Solutions for In-Class Problems 5 for Wednesday, February 7

These problems are from Pre-Class Problems 5.

You can go to the solution for each problem by clicking on the problem letter or problem number.

1. Identify the set of values of x for which y will be a real number. Use interval notation to write your answer.
a. $\quad y=\frac{4}{5 x+6}$
b. $y=\sqrt{25-49 x}$
2. Find the x-intercept(s) and the y-intercept(s) of the graph of the following equations.
a. $\quad 9 x^{2}-y^{2}=81$
b. $\quad y=2|3 x-7|+11$
3. Write the equation of the circle in standard form given the following information.
a. Center: $(-3,7)$; Radius: 4
b. The endpoints of a diameter are $(-2,-5)$ and $(6,-11)$.
c. The center is $(9,4)$ and the point $(1,-3)$ is a point on the circle.
d. Write an equation that represents the set of points that are 7 units from the point $(-6,0)$.
e. The center is $(5,-8)$ and the circle is tangent to the x-axis.
4. Write the following equation of a circle in standard form. Then find the center and radius of the circle.

$$
x^{2}+y^{2}-6 x+14 y+30=0
$$

5. If $f(x)=3 x^{2}-4 x-12$, then find
a. $\quad f(-2)$
b. $\quad f(3)$
c. $\quad f(x+h)$

SOLUTIONS:

1a. $y=\frac{4}{5 x+6}$

$$
5 x+6 \neq 0 \Rightarrow 5 x \neq-6 \Rightarrow x \neq-\frac{6}{5}
$$

Answer: $\left(-\infty,-\frac{6}{5}\right) \cup\left(-\frac{6}{5}, \infty\right)$

1b. $y=\sqrt{25-49 x}$

$$
25-49 x \geq 0 \Rightarrow 25 \geq 49 x \Rightarrow \frac{25}{49} \geq x \Rightarrow x \leq \frac{25}{49}
$$

Answer: $\left(-\infty, \frac{25}{49}\right]$
Back to Problem 1.

2a. $\quad 9 x^{2}-y^{2}=81$
Back to Problem 2.
x-intercept(s): To find the x-intercept(s), set $y=0$.
$9 x^{2}-y^{2}=81$ and $y=0 \Rightarrow 9 x^{2}=81 \Rightarrow x^{2}=9 \Rightarrow x= \pm 3$
x-intercept(s): $(-3,0) ;(3,0)$
y-intercept(s): To find the y-intercept(s), set $x=0$.
$9 x^{2}-y^{2}=81$ and $x=0 \Rightarrow-y^{2}=81 \Rightarrow y^{2}=-81 \Rightarrow y= \pm 9 i$
y-intercept(s): None

2b. $\quad y=2|3 x-7|+11$
Back to Problem 2.
x-intercept(s): To find the x-intercept(s), set $y=0$.

$$
\begin{aligned}
& y=2|3 x-7|+11 \text { and } y=0 \Rightarrow 0=2|3 x-7|+11 \Rightarrow \\
& -11=2|3 x-7| \Rightarrow|3 x-7|=-\frac{11}{2}
\end{aligned}
$$

The equation $|3 x-7|=-\frac{11}{2}$ had no solutions.
\boldsymbol{x}-intercept(s): None
y-intercept(s): To find the y-intercept(s), set $x=0$.
$y=2|3 x-7|+11$ and $x=0 \Rightarrow y=2|-7|+11=2(7)+11=$
$14+11=25$
y-intercept(s): (0,25)

3a. Center: $(-3,7)$; Radius: 4
Back to Problem 3.

Standard form: $(x-h)^{2}+(y-k)^{2}=r^{2}$

$$
h=-3, k=7, r=4 \Rightarrow(x+3)^{2}+(y-7)^{2}=16
$$

Answer: $(x+3)^{2}+(y-7)^{2}=16$
Back to Problem 3.

3b. The endpoints of a diameter are $(-2,-5)$ and $(6,-11)$.

