LESSON 7 RATIONAL ZEROS (ROOTS) OF POLYNOMIALS

Recall that a rational number is a quotient of integers. That is, a rational number is of the form $\frac{a}{b}$, where a and b are integers. A rational number $\frac{a}{b}$ is said to be in reduced form if the greatest common divisor (GCD) of a and b is one.

Examples $\frac{-3}{6}, \frac{4}{5}, \frac{17}{-9}$, and $\frac{8}{12}$ are rational numbers. The numbers $\frac{4}{5}$ and $\frac{17}{-9}$ are in reduced form. The numbers $\frac{-3}{6}$ and $\frac{8}{12}$ are not in reduced form. Of course, we can write $\frac{-3}{6}$ and $\frac{17}{-9}$ as $-\frac{3}{6}$ and $-\frac{17}{9}$ respectively. In reduced form, $-\frac{3}{6}$ is $-\frac{1}{2}$ and $\frac{8}{12}$ is $\frac{2}{3}$.

Examples $\frac{\sqrt{7}}{4}$ and $\frac{\pi}{6}$ are not rational numbers since $\sqrt{7}$ and π are not integers.

Theorem Let p be a polynomial with integer coefficients. If $\frac{c}{d}$ is a rational zero (root) in reduced form of

$$
p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+a_{n-2} x^{n-2}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}
$$

where the a_{i} 's are integers for $i=1,2,3, \ldots, n$ and $a_{n} \neq 0$ and $a_{0} \neq 0$, then c is a factor of a_{0} and d is a factor of a_{n}.

Theorem (Bounds for Real Zeros (Roots) of Polynomials) Let p be a polynomial with real coefficients and positive leading coefficient.

1. If $p(x)$ is synthetically divided by $x-a$, where $a>0$, and all the numbers in the third row of the division process are either positive or zero, then a is an upper bound for the real solutions of the equation $p(x)=0$.
2. If $p(x)$ is synthetically divided by $x-a$, where $a<0$, and all the numbers in the third row of the division process are alternately positive and negative (and a 0 can be considered to be either positive or negative as needed), then a is a lower bound for the real solutions of the equation $p(x)=0$.

Examples Find the zeros (roots) of the following polynomials. Also, give a factorization for the polynomial.

1. $f(x)=x^{3}-5 x^{2}-2 x+24$

To find the zeros (roots) of f, we want to solve the equation $f(x)=0 \Rightarrow$ $x^{3}-5 x^{2}-2 x+24=0$. The expression $x^{3}-5 x^{2}-2 x+24$ can not be factored by grouping.

We need to find one rational zero (root) for the polynomial f. This will produce a linear factor for the polynomial and the other factor will be quadratic.

Factors of $24: \pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 8, \pm 12, \pm 24$
Factors of 1: 1
Possible rational zeros (roots): $\pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 8, \pm 12, \pm 24$

Trying 1:

	1	-4	-6
1	-4	-6	18

Thus, $f(1)=18 \neq 0 \Rightarrow x-1$ is not a factor of f and 1 is not a zero (root) of f.

Trying - 1: \quad| -1 | 6 | -4 | |
| ---: | ---: | ---: | ---: |
| | -6 | 4 | 20 |

Thus, $f(-1)=20 \neq 0 \Rightarrow x+1$ is not a factor of f and -1 is not a zero (root) of f.

$$
\overbrace{1-5 \quad-2 \quad 24}^{\text {Coeff of } x^{3}-5 x^{2}-2 x+24} \mid 2
$$

Trying 2: \quad| 2 | -6 | -16 | |
| ---: | ---: | ---: | ---: |
| | -3 | -8 | 8 |

Thus, $f(2)=8 \neq 0 \Rightarrow x-2$ is not a factor of f and 2 is not a zero (root) of f.

$$
\overbrace{1-5-2 \quad 24}^{\text {Coeff of } x^{3}-5 x^{2}-2 x+24} \mid-2
$$

Trying - 2: \quad| -2 | 14 | -24 | |
| ---: | ---: | ---: | ---: |
| | -7 | 12 | 0 |

Thus, $f(-2)=0 \Rightarrow x+2$ is a factor of f and -2 is a zero (root) of f.
NOTE: By the Bound Theorem above, -2 is a lower bound for the negative zeros (roots) of f since we alternate from positive 1 to negative 7 to positive 12 to negative 0 in the third row of the synthetic division.

The third row in the synthetic division gives us the coefficients of the other factor starting with x^{2}. Thus, the other factor is $x^{2}-7 x+12$.

Thus, we have that $x^{3}-5 x^{2}-2 x+24=(x+2)\left(x^{2}-7 x+12\right)$.

Now, we can try to find a factorization for the expression $x^{2}-7 x+12$: $x^{2}-7 x+12=(x-3)(x-4)$

Thus, we have that $x^{3}-5 x^{2}-2 x+24=(x+2)\left(x^{2}-7 x+12\right)=$ $(x+2)(x-3)(x-4)$

Thus, $x^{3}-5 x^{2}-2 x+24=0 \Rightarrow(x+2)(x-3)(x-4)=0 \Rightarrow$ $x=-2, x=3, x=4$

Answer: Zeros (Roots): - 2, 3, 4
Factorization: $x^{3}-5 x^{2}-2 x+24=(x+2)(x-3)(x-4)$
2. $g(x)=3 x^{3}-23 x^{2}+57 x-45$

To find the zeros (roots) of g, we want to solve the equation $g(x)=0 \Rightarrow$
$3 x^{3}-23 x^{2}+57 x-45=0$. The expression $3 x^{3}-23 x^{2}+57 x-45$
can not be factored by grouping.
We need to find one rational zero (root) for the polynomial g. This will produce a linear factor for the polynomial and the other factor will be quadratic.

