LESSON 11 EXPONENTIAL AND LOGARITHMIC EQUATIONS

Since any exponential function is one-to-one, then $b^{u} = b^{v}$ if and only if u = v.

Examples Solve the following exponential equations. Give exact answers. No decimal approximations.

1. $3^x = 81$

Using the one-to-one property: $3^x = 81 \implies 3^x = 3^4 \implies x = 4$

Using logarithms base 3: $3^x = 81 \implies \log_3 3^x = \log_3 81 \implies$

 $x \log_3 3 = \log_3 81 \implies x = \log_3 81 = 4$

NOTE: $\log_{3} 3 = 1$

Using natural logarithms: $3^x = 81 \implies \ln 3^x = \ln 81 \implies x \ln 3 = \ln 81 \implies$

$$x = \frac{\ln 81}{\ln 3} \implies x = 4$$
 (using a calculator)

Answer: 4

2. $5^{-t} = 25$

3. $2^{3x-11} = 32$

Using the one-to-one property: $2^{3x-11} = 32 \implies 2^{3x-11} = 2^5 \implies$

$$3x - 11 = 5 \implies 3x = 16 \implies x = \frac{16}{3}$$

Using logarithms base 2: $2^{3x-11} = 32 \implies \log_2 2^{3x-11} = \log_2 32 \implies$

 $(3x - 11) \log_2 2 = \log_2 32 \implies 3x - 11 = 5 \implies 3x = 16 \implies x = \frac{16}{3}$

NOTE: $\log_2 2 = 1$

Using natural logarithms: $2^{3x-11} = 32 \implies \ln 2^{3x-11} = \ln 32 \implies$ $(3x - 11) \ln 2 = \ln 32 \implies 3x \ln 2 - 11 \ln 2 = \ln 32 \implies$ $3x \ln 2 = \ln 32 + 11 \ln 2 \implies x = \frac{\ln 32 + 11 \ln 2}{3 \ln 2} = \frac{\ln 32(2^{11})}{\ln 8} = \frac{16}{3}$

(using a calculator)

Answer: $\frac{16}{3}$

4.
$$4^{x^3} = \frac{1}{16}$$

5. $16^t = 64$

6.
$$9^{x+4} = \frac{1}{27}$$

7.
$$6^x = 12$$

Using natural logarithms: $6^x = 12 \implies \ln 6^x = \ln 12 \implies$

$$x \ln 6 = \ln 12 \implies x = \frac{\ln 12}{\ln 6}$$

NOTE:
$$x = \frac{\ln 12}{\ln 6} \approx 1.38685$$
 and $6^{1.38685} \approx 11.99994$

Using logarithms base 6: $6^x = 12 \implies \log_6 6^x = \log_6 12 \implies$

$$x \log_6 6 = \log_6 12 \implies x = \log_6 12$$
 NOTE: $\log_6 6 = 1$

Since your calculator does not have logarithm base 6 key, you would have to do a change of bases to obtain an approximation for $\log_6 12$. Since your calculator has a natural logarithm key $\lfloor N \rfloor$, then we obtain that $\log_6 12 = \frac{\ln 12}{\ln 6}$ using the change of base formula that $\log_b u = \frac{\log_a u}{\log_a b}$, where u = 12, b = 6, and a = e. Or, Since your calculator has a common logarithm key $\lfloor \text{LOG} \rfloor$, then we obtain that $\log_6 12 = \frac{\log 12}{\log 6}$ using the change of base formula that $\log_6 12 = \frac{\log 12}{\log 6}$ using the change of base formula that $\log_6 12 = \frac{\log 12}{\log 6}$ using the $d = \frac{\log_a u}{\log_a b}$, where u = 12, b = 6, and a = e.

Answer: $x = \frac{\ln 12}{\ln 6}$

8. $5^t = \frac{2}{3}$

9.
$$7^{-x} = \frac{3}{4}$$

- 10. $8^{5-2x} = 65$
- 11. $3^{7x+4} = 49$

Examples Solve the following logarithmic equations. Give exact answers. No decimal approximations.

1. $\log_{x} 16 = 2$

Using the definition of logarithm $(y = \log_b x \text{ if and only if } b^y = x)$, we will write the logarithmic equation as an exponential equation:

$$\log_{x} 16 = 2 \implies x^2 = 16$$

Using square roots to solve the equation $x^2 = 16$, we have that

$$x^{2} = 16 \implies \sqrt{x^{2}} = \sqrt{16} \implies |x| = 4 \implies x = \pm 4$$

Since the base of a logarithm can not be negative, then the solution of x = -4 can not be used. Thus, the only solution of the equation $\log_x 16 = 2$ is x = 4.

Answer: x = 4

2. $\log_x 5 = 3$

Using the definition of logarithm $(y = \log_b x \text{ if and only if } b^y = x)$, we will write the logarithmic equation as an exponential equation:

$$\log_x 5 = 3 \implies x^3 = 5$$

Using cube roots to solve the equation $x^3 = 5$, we have that

$$x^{3} = 5 \implies \sqrt[3]{x^{3}} = \sqrt[3]{5} \implies x = \sqrt[3]{5}$$

Answer: $x = \sqrt[3]{5}$

3. $\log_3 x = -2$

Using the definition of logarithm $(y = \log_b x \text{ if and only if } b^y = x)$, we will write the logarithmic equation as an exponential equation:

$$\log_3 x = -2 \implies x = 3^{-2} \implies x = \frac{1}{9}$$

We need to check that the number $\frac{1}{9}$ makes the argument of the logarithm positive since the logarithm of a negative number or zero is undefined. The argument of $\log_3 x$ is x. Thus, x will be positive when $x = \frac{1}{9}$. Thus, $\frac{1}{9}$ is a solution of the equation $\log_3 x = -2$. Of course, it is the only solution.

