LESSON 11  EXPONENTIAL AND LOGARITHMIC EQUATIONS
Since any exponential function is one-to-one, then 
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Examples  Solve the following exponential equations.  Give exact answers.  No decimal approximations.
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Using the one-to-one property:  
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Using logarithms base 3:  
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NOTE:  
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Using natural logarithms:  
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  (using a calculator)

Answer:  4

2.
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3.
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Using the one-to-one property:  
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Using logarithms base 2:  
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NOTE:  
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Using natural logarithms:  
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(using a calculator)


Answer:  
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Using natural logarithms:  
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NOTE:  
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Using logarithms base 6:  
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Since your calculator does not have logarithm base 6 key, you would have to do a change of bases to obtain an approximation for  
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Answer:  
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Examples  Solve the following logarithmic equations.  Give exact answers.  No decimal approximations.

1.
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Using the definition of logarithm  (
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Using square roots to solve the equation  
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Since the base of a logarithm can not be negative, then the solution of  
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Using the definition of logarithm  (
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Using cube roots to solve the equation  
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Answer:  
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Using the definition of logarithm  (
[image: image81.wmf]x

y

b

log

=

 if and only if 
[image: image82.wmf]x

b

y

=

 ), we will write the logarithmic equation as an exponential equation:


[image: image83.wmf]9

1

3

2

log

2

3

=

Þ

=

Þ

-

=

-

x

x

x


We need to check that the number  
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  makes the argument of the logarithm positive since the logarithm of a negative number or zero is undefined.  The argument of  
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Recall that log is the notation for the common logarithm, and the base of the common logarithm is 10.  Using the definition of logarithm  (
[image: image91.wmf]x

y

b

log

=

 if and only if 
[image: image92.wmf]x

b

y

=

 ), we will write the logarithmic equation as an exponential equation:


[image: image93.wmf]100

9

4

10

9

4

2

)

9

4

(

log

2

=

-

Þ

=

-

Þ

=

-

t

t

t



Solving the equation  
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We need to check that the number  
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First, we’ll use the property of logarithms that  
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Now, using the definition of logarithm  (
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Solving the equation  
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We need to check that the numbers  
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In order to solve this equation, we will use the fact that any logarithm function is one-to-one.  Thus,  
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Solving the equation  
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We need to check that the number  
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In order to solve this equation, we will use the fact that any logarithm function is one-to-one.  Thus,  
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Solving the equation  
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Answer:  No solution
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