LESSON 9 EXPONENTIAL FUNCTIONS

Definition The exponential function f with base b is the function defined by $f(x) = b^x$, where b > 0 and $b \ne 1$.

The domain of f is the set of real numbers. That is, the domain of f is $(-\infty, \infty)$.

The range of f is the set of positive real numbers. That is, the range of f is $(0, \infty)$.

Definition The natural exponential function is the exponential function whose base is the irrational number *e*. Thus, the natural exponential function is the function defined by $f(x) = e^x$, where e = 2.718281828...

Notation: Sometimes, e^x is written $\exp(x)$.

Recall the following properties of exponents, where m and n be integers:

- 1. $(a^m)^n = a^{mn}$
- $2. \qquad a^m a^n = a^{m+n}$

3. If
$$a \neq 0$$
, then $\frac{a^m}{a^n} = a^{m-n}$ if $m > n$ OR $\frac{a^m}{a^n} = \frac{1}{a^{n-m}}$ if $n > m$.

4. If $a \neq 0$, then $a^0 = 1$.

5. If
$$a \neq 0$$
 and *n* is positive, then $a^{-n} = \frac{1}{a^n}$.

 $6. \qquad (ab)^n = a^n b^n$

7. If
$$b \neq 0$$
, then $\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$

Copyrighted by James D. Anderson, The University of Toledo www.math.utoledo.edu/~janders/1320 8. If $a \neq 0$ and $b \neq 0$ and *n* is positive, then $\left(\frac{a}{b}\right)^{-n} = \left(\frac{b}{a}\right)^{n}$.

9.
$$a^{m/n} = \sqrt[n]{a^m}$$

Examples Graph the following exponential functions.

$$1. \quad f(x) = 3^x$$

In order to graph the function f given by $f(x) = 3^x$, we set f(x) = yand graph the equation $y = 3^x$.

The **Drawing** of this Graph

The y-intercept of the graph of the function is the point (0, 1).

Note that as $x \to \infty$, $y = 3^x \to \infty$ and as $x \to -\infty$, $y = 3^x \to 0$.

Since as $x \to -\infty$, $y = 3^x \to 0$, then the horizontal line of y = 0, which is the *x*-axis, is a horizontal asymptote of the graph of the function.

$$2. \qquad g(x) = \left(\frac{1}{2}\right)^x$$

In order to graph the function g given by $g(x) = \left(\frac{1}{2}\right)^x$, we set g(x) = yand graph the equation $y = \left(\frac{1}{2}\right)^x$.

$$\left(\frac{1}{2}\right)^x = (2^{-1})^x = 2^{-x}$$

The y-intercept of the graph of the function is the point (0, 1).

Note that as
$$x \to \infty$$
, $y = \left(\frac{1}{2}\right)^x \to 0$ and as $x \to -\infty$, $y = \left(\frac{1}{2}\right)^x \to \infty$.

Since as $x \to \infty$, $y = \left(\frac{1}{2}\right)^x \to 0$, then the horizontal line of y = 0, which is the *x*-axis, is a horizontal asymptote of the graph of the function.

3. $h(x) = 4^{-x}$

In order to graph the function h given by $h(x) = 4^{-x}$, we set h(x) = y and graph the equation $y = 4^{-x}$.

x	У
- 2	16
- 1	4
0	1
1	$\frac{1}{4}$
2	$\frac{1}{16}$
	10

The Drawing of this Graph

NOTE:
$$4^{-x} = (4^{-1})^x = \left(\frac{1}{4}\right)^x$$

The y-intercept of the graph of the function is the point (0, 1).

Note that as $x \to \infty$, $y = 4^{-x} \to 0$ and as $x \to -\infty$, $y = 4^{-x} \to \infty$.

Since as $x \to \infty$, $y = 4^{-x} \to 0$, then the horizontal line of y = 0, which is the *x*-axis, is a horizontal asymptote of the graph of the function.

$$4. \qquad y = \left(\frac{3}{5}\right)^{-x}$$

NOTE:
$$\left(\frac{3}{5}\right)^{-x} = \left(\frac{5}{3}\right)^{x}$$

The y-intercept of the graph of the function is the point (0, 1).

Note that as
$$x \to \infty$$
, $y = \left(\frac{3}{5}\right)^{-x} \to \infty$ and as $x \to -\infty$, $y = \left(\frac{3}{5}\right)^{-x} \to 0$.