Factors of $-45: \pm 1, \pm 3, \pm 5, \pm 9, \pm 15, \pm 45$

Factors of 3: 1, 3
The rational numbers obtained using the factors of -45 for the numerator and the 1 as the factor of 3 for the denominator:

$$
\pm 1, \pm 3, \pm 5, \pm 9, \pm 15, \pm 45
$$

The rational numbers obtained using the factors of -45 for the numerator and the 3 as the factor of 3 for the denominator:

$$
\pm \frac{1}{3}, \pm 1, \pm \frac{5}{3}, \pm 3, \pm 5, \pm 15
$$

NOTE: $\pm \frac{3}{3}= \pm 1, \pm \frac{9}{3}= \pm 3, \pm \frac{15}{3}= \pm 5$, and $\pm \frac{45}{3}= \pm 15$
Possible rational zeros (roots): $\pm \frac{1}{3}, \pm 1, \pm \frac{5}{3}, \pm 3, \pm 5, \pm 9, \pm 15, \pm 45$

$$
\overbrace{3-23 \quad \text { Coeff of } 3 x^{3}-23 x^{2}+57 x-45}^{57-45} \mid 1
$$

Trying 1:

	3	-20	37
3	-20	37	-8

Thus, $g(1)=-8 \neq 0 \Rightarrow x-1$ is not a factor of g and 1 is not a zero (root) of g.

$$
\overbrace{3-23}^{\text {Coeff of } 3 x^{3}-\underbrace{23 x^{2}+57 x-45}_{57}-45} \mid-1
$$

$$
\begin{array}{lrrr}
\text { Trying -1: } & -3 & 26 & -83 \\
\cline { 2 - 5 } & -26 & 83 & -128
\end{array}
$$

Thus, $g(-1)=-128 \neq 0 \Rightarrow x+1$ is not a factor of g and -1 is not a zero (root) of g.

NOTE: By the Bound Theorem above, -1 is a lower bound for the negative zeros (roots) of g since we alternate from positive 3 to negative 26 to positive 83 to negative 128 in the third row of the synthetic division. Thus, $-\frac{5}{3},-3,-5,-9,-15$, and -45 can not be rational zeros (roots) of g.

3	-23	57	-45
	6	-34	46
3	-17	23	1

Thus, $g(2)=1 \neq 0 \Rightarrow x-2$ is not a factor of g and 2 is not a zero (root) of g.

$$
\overbrace{3-23}^{\text {Coeff of } 3 x^{3}-23 x^{2}+57 x-45} \quad 57-45 \quad \mid 3
$$

Trying 3:

	9	-42	45
3	-14	15	0

Thus, $g(3)=0 \Rightarrow x-3$ is a factor of g and 3 is a zero (root) of g.

The third row in the synthetic division gives us the coefficients of the other factor starting with x^{2}. Thus, the other factor is $3 x^{2}-14 x+15$.

Thus, we have that $3 x^{3}-23 x^{2}+57 x-45=(x-3)\left(3 x^{2}-14 x+15\right)$.

Now, we can try to find a factorization for the expression $3 x^{2}-14 x+15$: $3 x^{2}-14 x+15=(x-3)(3 x-5)$

Thus, we have that $3 x^{3}-23 x^{2}+57 x-45=(x-3)\left(3 x^{2}-14 x+15\right)$
$=(x-3)(x-3)(3 x-5)=(x-3)^{2}(3 x-5)$

Thus, $3 x^{3}-23 x^{2}+57 x-45=0 \Rightarrow(x-3)^{2}(3 x-5)=0 \Rightarrow$

$$
x=3, x=\frac{5}{3}
$$

Answer: Zeros (Roots): $\frac{5}{3}, 3$ (multiplicity 2)

Factorization: $3 x^{3}-23 x^{2}+57 x-45=(x-3)^{2}(3 x-5)$
3. $h(t)=4 t^{3}-4 t^{2}-9 t+30$

To find the zeros (roots) of h, we want to solve the equation $h(t)=0 \Rightarrow$
$4 t^{3}-4 t^{2}-9 t+30=0$. The expression $4 t^{3}-4 t^{2}-9 t+30$
can not be factored by grouping.
We need to find one rational zero (root) for the polynomial h. This will produce a linear factor for the polynomial and the other factor will be quadratic.

Factors of $30: \pm 1, \pm 2, \pm 3, \pm 5, \pm 6, \pm 10, \pm 15, \pm 30$
Factors of 4: 1, 2, 4
The rational numbers obtained using the factors of -30 for the numerator and the 1 as the factor of 4 for the denominator:

$$
\pm 1, \pm 2, \pm 3, \pm 5, \pm 6, \pm 10, \pm 15, \pm 30
$$

The rational numbers obtained using the factors of -30 for the numerator and the 2 as the factor of 4 for the denominator:

$$
\pm \frac{1}{2}, \pm 1, \pm \frac{3}{2}, \pm \frac{5}{2}, \pm 3, \pm 5, \pm \frac{15}{2}, \pm 15
$$

