LESSON 10 LOGARITHMIC FUNCTIONS

Definition The logarithmic function with base b is the function defined by $f(x)=\log _{b} x$, where $b>0$ and $b \neq 1$.

Recall that $y=\log _{b} x$ if and only if $b^{y}=x$

Recall the following information about logarithmic functions:

1. The domain of $f(x)=\log _{b} x$ is the set of positive real numbers. That is, the domain of $f(x)=\log _{b} x$ is $(0, \infty)$.
2. The range of $f(x)=\log _{b} x$ is the set of real numbers. That is, the range of $f(x)=\log _{b} x$ is $(-\infty, \infty)$.
3. The logarithmic function $f(x)=\log _{b} x$ and the exponential function $g(x)=b^{x}$ are inverses of one another:
$(f \circ g)(x)=f(g(x))=\log _{b} g(x)=\log _{b} b^{x}=x \log _{b} b=x(1)=x$, for all x in the domain of g , which is the set of all real numbers.
$(g \circ f)(x)=g(f(x))=g\left(\log _{b} x\right)=b^{\log _{b} x}=x$, for all x in the domain of f, which is the set of real numbers in the interval $(0, \infty)$.

Definition The natural logarithmic function is the logarithmic function whose base is the irrational number e. Thus, the natural logarithmic function is the function defined by $f(x)=\log _{e} x$, where $e=2.718281828 \ldots$. Recall that $\log _{e} x=\ln x$.

Definition The common logarithmic function is the logarithmic function whose base is the number 10. Thus, the common logarithmic function is the function defined by $f(x)=\log _{10} x$. Recall that $\log _{10} x=\log x$.

Theorem (Properties of Logarithms)

1. $\log _{b} u^{r}=r \log _{b} u$
2. $\log _{b} u v=\log _{b} u+\log _{b} v$
3. $\log _{b} \frac{u}{v}=\log _{b} u-\log _{b} v$
4. $\log _{b} b=1$
5. $\log _{b} 1=0$
6. $\quad b^{\log _{b} u}=u$
7. $\log _{b} b^{u}=u$
8. Change of Bases Formula: $\log _{b} u=\frac{\log _{a} u}{\log _{a} b}$

Proof

1. Let $y=\log _{b} u$. Then by the definition of logarithms, $b^{y}=u$. Thus, $u^{r}=\left(b^{y}\right)^{r}=b^{y r}=b^{r y}$. Writing the exponential equation $u^{r}=b^{r y}$ in terms of a logarithmic equation, we have that $\log _{b} u^{r}=r y$. Since $y=\log _{b} u$, then we have that $\log _{b} u^{r}=r \log _{b} u$.
2. Let $y=\log _{b} u$ and $w=\log _{b} v$. Then by the definition of logarithms, $b^{y}=u \quad$ and $\quad b^{w}=v$. Thus, $u v=b^{y} b^{w}=b^{y+w}$. Writing the exponential equation $u v=b^{y+w}$ in terms of a logarithmic equation, we have that $\log _{b} u v=y+w$. Since $y=\log _{b} u$ and $w=\log _{b} v$, then $\log _{b} u v=\log _{b} u+\log _{b} v$.
3. Let $y=\log _{b} u$ and $w=\log _{b} v$. Then by the definition of logarithms, $b^{y}=u$ and $b^{w}=v$. Thus, $\frac{u}{v}=\frac{b^{y}}{b^{w}}=b^{y-w}$. Writing the exponential equation $\frac{u}{v}=b^{y-w}$ in terms of a logarithmic equation, we have that $\log _{b} \frac{u}{v}=y-w . \quad$ Since $\quad y=\log _{b} u \quad$ and $\quad w=\log _{b} v$, then $\log _{b} \frac{u}{v}=\log _{b} u-\log _{b} v$.

