LESSON 6 LONG DIVISION AND SYNTHETIC DIVISION

Example Find $\left(2 x^{5}-3 x^{4}-14 x^{3}+12 x^{2}+16 x-20\right) \div\left(x^{2}-4 x+3\right)$.

$$
\begin{array}{r}
x ^ { 2 } - 4 x + 3 \longdiv { 2 x ^ { 3 } + 5 x ^ { 2 } - 3 } \\
\frac{2 x^{5}-3 x^{4}-14 x^{3}+12 x^{2}+16 x-20}{5 x^{4}-20 x^{3}+12 x^{2}} \\
\frac{5 x^{4}-20 x^{3}+15 x^{2}}{} \\
\begin{array}{l}
-3 x^{2}+16 x-20 \\
\\
\frac{-3 x^{2}+12 x-9}{4 x-11}
\end{array}
\end{array}
$$

NOTE: $\quad 2 x^{3}\left(x^{2}-4 x+3\right)=2 x^{5}-8 x^{4}+6 x^{3}$

$$
\begin{aligned}
& 5 x^{2}\left(x^{2}-4 x+3\right)=5 x^{4}-20 x^{3}+15 x^{2} \\
& -3\left(x^{2}-4 x+3\right)=-3 x^{2}+12 x-9
\end{aligned}
$$

The expression $x^{2}-4 x+3$ is called the divisor in the division. The function $b(x)=x^{2}-4 x+3$ is called the divisor function.

The expression $2 x^{5}-3 x^{4}-14 x^{3}+12 x^{2}+16 x-20$ is called the dividend in the division. The function $a(x)=2 x^{5}-3 x^{4}-14 x^{3}+12 x^{2}+16 x-20$ is called the dividend function.

The expression $2 x^{3}+5 x^{2}-3$ is called the quotient in the division. The function $q(x)=2 x^{3}+5 x^{2}-3$ is called the quotient function.

The expression $4 x-11$ is called the remainder in the division. The function $r(x)=4 x-11$ is called the remainder function.

We have that

$$
\frac{2 x^{5}-3 x^{4}-14 x^{3}+12 x^{2}+16 x-20}{x^{2}-4 x+3}=2 x^{3}+5 x^{2}-3+\frac{4 x-11}{x^{2}-4 x+3}
$$

Multiplying both sides of this equation by $x^{2}-4 x+3$, we have that $2 x^{5}-3 x^{4}-14 x^{3}+12 x^{2}+16 x-20=$

$$
\left(x^{2}-4 x+3\right)\left(2 x^{3}+5 x^{2}-3\right)+(4 x-11)
$$

Let a and b be polynomials. Then $\frac{a(x)}{b(x)}=q(x)+\frac{r(x)}{b(x)}$. The degree of the remainder polynomial r is less than the degree of divisor polynomial b, written $\operatorname{deg} r<\operatorname{deg} b$.

Multiplying both sides of the equation $\frac{a(x)}{b(x)}=q(x)+\frac{r(x)}{b(x)}$ by $r(x)$, we have that $a(x)=b(x) q(x)+r(x)$.

Example Find $\left(12 x^{4}-17 x^{3}-21 x^{2}+7\right) \div(3 x-2)$.

$$
\begin{array}{r}
4 x - 2 \longdiv { 1 2 x ^ { 3 } - 3 x ^ { 2 } - 9 x - 6 } \begin{array} { r }
{ \frac { 1 7 x ^ { 3 } - 2 1 x ^ { 2 } + 0 x + 7 } { - 9 x ^ { 3 } - 2 1 x ^ { 2 } } } \\
{ \frac { - 9 x ^ { 3 } + 6 x ^ { 2 } } { - 2 7 x ^ { 2 } } + 0 x } \\
{ - \frac { - 2 7 x ^ { 2 } + 1 8 x } { } } \\
{ \frac { - 1 8 x + 7 } { } } \\
{ \frac { - 1 8 x + 1 2 } { - 5 } }
\end{array}
\end{array}
$$

NOTE: $\quad 4 x^{3}(3 x-2)=12 x^{4}-8 x^{3}$

$$
\begin{aligned}
& -3 x^{2}(3 x-2)=-9 x^{3}+6 x^{2} \\
& -9 x(3 x-2)=-27 x^{2}+18 x \\
& -6(3 x-2)=-18 x+12
\end{aligned}
$$

The quotient function is $q(x)=4 x^{3}-3 x^{2}-9 x-6$ and the remainder function is $r(x)=-5$. We have that

$$
12 x^{4}-17 x^{3}-21 x^{2}+7=(3 x-2)\left(4 x^{3}-3 x^{2}-9 x-6\right)+(-5) .
$$

Example Find $\left(12 x^{4}-17 x^{3}-21 x^{2}+7\right) \div\left(x-\frac{2}{3}\right)$.