Since as $x \to -\infty$, $y = \left(\frac{3}{5}\right)^{-x} \to 0$, then the horizontal line of y = 0, which is the *x*-axis, is a horizontal asymptote of the graph of the function.

$$5. \qquad f(x) = e^x$$

In order to graph the function f given by $f(x) = e^x$, we set f(x) = yand graph the equation $y = e^x$.

The **Drawing** of this Graph

The y-intercept of the graph of the function is the point (0, 1).

Note that as $x \to \infty$, $y = e^x \to \infty$ and as $x \to -\infty$, $y = e^x \to 0$.

Since as $x \to -\infty$, $y = e^x \to 0$, then the horizontal line of y = 0, which is the *x*-axis, is a horizontal asymptote of the graph of the function.

6. $g(x) = 3(2^x)$

In order to graph the function g given by $g(x) = 3(2^x)$, we set g(x) = y and graph the equation $y = 3(2^x)$.

The Drawing of this Graph

The y-intercept of the graph of the function is the point (0, 3).

Note that as $x \to \infty$, $y = 3(2^x) \to \infty$ and as $x \to -\infty$, $y = 3(2^x) \to 0$.

Since as $x \to -\infty$, $y = 3(2^x) \to 0$, then the horizontal line of y = 0, which is the *x*-axis, is a horizontal asymptote of the graph of the function.

7.
$$h(x) = -4\left(\frac{2}{3}\right)^x$$

In order to graph the function h given by $h(x) = -4\left(\frac{2}{3}\right)^x$, we set h(x) = y and graph the equation $y = -4\left(\frac{2}{3}\right)^x$.

NOTE:	$h(-3) = -4\left(\frac{2}{3}\right)^{-3} = -4\left(\frac{3}{2}\right)^{3} = -4\left(\frac{27}{8}\right) = -\frac{27}{2}$
	$h(-2) = -4\left(\frac{2}{3}\right)^{-2} = -4\left(\frac{3}{2}\right)^{2} = -4\left(\frac{9}{4}\right) = -9$
	$h(-1) = -4\left(\frac{2}{3}\right)^{-1} = -4\left(\frac{3}{2}\right) = -6$
	$h(1) = -4\left(\frac{2}{3}\right) = -\frac{8}{3}$
	$h(2) = -4\left(\frac{2}{3}\right)^2 = -4\left(\frac{4}{9}\right) = -\frac{16}{9}$
	$(2)^{3}$ (8) 32

The Drawing of this Graph

The y-intercept of the graph of the function is the point (0, -4).

Note that as
$$x \to \infty$$
, $y = -4\left(\frac{2}{3}\right)^x \to 0$ and as $x \to -\infty$,
 $y = -4\left(\frac{2}{3}\right)^x \to -\infty$.

Since $x \to \infty$, $y = -4\left(\frac{2}{3}\right)^x \to 0$, then the horizontal line of y = 0, which is the *x*-axis, is a horizontal asymptote of the graph of the function.

8.
$$f(t) = -\frac{3}{7} \left(\frac{5}{4}\right)^t$$

In order to graph the function f given by $f(t) = -\frac{3}{7} \left(\frac{5}{4}\right)^t$, we set f(t) = y and graph the equation $y = -\frac{3}{7} \left(\frac{5}{4}\right)^t$.

NOTE:
$$f(-3) = -\frac{3}{7} \left(\frac{5}{4}\right)^{-3} = -\frac{3}{7} \left(\frac{4}{5}\right)^3 = -\frac{3}{7} \left(\frac{64}{125}\right) = -\frac{192}{875}$$

$$f(-2) = -\frac{3}{7} \left(\frac{5}{4}\right)^{-2} = -\frac{3}{7} \left(\frac{4}{5}\right)^{2} = -\frac{3}{7} \left(\frac{16}{25}\right) = -\frac{48}{175}$$

$$f(-1) = -\frac{3}{7} \left(\frac{5}{4}\right)^{-1} = -\frac{3}{7} \left(\frac{4}{5}\right) = -\frac{12}{35}$$

$$f(1) = -\frac{3}{7} \left(\frac{5}{4}\right) = -\frac{15}{28}$$

$$f(2) = -\frac{3}{7} \left(\frac{5}{4}\right)^2 = -\frac{3}{7} \left(\frac{25}{16}\right) = -\frac{75}{112}$$

$$f(3) = -\frac{3}{7} \left(\frac{5}{4}\right)^3 = -\frac{3}{7} \left(\frac{125}{64}\right) = -\frac{375}{448}$$