Alternate proof: Since $\frac{u}{v}=u v^{-1}$, we have that $\log _{b} \frac{u}{v}=\log _{b} u v^{-1}$. Now, applying Property 2, we have that $\log _{b} u v^{-1}=\log _{b} u+\log _{b} v^{-1}$. Now, applying Property 1 , we have that $\log _{b} v^{-1}=-\log _{b} v$. Thus, we have that $\log _{b} \frac{u}{v}=\log _{b} u v^{-1}=\log _{b} u+\log _{b} v^{-1}=\log _{b} u-\log _{b} v$.
6. Let $y=\log _{b} u$. Then by the definition of logarithms, $b^{y}=u$. Since $y=\log _{b} u$, then $b^{\log _{b} u}=u$.
7. Follows from applying Property 1 and then Property 4.
8. Let $y=\log _{b} u, w=\log _{a} u$, and $z=\log _{a} b$. Then by the definition of logarithms, we have that $b^{y}=u, a^{w}=u$, and $a^{z}=b$. Since $a^{z}=b$, then $b^{y}=\left(a^{z}\right)^{y}=a^{y z}$. Since $b^{y}=u \quad$ and $\quad b^{y}=a^{y z}$, then $a^{y z}=u$. Since $a^{w}=u$, then $a^{y z}=a^{w}$. Thus, $y z=w$. Since $y=\log _{b} u, z=\log _{a} b$, and $w=\log _{a} u$, then $\left(\log _{b} u\right)\left(\log _{a} b\right)=$ $\log _{a} u$. Since b is the base of a logarithm, then $b \neq 1$. Since $\log _{a} b=0$ if and only if $b=1$, then $\log _{a} b \neq 0$. So, we can solve for $\log _{b} u$ by dividing both sides of the equation $\left(\log _{b} u\right)\left(\log _{a} b\right)=\log _{a} u$ by $\log _{a} b$. Thus, we obtain that $\log _{b} u=\frac{\log _{a} u}{\log _{a} b}$.

Alternate proof: Let $y=\log _{b} u$. Then by the definition of logarithms, $b^{y}=u$. Taking the logarithm base a of both sides of this equation, we obtain that $\log _{a} b^{y}=\log _{a} u$. By Property 1 , we have that $\log _{a} b^{y}=y \log _{a} b$. Thus, $\log _{a} b^{y}=\log _{a} u \Rightarrow y \log b=\log u$. Since b is the base of a logarithm, then $b \neq 1$. Since $\log _{a} b=0$ if and only if $b=1$, then $\log _{a} b \neq 0$. Solving for y, we obtain that $y=\frac{\log _{a} u}{\log _{a} b}$. Since $y=\log _{b} u$, then $\log _{b} u=\frac{\log _{a} u}{\log _{a} b}$.

Examples Graph the following logarithmic functions.

1. $g(x)=\log _{3} x$

Note that the domain of the logarithmic function g is $(0, \infty)$. In order to graph the function g given by $g(x)=\log _{3} x$, we set $g(x)=y$ and graph the equation $y=\log _{3} x$. By the definition of logarithm, $y=\log _{3} x$ if and only if $x=3^{y}$.

x	y
$\frac{1}{9}$	-2
$\frac{1}{3}$	-1
1	0
3	1
9	2

The Drawing of this Graph

The x-intercept of the graph of the function is the point $(1,0)$.

Note that as $x \rightarrow 0$ from the right, $y=\log _{3} x \rightarrow-\infty$. Thus, the vertical line of $x=0$, which is the y-axis, is a vertical asymptote of the graph of the function.

The functions $y=3^{x}$ and $y=\log _{3} x$ are inverse functions of one another:

$$
\begin{aligned}
& y=3^{x} \Rightarrow x=\log _{3} y \\
& y=\log _{3} x \Rightarrow x=3^{y}
\end{aligned}
$$

We graphed the function $f(x)=3^{x}$ in Lesson 9 .

The graph of $y=3^{x}$ is red and the graph of $y=\log _{3} x$ is blue:

The Drawing of these Graphs
Each graph is a reflection of the other through the line $y=x$, which is gray.
2. $\quad f(x)=\log _{1 / 2} x$

Note that the domain of the logarithmic function f is $(0, \infty)$. In order to graph the function f given by $f(x)=\log _{1 / 2} x$, we set $f(x)=y$ and graph the equation $y=\log _{1 / 2} x$. By the definition of logarithm, $y=\log _{1 / 2} x$ if and only if $x=\left(\frac{1}{2}\right)^{y}$.

x	y
8	-3
4	-2
2	-1
1	0
$\frac{1}{2}$	1
$\frac{1}{4}$	2
$\frac{1}{8}$	3

The Drawing of this Graph

The x-intercept of the graph of the function is the point $(1,0)$.