Eliminating the ones that are already listed above, we have

$$
\pm \frac{1}{2}, \pm \frac{3}{2}, \pm \frac{5}{2}, \pm \frac{15}{2}
$$

The rational numbers obtained using the factors of -30 for the numerator and the 4 as the factor of 4 for the denominator:

$$
\pm \frac{1}{4}, \pm \frac{1}{2}, \pm \frac{3}{4}, \pm \frac{5}{4}, \pm \frac{3}{2}, \pm \frac{5}{2}, \pm \frac{15}{4}, \pm \frac{15}{2}
$$

Eliminating the ones that are already listed above, we have

$$
\pm \frac{1}{4}, \pm \frac{3}{4}, \pm \frac{5}{4}, \pm \frac{15}{4}
$$

Possible rational zeros (roots): $\pm \frac{1}{4}, \pm \frac{1}{2}, \pm \frac{3}{4}, \pm 1, \pm \frac{5}{4}, \pm \frac{3}{2}, \pm 2$, $\pm \frac{5}{2}, \pm 3, \pm \frac{15}{4}, \pm 5, \pm 6, \pm \frac{15}{2}, \pm 10, \pm 15, \pm 30$

$$
\overbrace{4-4-9}^{\text {Coeff of } 4 t^{3}}-\mathrm{C}^{-4 t^{2}-9 t+30} \quad \mid 1
$$

Trying 1:

4	0	-9	
4	0	-9	21

Thus, $h(1)=21 \neq 0 \Rightarrow t-1$ is not a factor of h and 1 is not a zero (root) of h.

Trying 2:

	8	8	-2
4	4	-1	28

Thus, $h(2)=28 \neq 0 \Rightarrow t-2$ is not a factor of h and 2 is not a zero (root) of h.

Trying 3:

	12	24	45
4	8	15	75

Thus, $h(3)=75 \neq 0 \Rightarrow t-3$ is not a factor of h and 3 is not a zero (root) of h.

NOTE: By the Bound Theorem above, 3 is an upper bound for the positive zeros (roots) of h since all the numbers are positive in the third row of the synthetic division. Thus, $\frac{15}{4}, 5,6, \frac{15}{2}, 10,15$, and 30 can not be rational zeros (roots) of h.

$$
\begin{array}{lrrr|r}
\overbrace{4}^{\text {Coeff of } 4 t^{3}}-\underbrace{4 t^{2}-9 t+30} & -9 & 30 & -1 \\
& -4 & 8 & 1 & \\
\hline 4 & -8 & -1 & 31
\end{array}
$$

Trying - 1 :

Thus, $h(-1)=31 \neq 0 \Rightarrow t+1$ is not a factor of h and -1 is not a zero (root) of h.

$$
\overbrace{4-4-9 \quad 30}^{\text {Coeff of } 4 t^{3}-4 t^{2}-9 t+30} \quad-2
$$

Trying - 2 :

	-8	24	-30
4	-12	15	0

Thus, $h(-2)=0 \Rightarrow t+2$ is factor of h and -2 is a zero (root) of h.

The third row in the synthetic division gives us the coefficients of the other factor starting with t^{2}. Thus, the other factor is $4 t^{2}-12 t+15$.

Thus, we have that $4 t^{3}-4 t^{2}-9 t+30=(t+2)\left(4 t^{2}-12 t+15\right)$.
Now, we can try to find a factorization for the expression $4 t^{2}-12 t+15$. However, it does not factor.

Thus, we have that $4 t^{3}-4 t^{2}-9 t+30=(t+2)\left(4 t^{2}-12 t+15\right)$

Thus, $4 t^{3}-4 t^{2}-9 t+30=0 \Rightarrow(t+2)\left(4 t^{2}-12 t+15\right)=0 \Rightarrow$

$$
t=-2,4 t^{2}-12 t+15=0
$$

We will need to use the Quadratic Formula to solve $4 t^{2}-12 t+15=0$.
Thus, $t=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{12 \pm \sqrt{12 \cdot 12-4(4) 15}}{8}=$
$\frac{12 \pm \sqrt{4 \cdot 4[3 \cdot 3-1(1) 15]}}{8}=\frac{12 \pm 4 \sqrt{9-15}}{8}=\frac{12 \pm 4 \sqrt{-6}}{8}=$
$\frac{12 \pm 4 i \sqrt{6}}{8}=\frac{3 \pm i \sqrt{6}}{2}$

Answer: \quad Zeros (Roots): $-2, \frac{3+i \sqrt{6}}{2}, \frac{3-i \sqrt{6}}{2}$
Factorization: $4 t^{3}-4 t^{2}-9 t+30=(t+2)\left(4 t^{2}-12 t+15\right)$
4. $p(x)=x^{4}-6 x^{3}-3 x^{2}+16 x+12$

To find the zeros (roots) of p, we want to solve the equation $p(x)=0 \Rightarrow$
$x^{4}-6 x^{3}-3 x^{2}+16 x+12=0$.

We need to find two rational zeros (roots) for the polynomial p. This will produce two linear factors for the polynomial and the other factor will be quadratic.

Factors of 12: $\pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 12$

Factors of 1: 1
Possible rational zeros (roots): $\pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 12$

Trying 1:

	1	-5	-8	8
1	-5	-8	8	20

Thus, $p(1)=20 \neq 0 \Rightarrow x-1$ is not a factor of p and 1 is not a zero (root) of p.

