LESSON 6 LONG DIVISION AND SYNTHETIC DIVISION

Example Find $(2x^5 - 3x^4 - 14x^3 + 12x^2 + 16x - 20) \div (x^2 - 4x + 3)$.

$$2x^{3} + 5x^{2} - 3$$

$$x^{2} - 4x + 3)2x^{5} - 3x^{4} - 14x^{3} + 12x^{2} + 16x - 20$$

$$2x^{5} - 8x^{4} + 6x^{3}$$

$$5x^{4} - 20x^{3} + 12x^{2}$$

$$5x^{4} - 20x^{3} + 15x^{2}$$

$$- 3x^{2} + 16x - 20$$

$$- 3x^{2} + 12x - 9$$

$$4x - 11$$

NOTE: $2x^{3}(x^{2} - 4x + 3) = 2x^{5} - 8x^{4} + 6x^{3}$ $5x^{2}(x^{2} - 4x + 3) = 5x^{4} - 20x^{3} + 15x^{2}$ $-3(x^{2} - 4x + 3) = -3x^{2} + 12x - 9$

The expression $x^2 - 4x + 3$ is called the divisor in the division. The function $b(x) = x^2 - 4x + 3$ is called the divisor function.

The expression $2x^5 - 3x^4 - 14x^3 + 12x^2 + 16x - 20$ is called the dividend in the division. The function $a(x) = 2x^5 - 3x^4 - 14x^3 + 12x^2 + 16x - 20$ is called the dividend function.

The expression $2x^3 + 5x^2 - 3$ is called the quotient in the division. The function $q(x) = 2x^3 + 5x^2 - 3$ is called the quotient function.

The expression 4x - 11 is called the remainder in the division. The function r(x) = 4x - 11 is called the remainder function.

We have that

$$\frac{2x^5 - 3x^4 - 14x^3 + 12x^2 + 16x - 20}{x^2 - 4x + 3} = 2x^3 + 5x^2 - 3 + \frac{4x - 11}{x^2 - 4x + 3}$$

Multiplying both sides of this equation by $x^2 - 4x + 3$, we have that $2x^5 - 3x^4 - 14x^3 + 12x^2 + 16x - 20 =$

$$(x^{2} - 4x + 3)(2x^{3} + 5x^{2} - 3) + (4x - 11)$$

Let *a* and *b* be polynomials. Then $\frac{a(x)}{b(x)} = q(x) + \frac{r(x)}{b(x)}$. The degree of the remainder polynomial *r* is less than the degree of divisor polynomial *b*, written deg *r* < deg *b*.

Multiplying both sides of the equation $\frac{a(x)}{b(x)} = q(x) + \frac{r(x)}{b(x)}$ by r(x), we have that a(x) = b(x)q(x) + r(x).

Example Find $(12x^4 - 17x^3 - 21x^2 + 7) \div (3x - 2)$.

$$4x^{3} - 3x^{2} - 9x - 6$$

$$3x - 2)\overline{12x^{4} - 17x^{3} - 21x^{2} + 0x + 7}$$

$$\underline{12x^{4} - 8x^{3}}$$

$$-9x^{3} - 21x^{2}$$

$$-9x^{3} + 6x^{2}$$

$$-27x^{2} + 0x$$

$$-27x^{2} + 18x$$

$$-18x + 7$$

$$-18x + 12$$

$$-5$$

Copyrighted by James D. Anderson, The University of Toledo www.math.utoledo.edu/~janders/1320 NOTE: $4x^{3}(3x - 2) = 12x^{4} - 8x^{3}$ $-3x^{2}(3x - 2) = -9x^{3} + 6x^{2}$ $-9x(3x - 2) = -27x^{2} + 18x$ -6(3x - 2) = -18x + 12

The quotient function is $q(x) = 4x^3 - 3x^2 - 9x - 6$ and the remainder function is r(x) = -5. We have that

$$12x^{4} - 17x^{3} - 21x^{2} + 7 = (3x - 2)(4x^{3} - 3x^{2} - 9x - 6) + (-5).$$

Example Find $(12x^4 - 17x^3 - 21x^2 + 7) \div \left(x - \frac{2}{3}\right)$.

$$x - \frac{2}{3} \underbrace{) 12x^{4} - 17x^{3} - 21x^{2} + 0x + 7}_{12x^{4} - 8x^{3}} \\ - 9x^{3} - 21x^{2} \\ - 9x^{3} - 21x^{2} \\ - 9x^{3} + 6x^{2} \\ - 27x^{2} + 0x \\ - 27x^{2} + 18x \\ - 18x + 7 \\ - 18x + 12 \\ - 5$$

The quotient function is $q(x) = 12x^3 - 9x^2 - 27x - 18$ and the remainder function is r(x) = -5. We have that

$$12x^{4} - 17x^{3} - 21x^{2} + 7 = \left(x - \frac{2}{3}\right)(12x^{3} - 9x^{2} - 27x - 18) + (-5).$$