$$f(5) = -\frac{3}{7} \left(\frac{5}{4}\right)^5 = -\frac{3}{7} \left(\frac{3125}{1024}\right) = -\frac{9375}{7168}$$

$$f(8) = -\frac{3}{7} \left(\frac{5}{4}\right)^8 = -\frac{3}{7} \left(\frac{390625}{65536}\right) = -\frac{1171875}{458752} \approx -2.55$$

$$f(11) = -\frac{3}{7} \left(\frac{5}{4}\right)^{11} = -\frac{3}{7} \left(\frac{48828125}{4194304}\right) = -\frac{146484375}{29360128} \approx -4.99$$

$$f(14) = -\frac{3}{7} \left(\frac{5}{4}\right)^{14} = -\frac{18310546875}{1879048192} \approx -9.74$$

The *y*-intercept of the graph of the function is the point $\left(0, -\frac{3}{7}\right)$.

Note that as
$$t \to \infty$$
, $y = -\frac{3}{7} \left(\frac{5}{4}\right)^t \to \infty$ and as $t \to -\infty$,
 $y = -\frac{3}{7} \left(\frac{5}{4}\right)^t \to 0$.

Since as $t \to -\infty$, $y = -\frac{3}{7} \left(\frac{5}{4}\right)^t \to 0$, then the horizontal line of y = 0, which is the *t*-axis, is a horizontal asymptote of the graph of the function.

9.
$$g(t) = 2e^{-t}$$

_

In order to graph the function g given by $g(t) = 2e^{-t}$, we set g(t) = yand graph the equation $y = 2e^{-t}$.

t	У
- 3	$2e^3 \approx 40.1711$
- 2	$2e^2 \approx 14.7781$
- 1	$2e \approx 5.4366$
0	2
1	$2e^{-1} \approx 0.7258$
2	$2e^{-2} \approx 0.2707$
3	$2e^{-3} \approx 0.0996$
I	

The Drawing of this Graph

The y-intercept of the graph of the function is the point (0, 2).

Note that as
$$t \to \infty$$
, $y = 2e^{-t} \to 0$ and as $t \to -\infty$, $y = 2e^{-t} \to \infty$.

Since as $t \to \infty$, $y = 2e^{-t} \to 0$, then the horizontal line of y = 0, which is the *t*-axis, is a horizontal asymptote of the graph of the function.

10. $h(t) = -3^t$

In order to graph the function h given by $h(t) = -3^t$, we set h(t) = yand graph the equation $y = -3^t$.

The Drawing of this Graph

The y-intercept of the graph of the function is the point (0, -1).

Note that as $t \to \infty$, $y = -3^t \to -\infty$ and as $t \to -\infty$, $y = -3^t \to 0$.

Since as $t \to -\infty$, $y = -3^t \to 0$, then the horizontal line of y = 0, which is the *t*-axis, is a horizontal asymptote of the graph of the function.

The y-intercept of the graph of the function is the point (0, 1).

The horizontal line y = 0, which is the *x*-axis, is a horizontal asymptote of the graph of the function.

The y-intercept of the graph of the function is the point (0, 1).

The horizontal line y = 0, which is the x-axis, is a horizontal asymptote of the graph of the function.

Let a > 0. The sketch of the graph of $y = a(b^x)$, where b > 1 **OR** the sketch of the graph of $y = a(b^{-x})$, where 0 < b < 1:

The y-intercept of the graph of the function is the point (0, a).

The horizontal line y = 0, which is the *x*-axis, is a horizontal asymptote of the graph of the function.

Let a > 0. The sketch of the graph of $y = a(b^x)$, where 0 < b < 1 OR the sketch of the graph of $y = a(b^{-x})$, where b > 1:

The y-intercept of the graph of the function is the point (0, a).

The horizontal line y = 0, which is the *x*-axis, is a horizontal asymptote of the graph of the function.

Let a > 0. The sketch of the graph of $y = -a(b^x)$, where b > 1 **OR** the sketch of the graph of $y = -a(b^{-x})$, where 0 < b < 1:

The y-intercept of the graph of the function is the point (0, -a).

The horizontal line y = 0, which is the *x*-axis, is a horizontal asymptote of the graph of the function.

Let a > 0. The sketch of the graph of $y = -a(b^x)$, where 0 < b < 1 OR the sketch of the graph of $y = -a(b^{-x})$, where b > 1:

The y-intercept of the graph of the function is the point (0, -a).

The horizontal line y = 0, which is the x-axis, is a horizontal asymptote of the graph of the function.