Trying -1:	$\quad-1$	7	-4	-12
	-7	4	12	0

Thus, $p(-1)=0 \Rightarrow x+1$ is a factor of p and -1 is a zero (root) of p.
The third row in the synthetic division gives us the coefficients of the other factor starting with x^{3}. Thus, the other factor is $x^{3}-7 x^{2}+4 x+12$.

Thus, we have that $x^{4}-6 x^{3}-3 x^{2}+16 x+12=$ $(x+1)\left(x^{3}-7 x^{2}+4 x+12\right)$.

Note that the remaining zeros of the polynomial p must also be zeros (roots) of the quotient polynomial $q(x)=x^{3}-7 x^{2}+4 x+12$. We will use this polynomial to find the remaining zeros (roots) of p, including another zero (root) of -1 .

$$
\text { Trying - 1 again: } \left.\quad \begin{array}{llrr}
\text { Coeff of } x^{3}-7 x^{2}+4 x+12 \\
\hline 1 & -7 & 4 & 12
\end{array} \right\rvert\,-1
$$

The remainder is 0 . Thus, $x+1$ is a factor of the quotient polynomial $q(x)=x^{3}-7 x^{2}+4 x+12$ and -1 is a zero (root) of multiplicity of the polynomial p.

Thus, we have that $x^{3}-7 x^{2}+4 x+12=(x+1)\left(x^{2}-8 x+12\right)$.

Thus, we have that $x^{4}-6 x^{3}-3 x^{2}+16 x+12=$
$(x+1)\left(x^{3}-7 x^{2}+4 x+12\right)=(x+1)(x+1)\left(x^{2}-8 x+12\right)=$ $(x+1)^{2}\left(x^{2}-8 x+12\right)$.

Now, we can try to find a factorization for the expression $x^{2}-8 x+12$:

$$
x^{2}-8 x+12=(x-2)(x-6)
$$

Thus, we have that $x^{4}-6 x^{3}-3 x^{2}+16 x+12=$ $(x+1)^{2}\left(x^{2}-8 x+12\right)=(x+1)^{2}(x-2)(x-6)$

Thus, $x^{4}-6 x^{3}-3 x^{2}+16 x+12=0 \Rightarrow$
$(x+1)^{2}(x-2)(x-6)=0 \Rightarrow x=-1, x=2, x=6$

Answer: Zeros (Roots): - 1 (multiplicity 2), 2, 6

Factorization: $x^{4}-6 x^{3}-3 x^{2}+16 x+12=(x+1)^{2}(x-2)(x-6)$
5. $f(z)=6 z^{4}-11 z^{3}-53 z^{2}+108 z-36$

To find the zeros (roots) of f, we want to solve the equation $f(z)=0 \Rightarrow$
$6 z^{4}-11 z^{3}-53 z^{2}+108 z-36=0$.

We need to find two rational zeros (roots) for the polynomial f. This will produce two linear factors for the polynomial and the other factor will be quadratic.

Factors of $-36: \pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 9, \pm 12, \pm 18, \pm 36$

Factors of 6: 1, 2, 3, 6

The rational numbers obtained using the factors of -36 for the numerator and the 1 as the factor of 6 for the denominator:

$$
\pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 9, \pm 12, \pm 18, \pm 36
$$

The rational numbers obtained using the factors of -36 for the numerator and the 2 as the factor of 6 for the denominator:

$$
\pm \frac{1}{2}, \pm 1, \pm \frac{3}{2}, \pm 2, \pm 3, \pm \frac{9}{2}, \pm 6, \pm 9, \pm 18
$$

Eliminating the ones that are already listed above, we have

$$
\pm \frac{1}{2}, \pm \frac{3}{2}, \pm \frac{9}{2}
$$

The rational numbers obtained using the factors of -36 for the numerator and the 3 as the factor of 6 for the denominator:

$$
\pm \frac{1}{3}, \pm \frac{2}{3}, \pm 1, \pm \frac{4}{3}, \pm 2, \pm 3, \pm 4, \pm 6, \pm 12
$$

Eliminating the ones that are already listed above, we have

$$
\pm \frac{1}{3}, \pm \frac{2}{3}, \pm \frac{4}{3}
$$

The rational numbers obtained using the factors of -36 for the numerator and the 6 as the factor of 6 for the denominator:

$$
\pm \frac{1}{6}, \pm \frac{1}{3}, \pm \frac{1}{2}, \pm \frac{2}{3}, \pm 1, \pm \frac{3}{2}, \pm 2, \pm 3, \pm 6
$$

Eliminating the ones that are already listed above, we have $\pm \frac{1}{6}$

Possible rational zeros (roots): $\pm \frac{1}{6}, \pm \frac{1}{3}, \pm \frac{1}{2}, \pm \frac{2}{3}, \pm 1, \pm \frac{4}{3}, \pm \frac{3}{2}$, $\pm 2, \pm 3, \pm 4, \pm \frac{9}{2}, \pm 6, \pm 9, \pm 12, \pm 18, \pm 36$

$$
\begin{array}{rrrrr|r}
\overbrace{6} \begin{array}{rrrrr}
& -11 & -53 & 108 & -36 \\
& 6 & -5 & -58 & 50 \\
\hline 6 & -5 & -58 & 50 & 14
\end{array} &
\end{array}
$$

Trying 1:

Thus, $f(1)=14 \neq 0 \Rightarrow z-1$ is not a factor of f and 1 is not a zero (root) of f.

$$
\overbrace{6-11-53 \quad 108-36}^{\text {Coeff of } 6 z^{4}-11 z^{3}-53 z^{2}+108 z-36} \mid-1
$$

Trying - 1: \quad| | -6 | 17 | 36 | -144 |
| ---: | ---: | ---: | ---: | ---: |
| | -17 | -36 | 144 | -180 |

Thus, $f(-1)=-180 \Rightarrow z+1$ is not a factor of p and -1 is not a zero (root) of f.