Note that as $x \rightarrow 0$ from the right, $y=\log _{1 / 2} x \rightarrow \infty$. Thus, the vertical line of $x=0$, which is the y-axis, is a vertical asymptote of the graph of the function.

The functions $y=\log _{1 / 2} x$ and $y=\left(\frac{1}{2}\right)^{x}$ are inverse functions of one another:

$$
y=\left(\frac{1}{2}\right)^{x} \Rightarrow x=\log _{1 / 2} y
$$

$$
y=\log _{1 / 2} x \Rightarrow x=\left(\frac{1}{2}\right)^{y}
$$

We graphed the function $g(x)=\left(\frac{1}{2}\right)^{x}$ in Lesson 9.

The graph of $y=\left(\frac{1}{2}\right)^{x}$ is red and the graph of $y=\log _{1 / 2} x$ is blue:

The Drawing of these Graphs

Each graph is a reflection of the other through the line $y=x$, which is gray.
3. $h(x)=\log _{4}(-x)$

Note that the domain of the logarithmic function h is $(-\infty, 0)$. In order to graph the function h given by $h(x)=\log _{4}(-x)$, we set $h(x)=y$ and graph the equation $y=\log _{4}(-x)$. By the definition of logarithm, $y=\log _{4}(-x)$ if and only if $-x=4^{y} \Rightarrow x=-4^{y}$.

x	y
$-\frac{1}{16}$	-2
$-\frac{1}{4}$	-1
-1	0
-4	1
-16	2

The x-intercept of the graph of the function is the point $(-1,0)$.
Note that as $x \rightarrow 0$ from the left, $y=\log _{4}(-x) \rightarrow-\infty$. Thus, the vertical line of $x=0$, which is the y-axis, is a vertical asymptote of the graph of the function.

The functions $y=\log _{4}(-x)$ and $y=-4^{x}$ are inverse functions of one another:

$$
\begin{aligned}
& y=\log _{4}(-x) \Rightarrow-x=4^{y} \Rightarrow x=-4^{y} \\
& y=-4^{x} \Rightarrow-y=4^{x} \Rightarrow x=\log _{4}(-y)
\end{aligned}
$$

The graph of $y=-4^{x}$ is red and the graph of $y=\log _{4}(-x)$ is blue:

The Drawing of these Graphs
Each graph is a reflection of the other through the line $y=x$, which is gray.
4. $k(x)=-\log _{4} x$

Note that the domain of the logarithmic function k is $(0, \infty)$. In order to graph the function k given by $k(x)=-\log _{4} x$, we set $h(x)=y$ and graph the equation $y=-\log _{4} x$. Since $y=-\log _{4} x \Rightarrow-y=\log _{4} x$, then by the definition of logarithm, $-y=\log _{4} x$ if and only if $x=4^{-y}$.

x	y
16	-2
4	-1
1	0
$\frac{1}{4}$	1
$\frac{1}{16}$	2

The Drawing of this Graph

The x-intercept of the graph of the function is the point $(1,0)$.
Note that as $x \rightarrow 0$ from the right, $y=-\log _{4} x \rightarrow \infty$. Thus, the vertical line of $x=0$, which is the y-axis, is a vertical asymptote of the graph of the function.

The functions $k(x)=-\log _{4} x$ and $h(x)=4^{-x}$ are inverse functions of one another:

$$
y=4^{-x} \Rightarrow-x=\log _{4} y \Rightarrow x=-\log _{4} y
$$

$$
y=-\log _{4} x \Rightarrow-y=\log _{4} x \Rightarrow x=4^{-y}
$$

We graphed the function $h(x)=4^{-x}$ in Lesson 9.