$$
x - \frac { 2 } { 3 } \longdiv { 1 2 x ^ { 3 } - 9 x ^ { 2 } - 2 7 x - 1 8 } \begin{array} { r }
{ \frac { 1 2 x ^ { 4 } - 1 7 x ^ { 3 } - 2 1 x ^ { 2 } + 0 x + 7 } { - 9 x ^ { 3 } - 2 1 x ^ { 2 } } } \\
{ \frac { - 9 x ^ { 3 } + 6 x ^ { 2 } } { - 2 7 x ^ { 2 } } + 0 x } \\
{ - 2 7 x ^ { 2 } + 1 8 x } \\
{ } \\
{ \frac { - 1 8 x + 7 } { } } \\
{ \frac { - 1 8 x + 1 2 } { - 5 } }
\end{array}
$$

The quotient function is $q(x)=12 x^{3}-9 x^{2}-27 x-18$ and the remainder function is $r(x)=-5$. We have that

$$
12 x^{4}-17 x^{3}-21 x^{2}+7=\left(x-\frac{2}{3}\right)\left(12 x^{3}-9 x^{2}-27 x-18\right)+(-5) .
$$

NOTE: In the example above, we had that
$12 x^{4}-17 x^{3}-21 x^{2}+7=(3 x-2)\left(4 x^{3}-3 x^{2}-9 x-6\right)+(-5)$. Thus,
$12 x^{4}-17 x^{3}-21 x^{2}+7=(3 x-2)\left(4 x^{3}-3 x^{2}-9 x-6\right)-5=$
$3\left(x-\frac{2}{3}\right)\left(4 x^{3}-3 x^{2}-9 x-6\right)-5=$
$\left(x-\frac{2}{3}\right)\left(12 x^{3}-9 x^{2}-27 x-18\right)-5$

Example Find $\left(x^{5}+4 x^{4}+72 x^{2}-8 x-20\right) \div(x+6)$.

$$
\begin{array}{r}
x + 6 \longdiv { x ^ { 4 } - 2 x ^ { 3 } + 1 2 x ^ { 2 } - 8 } \\
\frac{x^{5}+4 x^{4}+0 x^{3}+72 x^{2}-8 x-20}{-2 x^{4}+0 x^{3}} \\
\frac{-2 x^{4}-12 x^{3}}{12 x^{3}+72 x^{2}} \\
\frac{12 x^{3}+72 x^{2}}{} \\
-8 x-20 \\
\frac{-8 x-48}{28}
\end{array}
$$

The quotient function is $q(x)=x^{4}-2 x^{3}+12 x^{2}-8$ and the remainder function is $r(x)=28$. We have that

$$
x^{5}+4 x^{4}+72 x^{2}-8 x-20=(x+6)\left(x^{4}-2 x^{3}+12 x^{2}-8\right)+28 .
$$

Consider the following.

Coefficients of $x^{5}+4 x^{4}+72 x^{2}-8 x-20$						
1	4	0	72	-8	-20	
	-6	12	-72	0	48	
1	-2	12	0	-8	28	

What do the numbers in the third row represent?

Thus, the quotient function is $q(x)=x^{4}-2 x^{3}+12 x^{2}-8$ and the remainder function is $r(x)=28$. These are the same answers that we obtained above using long division.

This process is called synthetic division. Synthetic division can only be used to divide a polynomial by another polynomial of degree one with a leading coefficient of one. Thus, you can NOT use synthetic division to find $\left(12 x^{4}-17 x^{3}-21 x^{2}+7\right) \div(3 x-2)$. However, we can do the following division.

Example Use synthetic division to find $\left(12 x^{4}-17 x^{3}-21 x^{2}+7\right) \div\left(x-\frac{2}{3}\right)$.

Coefficients of $12 x^{4} \underbrace{-17 x^{3}-21 x^{2}+7}$				
12	- 17	- 21	0	7
	8	- 6	- 18	- 12
12	-9	-27	-18	-5

Thus, the quotient function is $q(x)=12 x^{3}-9 x^{2}-27 x-18$ and the remainder function is $r(x)=-5$. These are the same answers that we obtained above using long division.

Example If $f(x)=x^{5}+4 x^{4}+72 x^{2}-8 x-20$, then find $f(-6)$.
$f(-6)=(-6)^{5}+4(-6)^{4}+72(-6)^{2}-8(-6)-20=$
$-7776+4(1296)+72(36)-8(-6)-20=$
$-7776+5184+2592+48-20=28$
This calculation would have been faster (and easier) using the fact that
$x^{5}+4 x^{4}+72 x^{2}-8 x-20=(x+6)\left(x^{4}-2 x^{3}+12 x^{2}-8\right)+28$
that we obtained in the example above. Thus, $f(x)=(x+6) q(x)+28$, where $q(x)=x^{4}-2 x^{3}+12 x^{2}-8$.

Thus, $f(-6)=(-6+6) q(-6)+28=0 \cdot q(-6)+28=0+28=28$.

This result can be explained by the following theorem.

Theorem (The Remainder Theorem) Let p be a polynomial. If $p(x)$ is divided by $x-a$, then the remainder is $p(a)$.

Proof If $p(x)$ is divided by $x-a$, then $p(x)=(x-a) q(x)+r(x)$. Thus, $p(a)=(a-a) q(a)+r(a)=0 \cdot q(a)+r(a)=0+r(a)=r(a)$.