NOTE: In the example above, we had that

$$12x^4 - 17x^3 - 21x^2 + 7 = (3x - 2)(4x^3 - 3x^2 - 9x - 6) + (-5)$$
. Thus,
 $12x^4 - 17x^3 - 21x^2 + 7 = (3x - 2)(4x^3 - 3x^2 - 9x - 6) - 5 =$
 $3\left(x - \frac{2}{3}\right)(4x^3 - 3x^2 - 9x - 6) - 5 =$
 $\left(x - \frac{2}{3}\right)(12x^3 - 9x^2 - 27x - 18) - 5$

Example Find $(x^5 + 4x^4 + 72x^2 - 8x - 20) \div (x + 6)$.

$$\frac{x^{4} - 2x^{3} + 12x^{2} - 8}{x + 6 x^{5} + 4x^{4} + 0x^{3} + 72x^{2} - 8x - 20}$$

$$\frac{x^{5} + 6x^{4}}{- 2x^{4} + 0x^{3}}$$

$$\frac{- 2x^{4} - 12x^{3}}{12x^{3} + 72x^{2}}$$

$$\frac{- 8x - 20}{- 8x - 48}$$

The quotient function is $q(x) = x^4 - 2x^3 + 12x^2 - 8$ and the remainder function is r(x) = 28. We have that

$$x^{5} + 4x^{4} + 72x^{2} - 8x - 20 = (x + 6)(x^{4} - 2x^{3} + 12x^{2} - 8) + 28.$$

Consider the following.

	$\underbrace{\begin{array}{c} \text{Coefficients of } x^5 + 4x^4 + 72x^2 - 8x - 20 \\ \hline 4 & 0 & 72 & -8 & -20 \end{array}}_{4}$						
1	4	0	72	- 8	- 20	- 0	
	- 6	12	- 72	0	48		
1	- 2	12	0	- 8	28		

What do the numbers in the third row represent?

1	4	0	72	- 8	- 20	- 6	
	- 6	12	- 72	0	48		
1	- 2	12	0	- 8	28		
Coefficients of the quotient function starting with x^4 Remainder							

Thus, the quotient function is $q(x) = x^4 - 2x^3 + 12x^2 - 8$ and the remainder function is r(x) = 28. These are the same answers that we obtained above using long division.

This process is called synthetic division. Synthetic division can only be used to divide a polynomial by another polynomial of degree one with a leading coefficient of one. Thus, you can NOT use synthetic division to find

 $(12x^4 - 17x^3 - 21x^2 + 7) \div (3x - 2)$. However, we can do the following division.

Example Use synthetic division to find $(12x^4 - 17x^3 - 21x^2 + 7) \div \left(x - \frac{2}{3}\right)$.

Coefficients of $12x^4 - 17x^3 - 21x^2 + 7$							
12	- 17	- 21	0	7	2		
	8	- 6	- 18	- 12	3		
12	- 9	- 27	- 18	- 5			
Coeff of quotient function starting with x^3							

Thus, the quotient function is $q(x) = 12x^3 - 9x^2 - 27x - 18$ and the remainder function is r(x) = -5. These are the same answers that we obtained above using long division.

Example If
$$f(x) = x^5 + 4x^4 + 72x^2 - 8x - 20$$
, then find $f(-6)$.
 $f(-6) = (-6)^5 + 4(-6)^4 + 72(-6)^2 - 8(-6) - 20 =$
 $-7776 + 4(1296) + 72(36) - 8(-6) - 20 =$
 $-7776 + 5184 + 2592 + 48 - 20 = 28$

This calculation would have been faster (and easier) using the fact that

$$x^{5} + 4x^{4} + 72x^{2} - 8x - 20 = (x + 6)(x^{4} - 2x^{3} + 12x^{2} - 8) + 28$$

that we obtained in the example above. Thus, f(x) = (x + 6)q(x) + 28, where $q(x) = x^4 - 2x^3 + 12x^2 - 8$.

Thus, $f(-6) = (-6 + 6)q(-6) + 28 = 0 \cdot q(-6) + 28 = 0 + 28 = 28$.

This result can be explained by the following theorem.

Theorem (The Remainder Theorem) Let p be a polynomial. If p(x) is divided by x - a, then the remainder is p(a).

<u>Proof</u> If p(x) is divided by x - a, then p(x) = (x - a)q(x) + r(x). Thus, $p(a) = (a - a)q(a) + r(a) = 0 \cdot q(a) + r(a) = 0 + r(a) = r(a)$.

Example If $g(x) = 12x^4 - 17x^3 - 21x^2 + 7$, then find $g\left(\frac{2}{3}\right)$.

Using synthetic division to find $(12x^4 - 17x^3 - 21x^2 + 7) \div \left(x - \frac{2}{3}\right)$, we have that

 $\begin{array}{c|c}
\hline Coefficients of 12x^4 - 17x^3 - 21x^2 + 7 \\
\hline 12 & -17 & -21 & 0 & 7 \\
\hline 8 & -6 & -18 & -12 \\
\hline 12 & -9 & -27 & -18 & -5 \\
\hline \end{array}$

Copyrighted by James D. Anderson, The University of Toledo www.math.utoledo.edu/~janders/1320

Thus, the remainder is -5. Thus, $g\left(\frac{2}{3}\right) = -5$.