Answer: $x = \frac{1}{9}$

4. $\log(4t - 9) = 2$

Recall that log is the notation for the common logarithm, and the base of the common logarithm is 10. Using the definition of logarithm $(y = \log_b x \text{ if and only if } b^y = x)$, we will write the logarithmic equation as an exponential equation:

$$\log (4t - 9) = 2 \implies 4t - 9 = 10^2 \implies 4t - 9 = 100$$

Solving the equation 4t - 9 = 100, we have that $t = \frac{109}{4}$.

We need to check that the number $\frac{109}{4}$ makes the argument of the logarithm positive since the logarithm of a negative number or zero is undefined. The argument of $\log (4t - 9)$ is 4t - 9.

When
$$t = \frac{109}{4}$$
, we have that $4t - 9 = 4\left(\frac{109}{4}\right) - 9 = 109 - 9 > 0$.

Thus, $\frac{109}{4}$ is a solution of the equation $\log (4t - 9) = 2$. Of course, it is the only solution.

Answer:
$$t = \frac{109}{4}$$

5. $\log_2 x + \log_2 (x - 12) = 6$

First, we'll use the property of logarithms that $\log_b uv = \log_b u + \log_b v$ in order to write $\log_2 x + \log_2 (x - 12)$ as $\log_2 x (x - 12)$. Thus,

$$\log_2 x + \log_2 (x - 12) = 6 \implies \log_2 x (x - 12) = 6$$

Now, using the definition of logarithm $(y = \log_b x \text{ if and only if } b^y = x)$, we will write the logarithmic equation $\log_2 x(x - 12) = 6$ as an exponential equation:

$$\log_2 x(x-12) = 6 \implies x(x-12) = 2^6 \implies x(x-12) = 64$$

Solving the equation x(x - 12) = 64, we have that

$$x(x-12) = 64 \implies x^2 - 12x = 64 \implies x^2 - 12x - 64 = 0 \implies$$

 $(x + 4)(x - 16) = 0 \implies x = -4, x = 16$

We need to check that the numbers -4 and 16 make the argument of the logarithms positive since the logarithm of a negative number or zero is undefined. The argument of $\log_2 x$ is x and the argument of $\log_2 (x - 12)$ is x - 12.

When x = -4, we have that x = -4 < 0. Thus, when x = -4, we have that $\log_2 x = \log_2(-4)$. However, $\log_2(-4)$ is undefined. Thus, -4 is a solution of the equation x(x - 12) = 64, but it is not a solution of the equation $\log_2 x + \log_2(x - 12) = 6$.

When x = 16, we have that x = 16 > 0 and x - 12 = 16 - 12 > 0. Thus, 16 is a solution of the equation $\log_2 x + \log_2 (x - 12) = 6$.

Answer: x = 16

 $6. \qquad \ln x = \ln(5 - x)$

In order to solve this equation, we will use the fact that any logarithm function is one-to-one. Thus, $\log_{b} u = \log_{b} v$ if and only if u = v.

Thus, by the one-to-one property, we have that

$$\ln x = \ln(5 - x) \implies x = 5 - x$$

Solving the equation x = 5 - x, we have that $x = \frac{5}{2}$.

We need to check that the number $\frac{5}{2}$ makes the argument of the logarithms positive since the logarithm of a negative number or zero is undefined. The argument of $\ln x$ is x and the argument of $\ln(5 - x)$ is 5 - x.

When
$$x = \frac{5}{2}$$
, we have that $x = \frac{5}{2} > 0$ and $5 - x = 5 - \frac{5}{2} > 0$.
Thus, $\frac{5}{2}$ is a solution of the equation $\ln x = \ln(5 - x)$.

Answer: $x = \frac{5}{2}$

7.
$$\log_8 t = \log_8(7t + 11)$$

In order to solve this equation, we will use the fact that any logarithm function is one-to-one. Thus, $\log_b u = \log_b v$ if and only if u = v.

Thus, by the one-to-one property, we have that

$$\log_{8} t = \log_{8} (7t + 11) \implies t = 7t + 11$$

Solving the equation t = 7t + 11, we have that $t = -\frac{11}{6}$.

We need to check that the number $-\frac{11}{6}$ makes the argument of the logarithms positive since the logarithm of a negative number or zero is undefined. The argument of $\log_8 t$ is t and the argument of $\log_8 (7t + 11)$ is 7t + 11.

When
$$t = -\frac{11}{6}$$
, we have that $t = -\frac{11}{6} < 0$. Thus, when $t = -\frac{11}{6}$, we have that $\log_8 t = \log_8 \left(-\frac{11}{6}\right)$. However, $\log_8 \left(-\frac{11}{6}\right)$ is undefined.

Thus, $-\frac{11}{6}$ is a solution of the equation t = 7t + 11, but it is not a solution of the equation $\log_8 t = \log_8(7t + 11)$.

Answer: No solution