LESSON 5  POLYNOMIALS
Definition  A polynomial  p  is a function of the form where
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NOTE:  In this class, we will restrict our discussion to polynomials with real (number) coefficients.

Notation:  The coefficient  
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 is called the leading coefficient and  n  is called the degree of the polynomial.
COMMENT:  Any polynomial is a “continuous” function.  The concept of continuity will be defined in calculus.  The continuity of a polynomial implies that its graph can be drawn without lifting your pencil.  Thus, there are no points missing in the graph, and there are no jumps or breaks in the graph.  In general, the graph of any continuous function can be drawn without lifting your pencil.

COMMENT:  The graph of any polynomial is “smooth.”  The concept of smooth will also be defined in calculus.  The smoothness of the graph means that there are no sharp turns in the graph.

Definition  A real or complex number z  is called a zero or a root of the polynomial  p  if and only if  
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Theorem  If  
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 is a zero (root) of a polynomial with real coefficients, then the conjugate  
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  is also a zero (root) of the polynomial.

Proof  Recall the following properties for conjugates.
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By mathematical induction,
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By mathematical induction,  
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If  a  is a real number, then  
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Since  z  is a zero (root) of the polynomial, then  
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  is a zero (root) of the polynomial.

Note, since the coefficients of the polynomial are real numbers, then  
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NOTE:  This proof is easier to read (and type) if we make use of summation notation
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Theorem  Let  a  be a real number.  Let  p  be any polynomial.  Then the following statements are equivalent.
1.
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Definition  Let  p  be any polynomial.  If  
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Theorem  Let  p  be any polynomial.  Let  a  be a real number.  If  
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Theorem  (The Fundamental Theorem of Algebra)  An  nth degree polynomial has at most  n  zeros (roots).  If you count the multiplicity of the zero (root), then an  nth degree polynomial has exactly  n  zeros (roots).
Theorem  An  nth degree polynomial has at most  
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  local extremum points (turning points).

Information about local extremum points can be obtained using calculus.

Theorem  If  a  and  b  are real zeros (roots) of a polynomial and  
[image: image55.wmf]b

a

¹

, then the polynomial has at least one local extremum point whose x-coordinate is between  a  and  b.

Now, we will look at the behavior of a polynomial for numerically large numbers.

Recall that the mathematical symbol  
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  means implies.  For example,
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  implies  x  is positive square root of 3 or  x  is negative square root of 3.

The mathematical symbol  
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  means approaches.  For example,  
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 means that  x  approaches 5.
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  means  x  approaches positive infinity.  That is,  x  grows positively without bound.  Also,  
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  means  x  approaches negative infinity.  That is,  x  grows negatively without bound.

Now, consider
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for numerically large values of  x  positive or negative.  In order to do this, we will need to rewrite  
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Theorem  (Leading Coefficient)  If the leading coefficient of a polynomial  p  is positive, then  
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Theorem  Let  p  be a polynomial whose degree is even.
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That is, for an even degree polynomial  p,  
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Theorem  Let  p  be a polynomial whose degree is odd.

1.
If   
[image: image100.wmf]¥

®

)

(

x

p

  as  
[image: image101.wmf]¥

®

x

, then  
[image: image102.wmf]¥

-

®

)

(

x

p

  as  
[image: image103.wmf]¥

-

®

x

.

2.
If   
[image: image104.wmf]¥

-

®

)

(

x

p

  as  
[image: image105.wmf]¥

®

x

, then  
[image: image106.wmf]¥

®

)

(

x

p

  as  
[image: image107.wmf]¥

-

®

x

.

That is, for an odd degree polynomial  p,  
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Definition  A function  f  is said to be even if and only if  
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  for all x  in the domain of  f.  A function  f  is said to be odd if and only if  
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COMMENT:  The graph of an even function is symmetry about the y-axis, and the graph of an odd function is symmetry through the origin.
Examples  Find the zeros (roots) and their multiplicities.  Discuss the implication of the multiplicity on the graph of the polynomial.  Determine the sign of the infinity that the polynomial values approaches as  x  or  t  approaches positive infinity and negative infinity.  Use this information to determine the number of local extremum points (turning points) that the graph of the polynomial has.  Determine whether the polynomial is even, odd, or neither in order to make use of symmetry if possible.
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Zeros (Roots) of  f :  
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Since the factor  x  produces the zero (root) of  0, its multiplicity is one.  Since the factor  
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Recall:  If the multiplicity of the zero (root) is odd, the graph of the polynomial crosses the x-axis, and if the multiplicity of the zero (root) is even, the graph of the polynomial touches the x-axis.