Example If $h(x) = x^5 - 8x^4 + 12x^3 + 23x^2 - 16x - 37$, then find h(3).

Using synthetic division to find $(x^5 - 8x^4 + 12x^3 + 23x^2 - 16x - 37) \div (x - 3)$, we have that

$\underbrace{\begin{array}{c} \text{Coefficients of } x^5 - 8x^4 + 12x^3 + 23x^2 - 16x - 37 \\ \hline 1 - 8 & 12 & 23 & -16 & -37 \end{array}}_{\text{Coefficients of } x^5 - 8x^4 + 12x^3 + 23x^2 - 16x - 37 \\ \hline \end{array}}$						
1	- 8	12	23	- 16	- 37	5
	3	- 15	- 9	42	78	
1	- 5	- 3	14	26	41	

Thus, the remainder is 41. Thus, h(3) = 41.

Theorem (The Factor Theorem) Let p be a polynomial. The expression x - a is a factor of p(x) if and only if p(a) = 0.

<u>Proof</u> (\Rightarrow) Suppose that x - a is a factor of p(x). Then the remainder upon division by x - a must be zero. By the Remainder Theorem, p(a) = 0.

(\Leftarrow) Suppose that p(a) = 0. By the Remainder Theorem, we have that p(x) = (x - a)q(x) + p(a). Thus, p(x) = (x - a)q(x). Thus, x - a is a factor of p(x).

Example Show that x + 4 is a factor of $p(x) = 5x^3 + 12x^2 - 20x + 48$.

We will use the Factor Theorem and show that p(-4) = 0. We will use the Remainder Theorem and synthetic division to find p(-4).

Copyrighted by James D. Anderson, The University of Toledo www.math.utoledo.edu/~janders/1320

Thus, p(-4) = 0. Thus, by the Factor Theorem, x + 4 is a factor of $p(x) = 5x^3 + 12x^2 - 20x + 48$.

NOTE: The third row in the synthetic division gives us the coefficients of the other factor starting with x^2 . Thus, the other factor is $5x^2 - 8x + 12$.

Thus, we have that $5x^3 + 12x^2 - 20x + 48 = (x + 4)(5x^2 - 8x + 12)$.

Example Show that t - 6 is not a factor of $q(t) = 2t^4 - 7t^2 + 15$.

We will use the Factor Theorem and show that $q(6) \neq 0$. We will use the Remainder Theorem and synthetic division to find q(6).

Coefficients of $2t^4 - 7t^2 + 15$						
2	0	- 7	0	15	0	
	12	72	390	2340		
2	12	65	390	2355		

Thus, $q(6) = 2355 \neq 0$. Thus, by the Factor Theorem, t - 6 is not a factor of $q(t) = 2t^4 - 7t^2 + 15$.

Example Find the value(s) of c so that x + 3 is a factor of $f(x) = 2x^4 - x^3 - 9x^2 + 22x + c$.

By the Factor Theorem, x + 3 is a factor of the polynomial f if and only if f(-3) = 0.

$$f(-3) = 162 + 27 - 81 - 66 + c = c + 42$$

Thus, $f(-3) = 0 \implies c + 42 = 0 \implies c = -42$.

Using the Remainder Theorem and synthetic division to find f(-3), we have

$$\begin{array}{c|ccccc} \hline & Coeff & of & 2x^4 & -x^3 & -9x^2 & +22x & +c \\ \hline \hline 2 & -1 & -9 & 22 & c \\ \hline -6 & 21 & -36 & 42 \\ \hline 2 & -7 & 12 & -14 & c + 42 \end{array}$$

By the Remainder Theorem, f(-3) = c + 42. Thus, $f(-3) = 0 \Rightarrow$

 $c + 42 = 0 \implies c = -42.$

Answer: - 42

Example Find the value(s) of c so that t - 2 is a factor of $g(t) = t^5 + 5t^3 - 6t^2 + ct - 64$.

By the Factor Theorem, t - 2 is a factor of the polynomial g if and only if g(2) = 0.

$$g(2) = 32 + 40 - 24 + 2c - 64 = 2c - 16$$

Thus, $g(2) = 0 \implies 2c - 16 = 0 \implies c = 8$.

Using the Remainder Theorem and synthetic division to find g(2), we have

Coeff of $t^5 + 5t^3 - 6t^2 + ct - 64$						
1	0	5	- 6	С	- 64	
	2	4	18	24	2c + 48	
1	2	9	12	c + 24	2 <i>c</i> – 16	

By the Remainder Theorem, g(2) = 2c - 16. Thus, $g(2) = 0 \Rightarrow$

 $2c - 16 = 0 \implies c = 8.$

Answer: 8