Use the midpoint formula to find the center of the circle:
$\left(\frac{-2+6}{2}, \frac{-5-11}{2}\right)=\left(\frac{4}{2}, \frac{-16}{2}\right)=(2,-8)$

Use the distance formula to find the length of the diameter in order to find the radius:

$$
\begin{aligned}
& d=\sqrt{(-2-6)^{2}+(-5+11)^{2}}=\sqrt{(-8)^{2}+6^{2}}=\sqrt{64+36}=\sqrt{100} \\
& =10
\end{aligned}
$$

Since the diameter is 10 , then the radius is 5 .

Center: $(2,-8)$; Radius: 5

Standard form: $(x-h)^{2}+(y-k)^{2}=r^{2}$
$h=2, k=-8, r=5 \Rightarrow(x-2)^{2}+(y+8)^{2}=25$

Answer: $(x-2)^{2}+(y+8)^{2}=25$
Back to Problem 3.

3c. The center is $(9,4)$ and the point $(1,-3)$ is a point on the circle.

Standard form: $(x-h)^{2}+(y-k)^{2}=r^{2}$

$$
h=9, k=4, r=? \Rightarrow(x-9)^{2}+(y-4)^{2}=r^{2}
$$

In order for the point $(1,-3)$ to be on the circle, it must satisfy the equation for the circle. Thus,

$$
\begin{aligned}
& (1-9)^{2}+(-3-4)^{2}=r^{2} \Rightarrow r^{2}=(-8)^{2}+(-7)^{2}=64+49=113 \\
& r^{2}=113 \Rightarrow(x-9)^{2}+(y-4)^{2}=113
\end{aligned}
$$

Answer: $(x-9)^{2}+(y-4)^{2}=113$ Back to Problem 3.

3d. Write an equation that represents the set of points that are 7 units from the point $(-6,0)$.

Standard form: $(x-h)^{2}+(y-k)^{2}=r^{2}$

$$
\begin{aligned}
& h=-6, k=0, r=7 \Rightarrow(x+6)^{2}+(y-0)^{2}=49 \Rightarrow \\
& (x+6)^{2}+y^{2}=49
\end{aligned}
$$

$$
\text { Answer: }(x+6)^{2}+y^{2}=49
$$

3e. The center is $(5,-8)$ and the circle is tangent to the x-axis.

Standard form: $(x-h)^{2}+(y-k)^{2}=r^{2}$

NOTE: The radius of the center is the length of the red line segment shown above. This length is 8 .

$$
h=5, k=-8, r=8 \Rightarrow(x-5)^{2}+(y+8)^{2}=64
$$

Answer: $(x-5)^{2}+(y+8)^{2}=64$
Back to Problem 3.
4. We will need to complete the squares for both x and y in order to put the equation in standard form.

$$
\begin{array}{cl}
x^{2}+y^{2}-6 x+14 y+30=0 \\
x^{2}-6 x+\underline{9}+y^{2}+14 y+\underline{49}=-30+9+49 \\
\downarrow \text { Half } & \downarrow \text { Half } \\
3 & 7 \\
\downarrow \text { Square } & \downarrow \text { Square } \\
9 & 49
\end{array}
$$

$(x-3)^{2}+(y+7)^{2}=28$

Center: $(3,-7) \quad$ Radius: $\sqrt{28}=2 \sqrt{7}$
Back to Problem 4.

5a. $f(x)=3 x^{2}-4 x-12$
$f(-2)=12+8-12=8$

Answer: 8

5b. $f(x)=3 x^{2}-4 x-12$
$f(3)=27-12-12=3$

5c. $f(x)=3 x^{2}-4 x-12$

$$
\begin{aligned}
& f(x+h)=3(x+h)^{2}-4(x+h)-12= \\
& 3\left(x^{2}+2 x h+h^{2}\right)-4 x-4 h-12= \\
& 3 x^{2}+6 x h+3 h^{2}-4 x-4 h-12
\end{aligned}
$$

Answer: $3 x^{2}+6 x h+3 h^{2}-4 x-4 h-12$