Example If $g(x)=12 x^{4}-17 x^{3}-21 x^{2}+7$, then find $g\left(\frac{2}{3}\right)$.
Using synthetic division to find $\left(12 x^{4}-17 x^{3}-21 x^{2}+7\right) \div\left(x-\frac{2}{3}\right)$, we have that

Coefficient of $12 x^{4}-17 x^{3}-21 x^{2}+7$				
12	- 17	-21	0	7
	8	- 6	- 18	- 12
	-9	-27	-18	-5

Thus, the remainder is -5 . Thus, $g\left(\frac{2}{3}\right)=-5$.
Example If $h(x)=x^{5}-8 x^{4}+12 x^{3}+23 x^{2}-16 x-37$, then find $h(3)$.
Using synthetic division to find $\left(x^{5}-8 x^{4}+12 x^{3}+23 x^{2}-16 x-37\right) \div(x-3)$, we have that

1	-8	12	23	- 16	- 37
	3	-15	-9	42	78
1	-5	- 3	14	26	41

Thus, the remainder is 41 . Thus, $h(3)=41$.

Theorem (The Factor Theorem) Let p be a polynomial. The expression $x-a$ is a factor of $p(x)$ if and only if $p(a)=0$.

Proof (\Rightarrow) Suppose that $x-a$ is a factor of $p(x)$. Then the remainder upon division by $x-a$ must be zero. By the Remainder Theorem, $p(a)=0$.
(\Leftarrow) Suppose that $p(a)=0$. By the Remainder Theorem, we have that $p(x)=(x-a) q(x)+p(a)$. Thus, $p(x)=(x-a) q(x)$. Thus, $x-a$ is a factor of $p(x)$.

Example Show that $x+4$ is a factor of $p(x)=5 x^{3}+12 x^{2}-20 x+48$.
We will use the Factor Theorem and show that $p(-4)=0$. We will use the Remainder Theorem and synthetic division to find $p(-4)$.

$$
\begin{aligned}
& \overbrace{512-20 \quad 48}^{\text {Coeff of } 5 x^{3}+12 x^{2}-20 x+48} \mid-4 \\
& -20 \quad 32-48 \\
& \begin{array}{llll}
5 & -8 & 12 & 0
\end{array}
\end{aligned}
$$

Thus, $p(-4)=0$. Thus, by the Factor Theorem, $x+4$ is a factor of $p(x)=5 x^{3}+12 x^{2}-20 x+48$.

NOTE: The third row in the synthetic division gives us the coefficients of the other factor starting with x^{2}. Thus, the other factor is $5 x^{2}-8 x+12$.

Thus, we have that $5 x^{3}+12 x^{2}-20 x+48=(x+4)\left(5 x^{2}-8 x+12\right)$.

Example Show that $t-6$ is not a factor of $q(t)=2 t^{4}-7 t^{2}+15$.
We will use the Factor Theorem and show that $q(6) \neq 0$. We will use the Remainder Theorem and synthetic division to find $q(6)$.

Coefficients of $2 \underbrace{t^{4}-7 t^{2}+15}$				
2	0	-7	0	15
	12	72	390	2340
2	12	65	390	2355

Thus, $q(6)=2355 \neq 0$. Thus, by the Factor Theorem, $t-6$ is not a factor of $q(t)=2 t^{4}-7 t^{2}+15$.

Example Find the value(s) of c so that $x+3$ is a factor of $f(x)=2 x^{4}-x^{3}-9 x^{2}+22 x+c$.

By the Factor Theorem, $x+3$ is a factor of the polynomial f if and only if $f(-3)=0$.

$$
f(-3)=162+27-81-66+c=c+42
$$

Thus, $f(-3)=0 \Rightarrow c+42=0 \Rightarrow c=-42$.

Using the Remainder Theorem and synthetic division to find $f(-3)$, we have

Coeff of $2 x^{4}-x^{3} \underbrace{-9 x^{2}+22 x+c}$					
2	-1	-9	22	c	
	- 6	21	- 36	42	
2	- 7	12	- 14	$c+42$	

By the Remainder Theorem, $f(-3)=c+42$. Thus, $f(-3)=0 \Rightarrow$
$c+42=0 \Rightarrow c=-42$.

Answer: - 42

Example Find the value(s) of c so that $t-2$ is a factor of

$$
g(t)=t^{5}+5 t^{3}-6 t^{2}+c t-64 .
$$

By the Factor Theorem, $t-2$ is a factor of the polynomial g if and only if $g(2)=0$.

$$
g(2)=32+40-24+2 c-64=2 c-16
$$

Thus, $g(2)=0 \Rightarrow 2 c-16=0 \Rightarrow c=8$.
Using the Remainder Theorem and synthetic division to find $g(2)$, we have

By the Remainder Theorem, $g(2)=2 c-16$. Thus, $g(2)=0 \Rightarrow$
$2 c-16=0 \Rightarrow c=8$.

Answer: 8

