Solutions for In-Class Problems 7 for Wednesday, February 14
Earn one bonus point because you checked the solutions for these problems. Send me an email with the following in the Subject line: ICPS7.

These problems are from Pre-Class Problems 7.

You can go to the solution for each problem by clicking on the problem letter.

1. If $f(x)=2 x^{2}-7 x$, then find the average rate of change of the function f on the intervals
a. $[0,2]$
b. $[2,5]$
c. $[5,5+h]$
2. Find the point-slope form and the slope-intercept form for the equation of the line if given the following.
a. passes through $(6,-8)$ and $(4,-2)$
b. passes through $(0,-5)$ and $(3,0)$
c. passes through $(-4,-7)$ and is perpendicular to the line $4 x-3 y=12$
3. Mike makes a base salary of $\$ 600$ per week plus 8% commission on all his sales.
a. Write a linear function for Mike's weekly salary $S(x)$, where x represents his weekly sales. Find the domain and range of this function.
b. Find $S(5000)$ and interpret its meaning.
c. Determine the amount of sales Mike will need to make in order to have a salary of $\$ 2000$ for one week.
4. Graph the function $y=\sqrt[3]{x}$ by plotting at least five points.

SOLUTIONS:

1a. $[0,2]$
Back to Problem 1.
$f(x)=2 x^{2}-7 x$
NOTE: You need to calculate the slope of the line passing through the points $(0, f(0))$ and (2, f(2)).
$f(0)=0-0=0 \Rightarrow(0, f(0))=(0,0)$
$f(2)=8-14=-6 \Rightarrow(2, f(2))=(2,-6)$
$m_{\text {sec }}=\frac{\Delta y}{\Delta x}=\frac{y_{1}-y_{2}}{x_{1}-x_{2}}=\frac{0+6}{0-2}=\frac{6}{-2}=-3$

NOTE: $\frac{y_{1}-y_{2}}{x_{1}-x_{2}}=\frac{f(0)-f(2)}{0-2}$

Answer: - 3

1b. $[2,5]$
Back to Problem 1.
$f(x)=2 x^{2}-7 x$
NOTE: You need to calculate the slope of the line passing through the points $(2, f(2))$ and (5,f(5)).

$$
\begin{aligned}
& f(2)=8-14=-6 \Rightarrow(2, f(2))=(2,-6) \\
& f(5)=50-35=15 \Rightarrow(5, f(5))=(5,15)
\end{aligned}
$$

$$
m_{\mathrm{sec}}=\frac{\Delta y}{\Delta x}=\frac{y_{1}-y_{2}}{x_{1}-x_{2}}=\frac{-6-15}{2-5}=\frac{-21}{-3}=7
$$

NOTE: $\frac{y_{1}-y_{2}}{x_{1}-x_{2}}=\frac{f(2)-f(5)}{2-5}$

Answer: 7

1c. $[5,5+h]$
Back to Problem 1.

$$
f(x)=2 x^{2}-7 x
$$

NOTE: You need to calculate the slope of the line passing through the points $(5, f(5))$ and $(5+h, f(5+h))$.

$$
f(5)=50-35=15 \Rightarrow(5, f(5))=(5,15)
$$

$$
f(5+h)=2(5+h)^{2}-7(5+h)=2\left(25+10 h+h^{2}\right)-35-7 h
$$

$$
=50+20 h+2 h^{2}-35-7 h=15+13 h+2 h^{2}
$$

$$
f(5+h)=15+13 h+2 h^{2} \Rightarrow
$$

$$
(5+h, f(5+h))=\left(5+h, 15+13 h+2 h^{2}\right)
$$

$$
\begin{aligned}
& m_{\mathrm{sec}}=\frac{\Delta y}{\Delta x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{15+13 h+2 h^{2}-15}{5+h-5}=\frac{13 h+2 h^{2}}{h}= \\
& =\frac{h(13+2 h)}{h}=13+2 h
\end{aligned}
$$

NOTE: $\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{f(5+h)-f(5)}{5+h-5}$

Answer: $13+2 h$

2a. passes through $(6,-8)$ and $(4,-2)$
Back to Problem 2.
$m=\frac{-8+2}{6-4}=\frac{-6}{2}=-3$

Using the point $(4,-2)$, the point-slope form of the line is
$y+2=-3(x-4)$.
The slope-intercept form of the line can be found by solving the equation $y+2=-3(x-4)$ for y :
$y+2=-3(x-4) \Rightarrow y+2=-3 x+12 \Rightarrow y=-3 x+10$

Answer: Point-Slope Form: $y+2=-3(x-4)$ or

$$
y+8=-3(x-6)
$$

Slope-Intercept Form: $y=-3 x+10$

2b. passes through $(0,-5)$ and $(3,0)$
Back to Problem 2.

$$
m=\frac{-5-0}{0-3}=\frac{-5}{-3}=\frac{5}{3}
$$

Using the point $(3,0)$, the point-slope form of the line is

$$
y-0=\frac{5}{3}(x-3) \Rightarrow y=\frac{5}{3}(x-3) .
$$

The slope-intercept form of the line:

$$
y=\frac{5}{3}(x-3) \Rightarrow y=\frac{5}{3} x-5
$$

Answer: Point-Slope Form: $y=\frac{5}{3}(x-3)$ or $y+5=\frac{5}{3} x$
Slope-Intercept Form: $y=\frac{5}{3} x-5$

2c. passes through $(-4,-7)$ and is perpendicular to the line $4 x-3 y=12$ Back to Problem 2.
$4 x-3 y=12 \Rightarrow 4 x-12=3 y \Rightarrow y=\frac{4}{3} x-4$

The slope of the line $4 x-3 y=12$ is $\frac{4}{3}$. Thus, the slope of a line which is perpendicular to the line $4 x-3 y=12$ is $-\frac{3}{4}$.

The point-slope form of the line: $y+7=-\frac{3}{4}(x+4)$.

The slope-intercept form of the line can be found by solving the equation $y+7=-\frac{3}{4}(x+4)$ for y :

$$
y+7=-\frac{3}{4}(x+4) \Rightarrow y+7=-\frac{3}{4} x-3 \Rightarrow y=-\frac{3}{4} x-10
$$

Answer: Point-Slope Form: $y+7=-\frac{3}{4}(x+4)$

Slope-Intercept Form: $y=-\frac{3}{4} x-10$
3a. Mike makes a base salary of $\$ 600$ per week plus 8% commission on all his sales.
$S(x)=0.08 x+600$
Domain of $S:[0, \infty)$
Range of $S:[600, \infty)$
Back to Problem 3.

3b. $S(5000)=0.08(5000)+600=400+600=\$ 1000$
Mike had a weekly salary of $\$ 1000$ for a week in which he had $\$ 5000$ in sales.

Back to Problem 3.

3c. $\quad S(x)=2000 \Rightarrow 2000=0.08 x+600 \Rightarrow 1400=0.08 x \Rightarrow$

$$
0.08 x=1400 \Rightarrow x=\frac{1400}{0.08}=\frac{140000}{8}=\frac{70000}{4}=\frac{35000}{2}=17500
$$

or $x=\frac{1400}{0.08}=\frac{700}{0.04}=\frac{350}{0.02}=\frac{175}{0.01}=17500$

Mike will need to have weekly sales of $\$ 17,500$ in order to have a weekly salary of \$2000.

Answer: \$17,500

4. I will graph this function in class.

Back to Problem 3.

Back to Problem 4.

