their multiplicities, and determine what implication the multiplicity of the zero (root) has on the graph of the polynomial. Write a factorization for $h(x)$. Determine the sign of the
infinity that the polynomial values approaches as x approaches positive infinity and negative infinity. Then sketch a graph of the polynomial. (20 pts.)

Possible rational zeros (roots) \qquad
Zero (Root) Multiplicity Implication on the Graph

Factorization for $h(x)=$ \qquad
As $x \rightarrow \infty, h(x) \rightarrow$ \qquad
As $x \rightarrow-\infty, h(x) \rightarrow$ \qquad
10. Solve $\frac{x+6}{4 x-7} \geq 0$. Write your answer using interval notation. (8 pts.)

Answer \qquad
11. Find the zeros (roots) and their multiplicities of $f(x)=x(7 x+12)^{3}(9-4 x)^{2}$. Determine what implication the multiplicity of the zero (root) has on the graph of the polynomial. (6 pts.)

Zero (Root) Multiplicity Implication on the Graph
12. Find a polynomial p of degree 3 with zeros (roots) $\frac{5}{3}, 4+\sqrt{5}$ and $4-\sqrt{5}$ each of multiplicity 1 . (8 pts.)

Answer \qquad