Trying 2:

	12	2	-102	12
6	1	-51	6	-24

Thus, $f(2)=-24 \neq 0 \Rightarrow z-2$ is not a factor of f and 2 is not a zero (root) of f.

$$
\text { Trying - 2: } \quad \begin{array}{rrrrr|l}
\text { Coeff of } 6 z^{4}-11 z^{3} & -53 z^{2}+108 z-36 \\
6 & -11 & -53 & 108 & -36 & -2 \\
\hline & -12 & 46 & 14 & -244 &
\end{array}
$$

Thus, $f(-2)=-280 \Rightarrow z+2$ is not a factor of p and -2 is not a zero (root) of f.
$\overbrace{6-11-53-108-36}^{\text {Coeff of } 6 z^{4}-11 z^{3}}-53 z^{2}+108 z-36 \mid 3$

Trying 3:

	18	21	-96	36
6	7	-32	12	0

Thus, $f(3)=0 \Rightarrow z-3$ is a factor of f and 3 is a zero (root) of f.

The third row in the synthetic division gives us the coefficients of the other factor starting with z^{3}. Thus, the other factor is $6 z^{3}+7 z^{2}-32 z+12$.

Thus, we have that $6 z^{4}-11 z^{3}-53 z^{2}+108 z-36=$ $(z-3)\left(6 z^{3}+7 z^{2}-32 z+12\right)$.

Note that the remaining zeros of the polynomial f must also be zeros (roots) of the quotient polynomial $q(z)=6 z^{3}+7 z^{2}-32 z+12$. We will use this polynomial to find the remaining zeros (roots) of f, including another zero (root) of 3 .

$$
\overbrace{6 \quad 7-32 \quad 12}^{\text {Coeff of } 6 z^{3}+7 z^{2}-32 z+12} \mid 3
$$

Trying 3 again: \quad| | 18 | 75 | 129 |
| :--- | :--- | :--- | :--- |
| | 6 | 25 | 43 |

The remainder is 141 and not 0 . Thus, $z-3$ is not a factor of the quotient polynomial $q(z)=6 z^{3}+7 z^{2}-32 z+12$ and 3 is not a zero (root) of q. Thus, the multiplicity of the zero (root) of 3 is one.

NOTE: By the Bound Theorem above, 3 is an upper bound for the positive zeros (roots) of the quotient polynomial $q(z)=6 z^{3}+7 z^{2}-32 z+12$ since all the numbers are positive in the third row of the synthetic division.

Thus, $4, \frac{9}{2}, 6,9,12,18$, and 36 can not be rational zeros (roots) of the quotient polynomial $q(z)=6 z^{3}+7 z^{2}-32 z+12$ nor of the polynomial $f(z)=6 z^{4}-11 z^{3}-53 z^{2}+108 z-36=$ $(z-3)\left(6 z^{3}+7 z^{2}-32 z+12\right)$.

Trying - 3 :

	-18	33	-3
6	-11	1	9

The remainder is 9 and not 0 . Thus, $z+3$ is not a factor of the quotient polynomial $q(z)=6 z^{3}+7 z^{2}-32 z+12$ and -3 is not a zero (root) of q.

Trying - 4 :

	-24	68	-144
6	-17	36	-132

The remainder is -132 and not 0 . Thus, $z+4$ is not a factor of the quotient polynomial $q(z)=6 z^{3}+7 z^{2}-32 z+12$ and -4 is not a zero (root) of q.

NOTE: By the Bound Theorem above, -4 is a lower bound for the negative zeros (roots) of the quotient polynomial q since we alternate from positive 6 to negative 17 to positive 36 to negative 132 in the third row of the synthetic division. Thus, $-\frac{9}{2},-6,-9,-12,-18$, and -36 can not be rational zeros (roots) of q.

Thus, the only possible rational zeros (roots) which are left to be checked are $\pm \frac{1}{6}, \pm \frac{1}{3}, \pm \frac{1}{2}, \pm \frac{2}{3}, \pm \frac{4}{3}$, and $\pm \frac{3}{2}$.

Trying $\frac{3}{2}$:

6	7	- 32	12
	9	24	-12
6	16	- 8	0

The remainder is 0 . Thus, $z-\frac{3}{2}$ is a factor of the quotient polynomial $q(z)=6 z^{3}+7 z^{2}-32 z+12$ and $\frac{3}{2}$ is a zero (root) of q.

Thus, we have that $6 z^{3}+7 z^{2}-32 z+12=\left(z-\frac{3}{2}\right)\left(6 z^{2}+16 z-8\right)=$ $\left(z-\frac{3}{2}\right) 2\left(3 z^{2}+8 z-4\right)=(2 z-3)\left(3 z^{2}+8 z-4\right)$.

Thus, we have that $6 z^{4}-11 z^{3}-53 z^{2}+108 z-36=$ $(z-3)\left(6 z^{3}+7 z^{2}-32 z+12\right)=(z-3)(2 z-3)\left(3 z^{2}+8 z-4\right)$.

Now, we can try to find a factorization for the expression $3 z^{2}+8 z-4$. However, it does not factor.

