Solutions for In-Class Problems 9 for Wednesday, February 21

These problems are from **<u>Pre-Class Problems 9</u>**.

You can go to the solution for each problem by clicking on the problem letter or problem number.

- 1. Determine if the graph of the following equations is symmetric with respect to the *x*-axis, *y*-axis, origin, or none of these.
 - a. $y = x^4 |x| + 3$ b. $y^2 = 4x^3 7x$ c. $y = -6x^5$
- 2. Determine if the following functions are even, odd, or neither.

a.
$$f(x) = x^6 + 8x^2 - 5$$

b. $g(x) = \frac{4x^3}{x^2 - 16}$

3. If
$$h(x) = \begin{cases} x^2 + 6x + 9, & x \le -5 \\ \sqrt[3]{4x+9}, & -5 < x \le -2 \\ 3x^2 + \frac{11}{2}x, & x > -2 \end{cases}$$
, then find

ſ

a.
$$h(-5)$$
 b. $h(-3)$ c. $h(-1)$

4. Determine the interval(s) where the following functions are increasing and decreasing. Determine the location and the value of any relative (local) maximum and minimum of the functions.

5. If $f(x) = \sqrt{2x + 13}$ and $g(x) = 3x^2 - 5x - 27$, then find a. (f + g)(-2) b. (f - g)(-2) c. (fg)(-2)d. $\left(\frac{f}{g}\right)(-2)$

6. If
$$f(x) = 9 - x^2$$
 and $g(x) = 4x - 7$, then find
a. $(f + g)(x)$ b. $(f - g)(x)$ c. $(fg)(x)$
d. $\left(\frac{f}{g}\right)(x)$

SOLUTIONS:

1a. $y = x^4 - |x| + 3$ Back to <u>Problem 1</u>.

To check for symmetry with respect to the x-axis, replace y by -y: $-y = x^4 - |x| + 3$.

Solving for y: $-y = x^4 - |x| + 3 \implies y = -x^4 + |x| - 3$

The equations $y = x^4 - |x| + 3$ and $-y = x^4 - |x| + 3$ are NOT the same. Thus, there is no symmetry with respect to the *x*-axis.

To check for symmetry with respect to the y-axis, replace x by -x: $y = (-x)^4 - |-x| + 3 = x^4 - |x| + 3$.

The equations $y = x^4 - |x| + 3$ and $y = (-x)^4 - |-x| + 3$ ARE the same. Thus, there is symmetry with respect to the y-axis.

To check for symmetry with respect to the origin, replace x by -x and replace y by -y:

$$-y = (-x)^{4} - |-x| + 3 = x^{4} - |x| + 3$$

Solving for *y*: $y = -x^4 + |x| - 3$

The equations $y = x^4 - |x| + 3$ and $-y = (-x)^4 - |-x| + 3$ are NOT the same. Thus, there is no symmetry with respect to the origin.

Answer: *y*-axis

1b. $y^2 = 4x^3 - 7x$ Back to Problem 1.

To check for symmetry with respect to the x-axis, replace y by -y: $(-y)^2 = 4x^3 - 7x \implies y^2 = 4x^3 - 7x$.

The equations $y^2 = 4x^3 - 7x$ and $(-y)^2 = 4x^3 - 7x$ ARE the same. Thus, there is symmetry with respect to the *x*-axis.

To check for symmetry with respect to the y-axis, replace x by -x:

$$y^{2} = 4(-x)^{3} - 7(-x) = -4x^{3} + 7x.$$

The equations $y^2 = 4x^3 - 7x$ and $y^2 = 4(-x)^3 - 7(-x)$ are NOT the same. Thus, there is no symmetry with respect to the y-axis.

To check for symmetry with respect to the origin, replace x by -x and replace y by -y:

$$(-y)^2 = 4(-x)^3 - 7(-x) \implies y^2 = -4x^3 + 7x$$

The equations $y^2 = 4x^3 - 7x$ and $(-y)^2 = 4(-x)^3 - 7(-x)$ are NOT the same. Thus, there is no symmetry with respect to the origin.

Answer: x-axis

1c. $y = -6x^5$ Back to Problem 1.

To check for symmetry with respect to the x-axis, replace y by -y: $-y = -6x^5$.

Solving for y: $-y = -6x^5 \implies y = 6x^5$

The equations $y = -6x^5$ and $-y = -6x^5$ are NOT the same. Thus, there is no symmetry with respect to the *x*-axis.

To check for symmetry with respect to the y-axis, replace x by -x: $y = -6(-x)^5 = -6(-x^5) = 6x^5$.

The equations $y = -6x^5$ and $y = -6(-x)^5$ are NOT the same. Thus, there is no symmetry with respect to the y-axis.