[image: image128.wmf]¥

®

x

:

Use the Leading Coefficient Theorem.  Since the leading coefficient of  
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The degree of  
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The polynomial is odd:  
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Thus, the graph of  f  is symmetry through the origin.

Here is the information about the zeros (roots) of the polynomial and the graph of the polynomial as  
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      The Drawing of this Sketch
Since the degree of the polynomial is 3, then the graph of the polynomial can have at most 2 local extremum points (turning points).
The graph of the continuous polynomial must cross the x-axis at the point  
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0

,

6

(

-

.  Then the graph must cross the x-axis at the origin.  In order for this to happen, there must be a local extremum point (turning point) whose x-coordinate is between  
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.  In order for this to happen, there must be a local extremum point (turning point) whose x-coordinate is between  0  and  6.  We would need calculus in order to obtain information about the  x-coordinate of these two local extremum points.
Thus, the graph of the polynomial has two local extremum points (turning points).
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Zeros (Roots) of  g :  
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Since the factor  
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  produces the zero (root) of  0, its multiplicity is two.

Since the factor  
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Recall:  If the multiplicity of the zero (root) is odd, the graph of the polynomial crosses the x-axis, and if the multiplicity of the zero (root) is even, the graph of the polynomial touches the x-axis.
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Thus, the graph of the polynomial is not symmetry with respect to the y-axis nor the origin.
Here is the information about the zeros (roots) of the polynomial and the graph of the polynomial as  
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       The Drawing of this Sketch
Since the degree of the polynomial is 3, then the graph of the polynomial can have at most 2 local extremum points (turning points).
Since the graph touches at the origin, then there is a local extremum point (turning point) at the origin.  Since the graph of the continuous polynomial  must cross the x-axis at the point  
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, then there is another local extremum point (turning point) whose x-coordinate is between 0 and  
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.  We would need calculus in order to obtain information about this x-coordinate.
Thus, the graph of the polynomial has two local extremum points (turning points).
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To solve for the zeros (roots) of this polynomial, you we need to recall a technique of factoring called “factor by grouping.”
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Recall:  If the multiplicity of the zero (root) is odd, the graph of the polynomial crosses the x-axis, and if the multiplicity of the zero (root) is even, the graph of the polynomial touches the x-axis.
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Thus, the graph of the polynomial is not symmetry with respect to the y-axis nor the origin.

Here is the information about the zeros (roots) of the polynomial and the graph of the polynomial as  
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  The Drawing of this Sketch

Since the degree of the polynomial is 3, then the graph of the polynomial can have at most 2 local extremum points (turning points).
The graph of the continuous polynomial must cross the x-axis at the point  
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Thus, the graph of the polynomial has two local extremum points (turning points).
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Since the factor  x  produces the zero (root) of  0, its multiplicity is one.  Since the factor  
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Recall:  If the multiplicity of the zero (root) is odd, the graph of the polynomial crosses the x-axis, and if the multiplicity of the zero (root) is even, the graph of the polynomial touches the x-axis.
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Thus, the graph of  p  is symmetry through the origin.

Here is the information about the zeros (roots) of the polynomial and the graph of the polynomial as  
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  The Drawing of this Sketch

Since the degree of the polynomial is 3, then the graph of the polynomial can have at most 2 local extremum points (turning points).
The graph of the continuous polynomial must cross the x-axis at the origin.  If the graph had a local extremum point (turning point) for some  
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, then it would have to have a second one in order to pass through the origin.  Because the graph is symmetry through the origin, the graph would have to have two local extremum points (turning points) for  
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Thus, the graph of the polynomial has no local extremum points (turning points).
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Zeros (Roots) of  q :  
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  produces the zero (root) of  6, its multiplicity is one.  Since the factor  
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Recall:  If the multiplicity of the zero (root) is odd, the graph of the polynomial crosses the x-axis, and if the multiplicity of the zero (root) is even, the graph of the polynomial touches the x-axis.
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The polynomial is neither even nor odd.  Thus, the graph of the polynomial is not symmetry with respect to the y-axis nor the origin.
Here is the information about the zeros (roots) of the polynomial and the graph of the polynomial as  
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  The Drawing of this Sketch

Since the degree of the polynomial is 3, then the graph of the polynomial can have at most 2 local extremum points (turning points).
Since the graph touches at the point  
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, then there is a local extremum point (turning point) at this point.  Since the graph of the continuous polynomial  must cross the x-axis at the point  
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, then there is another local extremum point (turning point) whose x-coordinate is between 3 and  6.  We would need calculus in order to obtain information about this x-coordinate.