Thus, we have that $6 z^{4}-11 z^{3}-53 z^{2}+108 z-36=$ $(z-3)(2 z-3)\left(3 z^{2}+8 z-4\right)$.

Thus, $6 z^{4}-11 z^{3}-53 z^{2}+108 z-36=0 \Rightarrow$

$$
\begin{aligned}
& (z-3)(2 z-3)\left(3 z^{2}+8 z-4\right)=0 \Rightarrow z=3, \quad z=\frac{3}{2} \\
& 3 z^{2}+8 z-4=0
\end{aligned}
$$

We will need to use the Quadratic Formula to solve $3 z^{2}+8 z-4=0$.

Thus, $z=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-8 \pm \sqrt{64-4(3)(-4)}}{6}=$
$\frac{-8 \pm \sqrt{16(4+3)}}{6}=\frac{-8 \pm 4 \sqrt{7}}{6}=\frac{-4 \pm 2 \sqrt{7}}{3}$

Answer: Zeros (Roots): $\frac{-4-2 \sqrt{7}}{3}, \frac{-4+2 \sqrt{7}}{3}, \frac{3}{2}, 3$
Factorization: $\quad 6 z^{4}-11 z^{3}-53 z^{2}+108 z-36=$

$$
(z-3)(2 z-3)\left(3 z^{2}+8 z-4\right)
$$

6. $g(x)=9 x^{4}+18 x^{3}-43 x^{2}-32 x+48$

To find the zeros (roots) of g, we want to solve the equation $g(x)=0 \Rightarrow$ $9 x^{4}+18 x^{3}-43 x^{2}-32 x+48=0$.

We need to find two rational zeros (roots) for the polynomial f. This will produce two linear factors for the polynomial and the other factor will be quadratic.

Factors of $48: \pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 8, \pm 12, \pm 16, \pm 24, \pm 48$
Factors of 9: 1, 3, 9
The rational numbers obtained using the factors of 48 for the numerator and the 1 as the factor of 9 for the denominator:

$$
\pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 8, \pm 12, \pm 16, \pm 24, \pm 48
$$

The rational numbers obtained using the factors of 48 for the numerator and the 3 as the factor of 9 for the denominator:

$$
\pm \frac{1}{3}, \pm \frac{2}{3}, \pm 1, \pm \frac{4}{3}, \pm 2, \pm \frac{8}{3}, \pm 4, \pm \frac{16}{3}, \pm 8, \pm 16
$$

Eliminating the ones that are already listed above, we have

$$
\pm \frac{1}{3}, \pm \frac{2}{3}, \pm \frac{4}{3}, \pm \frac{8}{3}, \pm \frac{16}{3}
$$

The rational numbers obtained using the factors of 48 for the numerator and the 9 as the factor of 9 for the denominator:

$$
\pm \frac{1}{9}, \pm \frac{2}{9}, \pm \frac{1}{3}, \pm \frac{4}{9}, \pm \frac{2}{3}, \pm \frac{8}{9}, \pm \frac{4}{3}, \pm \frac{16}{9}, \pm \frac{8}{3}, \pm \frac{16}{3}
$$

Eliminating the ones that are already listed above, we have

$$
\pm \frac{1}{9}, \pm \frac{2}{9}, \pm \frac{4}{9}, \pm \frac{8}{9}, \pm \frac{16}{9}
$$

Possible rational zeros (roots): $\pm \frac{1}{9}, \pm \frac{2}{9}, \pm \frac{1}{3}, \pm \frac{4}{9}, \pm \frac{2}{3}, \pm \frac{8}{9}, \pm 1$, $\pm \frac{4}{3}, \pm \frac{16}{9}, \pm 2, \pm \frac{8}{3}, \pm 3, \pm 4, \pm \frac{16}{3}, \pm 6, \pm 8, \pm 12, \pm 16, \pm 24$, ± 48

$$
\overbrace{9 \quad 18-43-32 \quad 48}^{\text {Coeff of } 9 x^{4}+18 x^{3}-43 x^{2}-32 x+48} \mid 1
$$

Trying 1:

	9	27	-16	-48
9	27	-16	-48	0

Thus, $g(1)=0 \Rightarrow x-1$ is a factor of g and 1 is a zero (root) of g.
The third row in the synthetic division gives us the coefficients of the other factor starting with x^{3}. Thus, the other factor is $9 x^{3}+27 x^{2}-16 x-48$.

Thus, we have that $9 x^{4}+18 x^{3}-43 x^{2}-32 x+48=$ $(x-1)\left(9 x^{3}+27 x^{2}-16 x-48\right)$.

Note that the remaining zeros of the polynomial g must also be zeros (roots) of the quotient polynomial $q(x)=9 x^{3}+27 x^{2}-16 x-48$. We will use this polynomial to find the remaining zeros (roots) of g, including another zero (root) of 1 .

NOTE: The expression $9 x^{3}+27 x^{2}-16 x-48$ can be factored by grouping:
$9 x^{3}+27 x^{2}-16 x-48=9 x^{2}(x+3)-16(x+3)=$
$(x+3)\left(9 x^{2}-16\right)=(x+3)(3 x+4)(3 x-4)$

Thus, we have that $9 x^{4}+18 x^{3}-43 x^{2}-32 x+48=$ $(x-1)\left(9 x^{3}+27 x^{2}-16 x-48\right)=(x-1)(x+3)(3 x+4)(3 x-4)$.