The graph of $y=4^{-x}$ is red and the graph of $y=-\log _{4} x$ is blue:

The Drawing of these Graphs
Each graph is a reflection of the other through the line $y=x$, which is gray.
5. $y=\log _{3 / 5}(-x)$

Note that the domain of the logarithmic function is $(-\infty, 0)$. By the definition of logarithm, $\quad y=\log _{3 / 5}(-x)$ if and only if $-x=\left(\frac{3}{5}\right)^{y} \Rightarrow$ $x=-\left(\frac{3}{5}\right)^{y}$.

x	y
$-\frac{125}{27}$	-3
$-\frac{25}{9}$	-2
$-\frac{5}{3}$	-1
-1	0
$-\frac{3}{5}$	1
$-\frac{9}{25}$	2
$-\frac{27}{125}$	3

The Drawing of this Graph

The x-intercept of the graph of the function is the point $(-1,0)$.
Note that as $x \rightarrow 0$ from the left, $y=\log _{3 / 5}(-x) \rightarrow \infty$. Thus, the vertical line of $x=0$, which is the y-axis, is a vertical asymptote of the graph of the function.

The functions $y=\log _{3 / 5}(-x)$ and $y=-\left(\frac{3}{5}\right)^{x}$ are inverse functions of one another.
6. $f(x)=\ln x$

Recall: $\ln x=\log _{e} x$, where $e=2.718281828 \ldots$

Note that the domain of the logarithmic function f is $(0, \infty)$. In order to graph the function f given by $f(x)=\ln x$, we set $f(x)=y$ and graph
the equation $y=\ln x$. By the definition of logarithm, $y=\ln x$ if and only if $x=e^{y}$.

x	y
$e^{-3} \approx 0.04979$	-3
$e^{-2} \approx 0.13534$	-2
$e^{-1} \approx 0.36788$	-1
1	0
$e \approx 2.71828$	1
$e^{2} \approx 7.38906$	2
$e^{3} \approx 20.08554$	3

The Drawing of this Graph

The x-intercept of the graph of the function is the point $(1,0)$.

Note that as $x \rightarrow 0$ from the right, $y=\ln x \rightarrow-\infty$. Thus, the vertical line of $x=0$, which is the y-axis, is a vertical asymptote of the graph of the function.

The functions $y=\ln x$ and $y=e^{x}$ are inverse functions of one another.
7. $g(x)=3 \log x$

Recall: $\log x=\log _{10} x$

Note that the domain of the logarithmic function g is $(-\infty, 0)$. In order to graph the function g given by $g(x)=3 \log x$, we set $g(x)=y$ and graph the equation $y=3 \log x$. Since $y=3 \log x \Rightarrow \frac{y}{3}=\log x$, then
by the definition of \log arithm, $\frac{y}{3}=\log x$ if and only if $x=10^{y / 3}$.

x	y
$\frac{1}{100}$	-6
$\frac{1}{10}$	-3
1	0
10	3
100	6

The Drawing of this Graph

The x-intercept of the graph of the function is the point $(1,0)$.
Note that as $x \rightarrow 0$ from the right, $y=\log x \rightarrow-\infty$. Thus, the vertical line of $x=0$, which is the y-axis, is a vertical asymptote of the graph of the function.

The functions $y=3 \log x$ and $y=10^{x / 3}$ are inverse functions of one another.
8. $h(x)=-2 \log _{1 / 3}(-x)$

Note that the domain of the logarithmic function h is $(-\infty, 0)$. In order to graph the function h given by $h(x)=-2 \log _{1 / 3}(-x)$, we set $h(x)=y$ and graph the equation $y=-2 \log _{1 / 3}(-x)$. Since $y=-2 \log _{1 / 3}(-x)$
$\Rightarrow-\frac{y}{2}=\log _{1 / 3}(-x)$, then by the definition of logarithm, $-\frac{y}{2}=\log _{1 / 3}(-x)$
if and only if $-x=\left(\frac{1}{3}\right)^{-y / 2} \Rightarrow-x=3^{y / 2} \Rightarrow x=-3^{y / 2}$.
NOTE: $\quad h\left(-\frac{1}{9}\right)=-2 \log _{1 / 3} \frac{1}{9}=-2(2)=-4$

