LESSON 11 EXPONENTIAL AND LOGARITHMIC EQUATIONS

Since any exponential function is one-to-one, then $b^{u}=b^{v}$ if and only if $u=v$.

Examples Solve the following exponential equations. Give exact answers. No decimal approximations.

1. $3^{x}=81$

Using the one-to-one property: $3^{x}=81 \Rightarrow 3^{x}=3^{4} \Rightarrow x=4$

Using logarithms base 3: $3^{x}=81 \Rightarrow \log _{3} 3^{x}=\log _{3} 81 \Rightarrow$

$$
x \log _{3} 3=\log _{3} 81 \Rightarrow x=\log _{3} 81=4
$$

NOTE: $\log _{3} 3=1$

Using natural logarithms: $3^{x}=81 \Rightarrow \ln 3^{x}=\ln 81 \Rightarrow x \ln 3=\ln 81 \Rightarrow$

$$
x=\frac{\ln 81}{\ln 3} \Rightarrow x=4 \quad \text { (using a calculator) }
$$

Answer: 4

2. $5^{-t}=25$
3. $2^{3 x-11}=32$

Using the one-to-one property: $2^{3 x-11}=32 \Rightarrow 2^{3 x-11}=2^{5} \Rightarrow$

$$
3 x-11=5 \Rightarrow 3 x=16 \Rightarrow x=\frac{16}{3}
$$

Using logarithms base $2: 2^{3 x-11}=32 \Rightarrow \log _{2} 2^{3 x-11}=\log _{2} 32 \Rightarrow$
$(3 x-11) \log _{2} 2=\log _{2} 32 \Rightarrow 3 x-11=5 \Rightarrow 3 x=16 \Rightarrow x=\frac{16}{3}$

NOTE: $\log _{2} 2=1$

Using natural logarithms: $2^{3 x-11}=32 \Rightarrow \ln 2^{3 x-11}=\ln 32 \Rightarrow$
$(3 x-11) \ln 2=\ln 32 \Rightarrow 3 x \ln 2-11 \ln 2=\ln 32 \Rightarrow$
$3 x \ln 2=\ln 32+11 \ln 2 \Rightarrow x=\frac{\ln 32+11 \ln 2}{3 \ln 2}=\frac{\ln 32\left(2^{11}\right)}{\ln 8}=\frac{16}{3}$
(using a calculator)

Answer: $\frac{16}{3}$
4. $\quad 4^{x^{3}}=\frac{1}{16}$
5. $16^{t}=64$
6. $\quad 9^{x+4}=\frac{1}{27}$
7. $6^{x}=12$

Using natural logarithms: $6^{x}=12 \Rightarrow \ln 6^{x}=\ln 12 \Rightarrow$
$x \ln 6=\ln 12 \Rightarrow x=\frac{\ln 12}{\ln 6}$

NOTE: $x=\frac{\ln 12}{\ln 6} \approx 1.38685$ and $6^{1.38685} \approx 11.99994$

Using logarithms base 6: $6^{x}=12 \Rightarrow \log _{6} 6^{x}=\log _{6} 12 \Rightarrow$

$$
x \log _{6} 6=\log _{6} 12 \Rightarrow x=\log _{6} 12 \quad \text { NOTE: } \log _{6} 6=1
$$

Since your calculator does not have logarithm base 6 key, you would have to do a change of bases to obtain an approximation for $\log _{6} 12$. Since your calculator has a natural logarithm key LN, then we obtain that $\log _{6} 12=$ $\frac{\ln 12}{\ln 6}$ using the change of base formula that $\log _{b} u=\frac{\log _{a} u}{\log _{a} b}$, where $u=12, b=6$, and $a=e$. Or, Since your calculator has a common logarithm key LOG, then we obtain that $\log _{6} 12=\frac{\log 12}{\log 6}$ using the change of base formula that $\log _{b} u=\frac{\log _{a} u}{\log _{a} b}$, where $u=12, b=6$, and $a=10$.

Answer: $x=\frac{\ln 12}{\ln 6}$
8. $\quad 5^{t}=\frac{2}{3}$
9. $\quad 7^{-x}=\frac{3}{4}$
10. $8^{5-2 x}=65$
11. $3^{7 x+4}=49$

Examples Solve the following logarithmic equations. Give exact answers. No decimal approximations.

1. $\log _{x} 16=2$

Using the definition of logarithm ($y=\log _{b} x$ if and only if $b^{y}=x$), we will write the logarithmic equation as an exponential equation:

$$
\log _{x} 16=2 \Rightarrow x^{2}=16
$$

Using square roots to solve the equation $x^{2}=16$, we have that

$$
x^{2}=16 \Rightarrow \sqrt{x^{2}}=\sqrt{16} \Rightarrow|x|=4 \Rightarrow x= \pm 4
$$

Since the base of a logarithm can not be negative, then the solution of $x=-4$ can not be used. Thus, the only solution of the equation $\log _{x} 16=2$ is $x=4$.

Answer: $x=4$
2. $\log _{x} 5=3$

Using the definition of logarithm $\left(y=\log _{b} x\right.$ if and only if $\left.b^{y}=x\right)$, we will write the logarithmic equation as an exponential equation:

$$
\log _{x} 5=3 \Rightarrow x^{3}=5
$$

Using cube roots to solve the equation $x^{3}=5$, we have that

$$
x^{3}=5 \Rightarrow \sqrt[3]{x^{3}}=\sqrt[3]{5} \Rightarrow x=\sqrt[3]{5}
$$

Answer: $x=\sqrt[3]{5}$
3. $\log _{3} x=-2$

Using the definition of logarithm $\left(y=\log _{b} x\right.$ if and only if $\left.b^{y}=x\right)$, we will write the logarithmic equation as an exponential equation:

$$
\log _{3} x=-2 \Rightarrow x=3^{-2} \Rightarrow x=\frac{1}{9}
$$

We need to check that the number $\frac{1}{9}$ makes the argument of the logarithm positive since the logarithm of a negative number or zero is undefined. The $\operatorname{argument}$ of $\log _{3} x$ is x. Thus, x will be positive when $x=\frac{1}{9}$. Thus, $\frac{1}{9}$ is a solution of the equation $\log _{3} x=-2$. Of course, it is the only solution.