Thus, $9 x^{4}+18 x^{3}-43 x^{2}-32 x+48=0 \Rightarrow$
$(x-1)(x+3)(3 x+4)(3 x-4)=0 \Rightarrow x=1, x=-3, x=-\frac{4}{3}$,
$x=\frac{4}{3}$

Answer: Zeros (Roots): $-3,-\frac{4}{3}, 1, \frac{4}{3}$

Factorization: $\quad 9 x^{4}+18 x^{3}-43 x^{2}-32 x+48=$

$$
(x-1)(x+3)(3 x+4)(3 x-4)
$$

7. $h(x)=x^{4}+8 x^{3}+11 x^{2}-40 x-80$

To find the zeros (roots) of h, we want to solve the equation $h(x)=0 \Rightarrow$ $x^{4}+8 x^{3}+11 x^{2}-40 x-80=0$.

We need to find two rational zeros (roots) for the polynomial h. This will produce two linear factors for the polynomial and the other factor will be quadratic.

Factors of $-80: \pm 1, \pm 2, \pm 4, \pm 5, \pm 8, \pm 10 \pm 16, \pm 20, \pm 40$, ± 80

Factors of 1: 1
Possible rational zeros (roots): $\pm 1, \pm 2, \pm 4, \pm 5, \pm 8, \pm 10 \pm 16$, $\pm 20, \pm 40, \pm 80$

$$
\overbrace{1-8 \quad 11}^{\text {Coeff of } x^{4}+8 x^{3}+11 x^{2}-40 x-80} \quad \mid 1
$$

Trying 1:

	1	9	20	-20
1	9	20	-20	-100

Thus, $h(1)=-100 \neq 0 \Rightarrow x-1$ is not a factor of h and 1 is not a zero (root) of h.

$$
\overbrace{1 \quad 8 \quad 11}^{\text {Coeff of } x^{4}+8 x^{3}+40-11 x^{2}-40 x-80} \quad \underline{-1}
$$

Trying - 1: $\quad \begin{array}{rrrrr}-1 & -7 & -4 & 44 \\ & 7 & 4 & -44 & -36\end{array}$

Thus, $h(-1)=-36 \neq 0 \Rightarrow x+1$ is not a factor of h and -1 is not a zero (root) of h.

$$
\begin{array}{rrrrr}
\overbrace{1}^{\text {Coeff of } x^{4}}+8 x^{3} & 11 & -40 & -80 \\
& 2 & 20 & 62 & 44 \\
\hline 1 & 10 & 31 & 22 & -36
\end{array}
$$

Thus, $h(2)=-36 \neq 0 \Rightarrow x-2$ is not a factor of h and 2 is not a zero (root) of h.

$$
\overbrace{1-8 \quad 11-40-80}^{\text {Coeff of } x^{4}+8 x^{3}+11 x^{2}-40 x-80} \quad-2
$$

Trying - 2: $\begin{array}{rrrrr}-2 & -12 & 2 & 76 \\ & 6 & -1 & -38 & -4\end{array}$

Thus, $h(-2)=-4 \neq 0 \Rightarrow x+2$ is not a factor of h and -2 is not a zero (root) of h.

$$
\begin{array}{rrrrr}
\overbrace{1} & 8 & 11 & -40 & -80 \\
& 3 & 33 & 132 & 276 \\
\hline 1 & 11 & 44 & 92 & 196
\end{array}
$$

Thus, $h(3)=196 \neq 0 \Rightarrow x-3$ is not a factor of h and 3 is not a zero (root) of h.

NOTE: By the Bound Theorem above, 3 is an upper bound for the positive zeros (roots) of h since all the numbers are positive in the third row of the synthetic division. Thus, 4, 5, 8, $1016,20,40$, and 80 can not be rational zeros (roots) of h.

$$
\begin{aligned}
& \overbrace{1-8} \overbrace{11}^{\text {Coeff of } x^{4}+8 x^{3}+11 x^{2}-40 x-80}-80 \quad \mid-3 \\
& \text { Trying - 3: } \begin{array}{rrrrr}
& -3 & -15 & 12 & 84 \\
\cline { 2 - 6 } & 5 & -4 & -28 & 4
\end{array}
\end{aligned}
$$

Thus, $h(-3)=4 \neq 0 \Rightarrow x+3$ is not a factor of h and -3 is not a zero (root) of h.

Trying -4: $\begin{array}{rrrrr}-4 & -16 & 20 & 80 \\ 4 & -5 & -20 & 0\end{array}$

Thus, $h(-4)=0 \Rightarrow x+4$ is a factor of h and -4 is a zero (root) of h.

The third row in the synthetic division gives us the coefficients of the other factor starting with x^{3}. Thus, the other factor is $x^{3}+4 x^{2}-5 x-20$.

Thus, we have that $x^{4}+8 x^{3}+11 x^{2}-40 x-80=$ $(x+4)\left(x^{3}+4 x^{2}-5 x-20\right)$.

Note that the remaining zeros of the polynomial g must also be zeros (roots) of the quotient polynomial $q(x)=x^{3}+4 x^{2}-5 x-20$. We will use this polynomial to find the remaining zeros (roots) of g, including another zero (root) of -4 .

$$
\begin{array}{lrrr}
\overbrace{1}^{\text {Coeff of } x^{3}+x^{2}-5 x-20} & 4 & -5 & -20 \\
-4 & 0 & 20 & -4 \\
\begin{array}{lrrr}
1 & 0 & -5 & 0
\end{array}
\end{array}
$$

Trying - 4 again:

The remainder is 0 . Thus, $x+4$ is a factor of the quotient polynomial $q(x)=x^{3}+4 x^{2}-5 x-20$ and -4 is a zero (root) of multiplicity of the polynomial h.