$$
h\left(-\frac{1}{3}\right)=-2 \log _{1 / 3} \frac{1}{3}=-2(1)=-2
$$

$$
h(-1)=-2 \log _{1 / 3} 1=-2(0)=0
$$

$$
h(-3)=-2 \log _{1 / 3} 3=-2(-1)=2
$$

$$
h(-9)=-2 \log _{1 / 3} 9=-2(-2)=4
$$

x	y
$-\frac{1}{9}$	-4
$-\frac{1}{3}$	-2
-1	0
-3	2
-9	4

The Drawing of this Graph

The x-intercept of the graph of the function is the point $(-1,0)$.

Note that as $x \rightarrow 0$ from the right, $y=-2 \log _{1 / 3}(-x) \rightarrow-\infty$. Thus, the vertical line of $x=0$, which is the y-axis, is a vertical asymptote of the graph of the function.

The functions $y=-2 \log _{1 / 3}(-x)$ and $y=-3^{x / 2}$ are inverse functions of one another.
9. $f(t)=-\frac{3}{4} \log _{2} t$

Note that the domain of the logarithmic function f is $(0, \infty)$. In order to graph the function f given by $f(t)=-\frac{3}{4} \log _{2} t$, we set $f(t)=y$ and graph the equation $y=-\frac{3}{4} \log _{2} t$. Since $y=-\frac{3}{4} \log _{2} t \Rightarrow$
$-\frac{4 y}{3}=\log _{2} t$, then by the definition of logarithm, $-\frac{4 y}{3}=\log _{2} t$ if and only if $t=2^{-4 y / 3}$.

NOTE: $\quad f\left(\frac{1}{8}\right)=-\frac{3}{4} \log _{2} \frac{1}{8}=-\frac{3}{4}(-3)=\frac{9}{4}$

$$
f\left(\frac{1}{4}\right)=-\frac{3}{4} \log _{2} \frac{1}{4}=-\frac{3}{4}(-2)=\frac{3}{2}
$$

$$
f\left(\frac{1}{2}\right)=-\frac{3}{4} \log _{2} \frac{1}{2}=-\frac{3}{4}(-1)=\frac{3}{4}
$$

$$
f(1)=-\frac{3}{4} \log _{2} 1=-\frac{3}{4}(0)=0
$$

$$
f(2)=-\frac{3}{4} \log _{2} 2=-\frac{3}{4}(1)=-\frac{3}{4}
$$

$$
\begin{gathered}
f(4)=-\frac{3}{4} \log _{2} 4=-\frac{3}{4}(2)=-\frac{3}{2} \\
f(8)=-\frac{3}{4} \log _{2} 8=-\frac{3}{4}(3)=-\frac{9}{4} \\
\hline \frac{1}{4} \\
\hline \frac{9}{4} \\
\hline \frac{9}{4} \\
\hline \frac{3}{4} \\
\hline
\end{gathered}
$$

The t-intercept of the graph of the function is the point $(1,0)$.

Note that as $t \rightarrow 0$ from the right, $y=-\frac{3}{4} \log _{2} t \rightarrow \infty$. Thus, the vertical line of $t=0$, which is the y-axis, is a vertical asymptote of the graph of the function.

The functions $y=-\frac{3}{4} \log _{2} t$ and $y=2^{-4 t / 3}$ are inverse functions of one another.
10. $g(t)=\frac{1}{2} \log _{3 / 4}(-t)$

Note that the domain of the logarithmic function g is $(-\infty, 0)$. In order to graph the function g given by $g(t)=\frac{1}{2} \log _{3 / 4}(-t)$, we set $g(t)=y$ and graph the equation $y=\frac{1}{2} \log _{3 / 4}(-t)$. Since $y=\frac{1}{2} \log _{3 / 4}(-t) \Rightarrow$ $2 y=\log _{3 / 4}(-t)$, then by the definition of logarithm, $2 y=\log _{3 / 4}(-t)$
if and only if $-t=\left(\frac{3}{4}\right)^{2 y} \Rightarrow t=-\left(\frac{3}{4}\right)^{2 y}$.
NOTE: Since $\left(\frac{3}{4}\right)^{2 y}=\left[\left(\frac{3}{4}\right)^{2}\right]^{y}=\left(\frac{9}{16}\right)^{y}$, then $t=-\left(\frac{3}{4}\right)^{2 y}=$ $-\left(\frac{9}{16}\right)^{y}$