Thus, the graph of the polynomial has two local extremum points (turning points).
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For this problem, it will be helpful to recall the following special factoring formula:
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Of course, we also have that  
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Since the factor  t  produces the zero (root) of  0, its multiplicity is one.  Since the factor  
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Recall:  If the multiplicity of the zero (root) is odd, the graph of the polynomial crosses the t-axis, and if the multiplicity of the zero (root) is even, the graph of the polynomial touches the t-axis.
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The polynomial is neither even nor odd.  Thus, the graph of the polynomial is not symmetry with respect to the y-axis nor the origin.  

Here is the information about the zeros (roots) of the polynomial and the graph of the polynomial as  
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  The Drawing of this Sketch

Since the degree of the polynomial is 3, then the graph of the polynomial can have at most 2 local extremum points (turning points).
Since the graph touches at the point  
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, then there is a local extremum point (turning point) at this point.  Since the graph of the continuous polynomial  must cross the t-axis at the origin, then there is another local extremum point (turning point) whose t-coordinate is between  
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 and  0.  We would need calculus in order to obtain information about this t-coordinate.

Thus, the graph of the polynomial has two local extremum points (turning points).
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Since the factor  
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Recall:  If the multiplicity of the zero (root) is odd, the graph of the polynomial crosses the x-axis, and if the multiplicity of the zero (root) is even, the graph of the polynomial touches the x-axis.
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The polynomial is neither even nor odd.  Thus, the graph of the polynomial is not symmetry with respect to the y-axis nor the origin.
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Since the degree of the polynomial is 3, then the graph of the polynomial can have at most 2 local extremum points (turning points).
The graph of the continuous polynomial could have no local extremum points (turning points) or it could have two local extremum points (turning points).  There is not enough information from the zeros (roots) and the graph is not symmetry to the y-axis nor the origin.  We need calculus in order to get information about the local extremum point(s).
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Recall:  If the multiplicity of the zero (root) is odd, the graph of the polynomial crosses the x-axis, and if the multiplicity of the zero (root) is even, the graph of the polynomial touches the x-axis.
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The polynomial is neither even nor odd.  Thus, the graph of the polynomial is not symmetry with respect to the y-axis nor the origin.

Here is the information about the zeros (roots) of the polynomial and the graph of the polynomial as  
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   The Drawing of this Sketch

Since the degree of the polynomial is 4, then the graph of the polynomial can have at most 3 local extremum points (turning points).
The graph of the continuous polynomial must cross the x-axis at the point  
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Thus, the graph of the polynomial has three local extremum points (turning points).
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Recall:  If the multiplicity of the zero (root) is odd, the graph of the polynomial crosses the x-axis, and if the multiplicity of the zero (root) is even, the graph of the polynomial touches the x-axis.
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The polynomial is even.  Thus, the graph of  h  is symmetry about the y-axis.  
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      The Drawing of this Sketch

Since the degree of the polynomial is 4, then the graph of the polynomial can have at most 3 local extremum points (turning points).
The graph of the continuous polynomial must cross the x-axis at the point  
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Thus, the graph of the polynomial has three local extremum points (turning points).
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Recall:  If the multiplicity of the zero (root) is odd, the graph of the polynomial crosses the x-axis, and if the multiplicity of the zero (root) is even, the graph of the polynomial touches the x-axis.
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The polynomial is even.  Thus, the graph of  f  is symmetry about the y-axis.  

Here is the information about the zeros (roots) of the polynomial and the graph of the polynomial as  
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    The Drawing of this Sketch

Since the degree of the polynomial is 4, then the graph of the polynomial can have at most 3 local extremum points (turning points).
Since the graph of the continuous polynomial touches the x-axis at the point  
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Thus, the graph of the polynomial has three local extremum points (turning points).
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Recall:  If the multiplicity of the zero (root) is odd, the graph of the polynomial crosses the x-axis, and if the multiplicity of the zero (root) is even, the graph of the polynomial touches the x-axis.

[image: image485.wmf]¥

®

x

:

Use the Leading Coefficient Theorem.  Since the leading coefficient of  
[image: image486.wmf]4

2

2

15

)

(

x

x

x

p

-

-

=

 is  
[image: image487.wmf]0

1

<

-

, then  
[image: image488.wmf]¥

-

®

)

(

x

p

  as  
[image: image489.wmf]¥

®

x

.