To check for symmetry with respect to the origin, replace x by -x and replace y by -y: $-y = -6(-x)^5$.

Solving for y: $-y = -6(-x)^5 \Rightarrow -y = 6x^5 \Rightarrow y = -6x^5$

The equations $y = -6x^5$ and $-y = -6(-x)^5$ ARE the same. Thus, there is symmetry with respect to the origin.

Answer: origin

2a.
$$f(x) = x^6 + 8x^2 - 5$$
 Back to Problem 2.

$$f(-x) = (-x)^{6} + 8(-x)^{2} - 5 = x^{6} + 8x^{2} - 5 = f(x)$$

Answer: Even

2b.
$$g(x) = \frac{4x^3}{x^2 - 16}$$

Back to Problem 2.

$$g(-x) = \frac{4(-x)^3}{(-x)^2 - 16} = \frac{-4x^3}{x^2 - 16} = -\frac{4x^3}{x^2 - 16} = -g(x)$$

Answer: Odd

3. If
$$h(x) = \begin{cases} x^2 + 6x + 9, & x \le -5 \\ \sqrt[3]{4x + 9}, & -5 < x \le -2 \\ 3x^2 + \frac{11}{2}x, & x > -2 \end{cases}$$
, then find

3a. To find h(-5): Since $-5 \le -5$ and $h(x) = x^2 + 6x + 9$ when $x \le -5$, then h(-5) = 25 - 30 + 9 = 4. NOTE: Since $x^2 + 6x + 9 = (x + 3)^2$, then we could use this information in order to find h(-5). Thus, $h(-5) = (-2)^2 = 4$.

Answer: 4

Back to Problem 3.

3b. To find
$$h(-3)$$
: Since $-5 < -3 \le -2$ and $h(x) = \sqrt[3]{4x + 9}$ when $-5 < x \le -2$, then $h(-3) = \sqrt[3]{-12 + 9} = \sqrt[3]{-3} = -\sqrt[3]{3}$.

Answer:
$$-\sqrt[3]{3}$$
 Back to Problem 3.

3c. To find h(-1): Since -1 > -2 and $h(x) = 3x^2 + \frac{11}{2}x$ when x > -2, then $h(-1) = 3 - \frac{11}{2} = \frac{6}{2} - \frac{11}{2} = -\frac{5}{2}$. NOTE: Since $3x^2 + \frac{11}{2}x = \frac{1}{2}x(6x+11)$, then we could use this information in order to find h(-1). Thus, $h(-1) = \frac{1}{2}(-1)(5) = -\frac{5}{2}$.

Answer: $-\frac{5}{2}$ Back to <u>Problem 3</u>.

4. Determine the interval(s) where the following functions are increasing and decreasing. Determine the location and the value of any relative maximum and minimum of the functions.

Rel. Max: -2 at x = -4Rel. Min: -8 at x = -2Back to Pr

Back to Problem 4.

5.
$$f(x) = \sqrt{2x + 13}$$
 and $g(x) = 3x^2 - 5x - 27$
 $f(-2) = \sqrt{9} = 3$
 $g(-2) = 12 + 10 - 27 = -5$
5a. $(f + g)(-2) = f(-2) + g(-2) = 3 + (-5) = -2$
Answer: -2
Back to Problem 5.
5b. $(f - g)(-2) = f(-2) - g(-2) = 3 - (-5) = 8$
Answer: 8
Back to Problem 5.
5c. $(fg)(-2) = [f(-2)][g(-2)] = 3(-5) = -15$
Answer: -15
Back to Problem 5.
5d. $\left(\frac{f}{g}\right)(-2) = \frac{f(-2)}{g(-2)} = \frac{3}{-5} = -\frac{3}{5}$
Answer: $-\frac{3}{5}$
Back to Problem 5.
6. $f(x) = 9 - x^2$ and $g(x) = 4x - 7$
6a. $(f + g)(x) = f(x) + g(x) = 9 - x^2 + 4x - 7 = 2 + 4x - x^2$
Answer: $2 + 4x - x^2$
Back to Problem 6.

6b.
$$(f - g)(x) = f(x) - g(x) = 9 - x^2 - (4x - 7) =$$

9 - $x^2 - 4x + 7 = 16 - 4x - x^2$

Answer: $16 - 4x - x^2$

Back to Problem 6.

6c.
$$(fg)(x) = [f(x)][g(x)] = (9 - x^2)(4x - 7) =$$

 $36x - 63 - 4x^3 + 7x^2 = -4x^3 + 7x^2 + 36x - 63$

Answer: $-4x^3 + 7x^2 + 36x - 63$

Back to Problem 6.

6d.
$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)} = \frac{9-x^2}{4x-7}$$

Answer: $\frac{9-x^2}{4x-7}$; $x \neq \frac{7}{4}$ Back to Problem 6.