Thus, we have that $x^{3}+4 x^{2}-5 x-20=(x+4)\left(x^{2}-5\right)$.

Thus, we have that $x^{4}+8 x^{3}+11 x^{2}-40 x-80=$ $(x+4)\left(x^{3}+4 x^{2}-5 x-20\right)=(x+4)(x+4)\left(x^{2}-5\right)=(x+4)^{2}\left(x^{2}-5\right)$.

Thus, $x^{4}+8 x^{3}+11 x^{2}-40 x-80=0 \Rightarrow$

$$
\begin{aligned}
& (x+4)^{2}\left(x^{2}-5\right)=0 \Rightarrow x=-4, x^{2}-5=0 \\
& x^{2}-5=0 \Rightarrow x^{2}=5 \Rightarrow x= \pm \sqrt{5}
\end{aligned}
$$

Answer: Zeros (Roots): -4 (multiplicity 2), $-\sqrt{5}, \sqrt{5}$

Factorization: $x^{4}+8 x^{3}+11 x^{2}-40 x-80=(x+4)^{2}\left(x^{2}-5\right)$
8. $p(t)=t^{4}-12 t^{3}+54 t^{2}-108 t+81$

To find the zeros (roots) of p, we want to solve the equation $p(t)=0 \Rightarrow$ $t^{4}-12 t^{3}+54 t^{2}-108 t+81=0$.

We need to find two rational zeros (roots) for the polynomial p. This will produce two linear factors for the polynomial and the other factor will be quadratic.

Factors of $81: \pm 1, \pm 3, \pm 9, \pm 27, \pm 81$

Factors of 1: 1
Possible rational zeros (roots): $\pm 1, \pm 3, \pm 9, \pm 27, \pm 81$

$$
\overbrace{1-12 \quad 54-108 \quad 81}^{\text {Coeff of } t^{4}-12 t^{3}}{ }^{+54 t^{2}-108 t+81} \mid 1
$$

Trying 1:

	1	-11	43	-65
1	-11	43	-65	16

Thus, $\quad p(1)=16 \neq 0 \Rightarrow t-1$ is not a factor of p and 1 is not a zero (root) of p.

$$
\begin{array}{rrrrr|r}
\overbrace{1} \begin{array}{rrrrr}
\text { Coeff of } t^{4}-12 t^{3} \\
& -12 & 54 & -108 & 81 \\
& -1 & 13 & -67 & 175
\end{array} & \\
\hline 1 & -13 & 67 & -175 & 256
\end{array}
$$

$$
\begin{array}{lllll}
\text { Trying }-1: & -1 & 13 & -67 & 175 \\
\hline
\end{array}
$$

Thus, $p(-1)=256 \neq 0 \Rightarrow t+1$ is not a factor of p and -1 is not a zero (root) of p.

NOTE: By the Bound Theorem above, -1 is a lower bound for the negative zeros (roots) of p since we alternate from positive 1 to negative 13 to positive 67 to negative 175 to positive 256 in the third row of the synthetic division. Thus, $-3,-9,-27$, and -81 can not be rational zeros (roots) of p.

Trying 3:

3	-27	81	-81
1	-9	27	-27
	0		

Thus, $p(3)=0 \Rightarrow t-3$ is a factor of p and 3 is a zero (root) of p.
The third row in the synthetic division gives us the coefficients of the other factor starting with t^{3}. Thus, the other factor is $t^{3}-9 t^{2}+27 t-27$.

Thus, we have that $t^{4}-12 t^{3}+54 t^{2}-108 t+81=$ $(t-3)\left(t^{3}-9 t^{2}+27 t-27\right)$.

Note that the remaining zeros of the polynomial p must also be zeros (roots) of the quotient polynomial $q(t)=t^{3}-9 t^{2}+27 t-27$. We will use this polynomial to find the remaining zeros (roots) of p, including another zero (root) of 3 .

Trying 3 again:

	3	-18	27
1	-6	9	0

The remainder is 0 . Thus, $t-3$ is a factor of the quotient polynomial $q(t)=t^{3}-9 t^{2}+27 t-27$ and 3 is a zero (root) of multiplicity of the polynomial p.

Thus, we have that $t^{3}-9 t^{2}+27 t-27=(t-3)\left(t^{2}-6 t+9\right)$.
Thus, we have that $t^{4}-12 t^{3}+54 t^{2}-108 t+81=$
$(t-3)\left(t^{3}-9 t^{2}+27 t-27\right)=(t-3)(t-3)\left(t^{2}-6 t+9\right)=$ $(t-3)^{2}\left(t^{2}-6 t+9\right)$.

Since $t^{2}-6 t+9=(t-3)^{2}$, then we have that
$t^{4}-12 t^{3}+54 t^{2}-108 t+81=(t-3)^{2}\left(t^{2}-6 t+9\right)=$ $(t-3)^{2}(t-3)^{2}=(t-3)^{4}$

Thus, $t^{4}-12 t^{3}+54 t^{2}-108 t+81=0 \Rightarrow(t-3)^{4}=0 \Rightarrow t=3$

Answer: Zeros (Roots): 3 (multiplicity 4)
Factorization: $t^{4}-12 t^{3}+54 t^{2}-108 t+81=(t-3)^{4}$