[image: image490.wmf]¥

-

®

x

:

The degree of  
[image: image491.wmf]4

2

2

15

)

(

x

x

x

p

-

-

=

  is 4, which is even.  Since  
[image: image492.wmf]¥

-

®

)

(

x

p

  as  
[image: image493.wmf]¥

®

x

, then  
[image: image494.wmf]¥

-

®

)

(

x

p

  as  
[image: image495.wmf]¥

-

®

x

.

The polynomial is even.  Thus, the graph of  p  is symmetry about the y-axis.  
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   The Drawing of this Sketch

Since the degree of the polynomial is 4, then the graph of the polynomial can have at most 3 local extremum points (turning points).
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Thus, the graph of the polynomial has one local extremum points (turning points).
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Recall:  If the multiplicity of the zero (root) is odd, the graph of the polynomial crosses the x-axis, and if the multiplicity of the zero (root) is even, the graph of the polynomial touches the x-axis.
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The polynomial is neither even nor odd.  Thus, the graph of the polynomial is not symmetry with respect to the y-axis nor the origin.
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Since the degree of the polynomial is 4, then the graph of the polynomial can have at most 3 local extremum points (turning points).

The graph of the continuous polynomial must cross the x-axis at the origin.  Then the graph must cross the x-axis at the point  
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Thus, the graph of the polynomial has one or three local extremum points (turning points).
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Recall:  If the multiplicity of the zero (root) is odd, the graph of the polynomial crosses the x-axis, and if the multiplicity of the zero (root) is even, the graph of the polynomial touches the x-axis.

[image: image576.wmf]¥

®

x

:

Use the Leading Coefficient Theorem.  Since the leading coefficient of  
[image: image577.wmf]4

3

2

27

54

)

(

x

x

x

x

f

-

-

+

=

 is  
[image: image578.wmf]0

1

<

-

, then  
[image: image579.wmf]¥

-

®

)

(

x

f

  as  
[image: image580.wmf]¥

®

x

.


[image: image581.wmf]¥

-

®

x

:

The degree of  
[image: image582.wmf]4

3

2

27

54

)

(

x

x

x

x

f

-

-

+

=

  is 4, which is even.  Since  
[image: image583.wmf]¥

-

®

)

(

x

f

  as  
[image: image584.wmf]¥

®

x

, then  
[image: image585.wmf]¥

-

®

)

(

x

f

  as  
[image: image586.wmf]¥

-

®

x

.

The polynomial is neither even nor odd.
Here is the information about the zeros (roots) of the polynomial and the graph of the polynomial as  
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Since the degree of the polynomial is 4, then the graph of the polynomial can have at most 3 local extremum points (turning points).
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[image: image589.wmf])

0

,

2

(

-

.  Then the graph must cross the x-axis at the point  
[image: image590.wmf])

0

,

3

(

.  In order for this to happen, there must be a local extremum point (turning point) whose x-coordinate is between  
[image: image591.wmf]2

-

  and  3.  If the graph had a local extremum point (turning point) for some  
[image: image592.wmf]2

-

<

x

, then it would have to have another local extremum point (turning point) in order to pass through the point  
[image: image593.wmf])

0

,

2

(

-

.  Since there is no symmetry in graph, this is possible and the graph would have three local extremum points (turning points).  The same argument would be true for  
[image: image594.wmf]3

2

<

<

-

x

 and for  
[image: image595.wmf]3

>

x

.  We need calculus in order to get information about the local extremum point(s).

Thus, the graph of the polynomial has one or three local extremum points (turning points).
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Recall:  If the multiplicity of the zero (root) is odd, the graph of the polynomial crosses the x-axis, and if the multiplicity of the zero (root) is even, the graph of the polynomial touches the x-axis.
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The polynomial is neither even nor odd. 
Here is the information about the zeros (roots) of the polynomial and the graph of the polynomial as  
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      The Drawing of this Sketch

Since the degree of the polynomial is 4, then the graph of the polynomial can have at most 3 local extremum points (turning points).

Since the graph of the continuous polynomial touches the t-axis at the origin, then there is a local extremum point (turning point) at the origin.   Then the graph must touch the t-axis at the point  
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Thus, the graph of the polynomial has three local extremum points (turning points).
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Examples  Find a polynomial  p  that has the given zeros (roots) and multiplicity.
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