NOTE: $\quad g\left(-\frac{64}{27}\right)=\frac{1}{2} \log _{3 / 4} \frac{64}{27}=\frac{1}{2}(-3)=-\frac{3}{2}$
$g\left(-\frac{16}{9}\right)=\frac{1}{2} \log _{3 / 4} \frac{16}{9}=\frac{1}{2}(-2)=-1$
$g\left(-\frac{4}{3}\right)=\frac{1}{2} \log _{3 / 4} \frac{4}{3}=\frac{1}{2}(-1)=-\frac{1}{2}$
$g(-1)=\frac{1}{2} \log _{3 / 4} 1=\frac{1}{2}(0)=0$
$g\left(-\frac{3}{4}\right)=\frac{1}{2} \log _{3 / 4} \frac{3}{4}=\frac{1}{2}(1)=\frac{1}{2}$

The t-intercept of the graph of the function is the point $(-1,0)$.

Note that as $t \rightarrow 0$ from the left, $y=\frac{1}{2} \log _{3 / 4}(-t) \rightarrow \infty$. Thus, the vertical line of $t=0$, which is the y-axis, is a vertical asymptote of the graph of the function.

The functions $y=\frac{1}{2} \log _{3 / 4}(-t)$ and $y=-\left(\frac{3}{4}\right)^{2 t}=-\left(\frac{9}{16}\right)^{t}$ are inverse functions of one another.
11. $h(t)=5 \log _{1 / 4} t$

Note that the domain of the logarithmic function h is $(0, \infty)$. In order to graph the function h given by $h(t)=5 \log _{1 / 4} t$, we set $h(t)=y$ and graph the equation $y=5 \log _{1 / 4} t$. Since $y=5 \log _{1 / 4} t \Rightarrow$ $\frac{y}{5}=\log _{1 / 4} t$, then by the definition of logarithm, $\frac{y}{5}=\log _{1 / 4} t$ if and only if $t=\left(\frac{1}{4}\right)^{y / 5}=4^{-y / 5}$.

t	y
$\frac{1}{16}$	10
$\frac{1}{4}$	5
1	0
4	-5
16	-10

The Drawing of this Graph

The t-intercept of the graph of the function is the point $(1,0)$.

Note that as $t \rightarrow 0$ from the right, $y=5 \log _{1 / 4} t \rightarrow \infty$. Thus, the vertical line of $t=0$, which is the y-axis, is a vertical asymptote of the graph of the function.

The functions $y=5 \log _{1 / 4} t$ and $y=\left(\frac{1}{4}\right)^{t / 5}=4^{-t / 5}$ are inverse functions of one another.
12. $f(x)=\log _{3} 2 x$
13. $g(t)=\log _{4}\left(-\frac{t}{3}\right)$
14. $h(x)=5 \log _{1 / 2} 4 x$

Examples Sketch the graph of the following functions. State the domain of the function and use the sketch to state the range of the function.

1. $f(x)=\log _{5}(x-3)$
2. $g(x)=3 \log x-4$
3. $h(x)=\log _{2 / 3}(x+5)+8$
4. $f(x)=\ln (-x)+2$
5. $g(t)=-2 \log _{3 / 4}(t-1)+6$
6. $\quad h(x)=-\ln (x+4)-3$
7. $f(x)=\sqrt{3} \log _{12 / 19}(4 x+8)$
8. $\quad g(x)=\log _{\pi}(6-x)-1$
9. $\quad h(t)=\frac{1}{3} \log _{1 / 2}(-3 t-5)-12$
10. $f(x)=-4 \log (8-x)+15$