Examples Sketch the graph of the following functions. State the domain of the function and use the sketch to state the range of the function.

1.
$$f(x) = 5^x + 3$$

The domain of f is the set of all real numbers.

To graph the function f, we set f(x) = y and graph the equation $y = 5^x + 3$.

 $y = 5^x + 3 \implies y - 3 = 5^x$

The graph of $y - 3 = 5^x$ is the graph of $y = 5^x$ shifted 3 units upward.

The Drawing of this Sketch

The range of f is $(3, \infty)$. Note that the y-intercept is the point (0, 4).

NOTE: The vertical shift of 3 units upward is determined from the expression y - 3 in the equation $y - 3 = 5^x$.

2. $g(x) = e^{-x} - 4$

The domain of g is the set of all real numbers.

To graph the function g, we set g(x) = y and graph the equation $y = e^{-x} - 4$.

 $y = e^{-x} - 4 \implies y + 4 = e^{-x}$

The graph of $y + 4 = e^{-x}$ is the graph of $y = e^{-x}$ shifted 4 units downward.

The Drawing of this Sketch

The range of g is $(-4, \infty)$. Note that the y-intercept is the point (0, -3).

NOTE: The vertical shift of 4 units downward is determined from the expression y + 4 in the equation $y + 4 = e^{-x}$.

3.
$$h(t) = 7\left(\frac{3}{4}\right)^{t-5}$$

The domain of h is the set of all real numbers.

To graph the function *h*, we set h(t) = y and graph the equation $y = 7\left(\frac{3}{4}\right)^{t-5}$.

The Drawing of this Sketch

The range of h is $(0, \infty)$.

The y-coordinate of the y-intercept is obtained by setting t = 0 in the equation $y = 7\left(\frac{3}{4}\right)^{t-5}$. Thus, we have that $y = 7\left(\frac{3}{4}\right)^{-5} = 7\left(\frac{4}{3}\right)^5 = 7\left(\frac{1024}{243}\right) = \frac{7168}{243}$. Thus, the y-intercept is the point $\left(0, \frac{7168}{243}\right)$.

NOTE: The horizontal shift of 5 units to the right is determined from the expression t - 5 in the equation $y = 7\left(\frac{3}{4}\right)^{t-5}$.

4. $y = 8^{x+2} + 6$

The domain of the function is the set of all real numbers.

$$y = 8^{x+2} + 6 \implies y - 6 = 8^{x+2}$$

The graph of $y - 6 = 8^{x+2}$ is the graph of $y = 8^x$ shifted 2 units to the left and 6 units upward.

The Drawing of this Sketch

The range of the function is $(6, \infty)$.

The y-coordinate of the y-intercept is obtained by setting x = 0 in the equation $y = 8^{x+2} + 6$. Thus, we have that $y = 8^2 + 6 = 64 + 6 = 70$. Thus, the y-intercept is the point (0, 70).

NOTE: The horizontal shift of 2 units to the left is determined from the expression x + 2 in the equation $y - 6 = 8^{x+2}$ and the vertical shift of 6 units upward is determined from the expression y - 6 in the equation.

5.
$$f(x) = -3e^{x-4} - 1$$

The domain of f is the set of all real numbers.

To graph the function f, we set f(x) = y and graph the equation $y = -3e^{x-4} - 1$. $y = -3e^{x-4} - 1 \Rightarrow y + 1 = -3e^{x-4}$ The graph of $y + 1 = -3e^{x-4}$ is the graph of $y = -3e^x$ shifted 4 units to the right and 1 unit downward.

The **Drawing** of this Sketch

The range of the function is $(-\infty, -1)$.

The y-coordinate of the y-intercept is obtained by setting x = 0 in the equation $y = -3e^{x-4} - 1$. Thus, we have that $y = -3e^{-4} - 1$. Thus, the y-intercept is the point $(0, -3e^{-4} - 1)$.

NOTE: The horizontal shift of 4 units to the right is determined from the expression x - 4 in the equation $y + 1 = -3e^{x-4}$ and the vertical shift of 1 unit downward is determined from the expression y + 1 in the equation.

6.
$$g(x) = 2(0.35)^{x+6} - 9$$

7.
$$h(t) = -4e^{7-t} + 15$$

8.
$$f(x) = \pi^{3x+8}$$

9.
$$g(x) = 5(3^{x/2}) - 12$$

10.
$$h(x) = -\left(\frac{11}{7}\right)^{2x-6} + 25$$