Answer: $x=\frac{1}{9}$
4. $\quad \log (4 t-9)=2$

Recall that \log is the notation for the common logarithm, and the base of the common logarithm is 10 . Using the definition of logarithm ($y=\log _{b} x$ if and only if $b^{y}=x$), we will write the logarithmic equation as an exponential equation:

$$
\log (4 t-9)=2 \Rightarrow 4 t-9=10^{2} \Rightarrow 4 t-9=100
$$

Solving the equation $4 t-9=100$, we have that $t=\frac{109}{4}$.
We need to check that the number $\frac{109}{4}$ makes the argument of the logarithm positive since the logarithm of a negative number or zero is undefined. The argument of $\log (4 t-9)$ is $4 t-9$.

When $t=\frac{109}{4}$, we have that $4 t-9=4\left(\frac{109}{4}\right)-9=109-9>0$.
Thus, $\frac{109}{4}$ is a solution of the equation $\log (4 t-9)=2$. Of course, it is the only solution.

Answer: $t=\frac{109}{4}$
5. $\log _{2} x+\log _{2}(x-12)=6$

First, we'll use the property of logarithms that $\log _{b} u v=\log _{b} u+\log _{b} v$ in order to write $\log _{2} x+\log _{2}(x-12)$ as $\log _{2} x(x-12)$. Thus,

$$
\log _{2} x+\log _{2}(x-12)=6 \Rightarrow \log _{2} x(x-12)=6
$$

Now, using the definition of logarithm $\left(y=\log _{b} x\right.$ if and only if $\left.b^{y}=x\right)$, we will write the logarithmic equation $\log _{2} x(x-12)=6$ as an exponential equation:

$$
\log _{2} x(x-12)=6 \Rightarrow x(x-12)=2^{6} \Rightarrow x(x-12)=64
$$

Solving the equation $x(x-12)=64$, we have that

$$
\begin{aligned}
& x(x-12)=64 \Rightarrow x^{2}-12 x=64 \Rightarrow x^{2}-12 x-64=0 \Rightarrow \\
& (x+4)(x-16)=0 \Rightarrow x=-4, x=16
\end{aligned}
$$

We need to check that the numbers -4 and 16 make the argument of the logarithms positive since the logarithm of a negative number or zero is undefined. The argument of $\log _{2} x$ is x and the argument of $\log _{2}(x-12)$ is $x-12$.

When $x=-4$, we have that $x=-4<0$. Thus, when $x=-4$, we have that $\log _{2} x=\log _{2}(-4)$. However, $\log _{2}(-4)$ is undefined. Thus, -4 is a solution of the equation $x(x-12)=64$, but it is not a solution of the equation $\log _{2} x+\log _{2}(x-12)=6$.

When $x=16$, we have that $x=16>0$ and $x-12=16-12>0$. Thus, 16 is a solution of the equation $\log _{2} x+\log _{2}(x-12)=6$.

Answer: $x=16$
6. $\quad \ln x=\ln (5-x)$

In order to solve this equation, we will use the fact that any logarithm function is one-to-one. Thus, $\log _{b} u=\log _{b} v$ if and only if $u=v$.

Thus, by the one-to-one property, we have that

$$
\ln x=\ln (5-x) \Rightarrow x=5-x
$$

Solving the equation $x=5-x$, we have that $x=\frac{5}{2}$.

We need to check that the number $\frac{5}{2}$ makes the argument of the logarithms positive since the logarithm of a negative number or zero is undefined. The argument of $\ln x$ is x and the argument of $\ln (5-x)$ is $5-x$.

When $\quad x=\frac{5}{2}$, we have that $x=\frac{5}{2}>0$ and $5-x=5-\frac{5}{2}>0$. Thus, $\frac{5}{2}$ is a solution of the equation $\ln x=\ln (5-x)$.

Answer: $x=\frac{5}{2}$
7. $\log _{8} t=\log _{8}(7 t+11)$

In order to solve this equation, we will use the fact that any logarithm function is one-to-one. Thus, $\log _{b} u=\log _{b} v$ if and only if $u=v$.

Thus, by the one-to-one property, we have that

$$
\log _{8} t=\log _{8}(7 t+11) \Rightarrow t=7 t+11
$$

Solving the equation $t=7 t+11$, we have that $t=-\frac{11}{6}$.

We need to check that the number $-\frac{11}{6}$ makes the argument of the logarithms positive since the logarithm of a negative number or zero is undefined. The argument of $\log _{8} t$ is t and the argument of $\log _{8}(7 t+11)$ is $7 t+11$.

When $t=-\frac{11}{6}$, we have that $t=-\frac{11}{6}<0$. Thus, when $t=-\frac{11}{6}$, we have that $\log _{8} t=\log _{8}\left(-\frac{11}{6}\right)$. However, $\log _{8}\left(-\frac{11}{6}\right)$ is undefined.

Thus, $-\frac{11}{6}$ is a solution of the equation $t=7 t+11$, but it is not a solution of the equation $\log _{8} t=\log _{8}(7 t+11)$.

Answer: No solution

